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Introduction

We explore some fundamental aspects of diffusion in a binary (chemical species A and B)
system. The ultimate objective is to better understand the relationship among the various
treatments of a one-dimensional diffusion couple when there is volume change on mixing.
We begin by examining the relationships among diffusion fluxes that are true irrespective of
the nature of constitutive equations. We then introduce constitutive equations and relate
the various diffusivities therein. By means of an explicit transformation along the lines
suggested by den Broeder [1], we transform the Eulerian description for a one dimensional
diffusion couple with volume change to a Lagrangian description, thus eliminating the explicit
appearance of a convective term. The resulting equation can be solved by the Boltzmann-
Matano method [2,3]. We deduce by purely analytical means the formulae of Wagner [4] for
the diffusivity and for the location of the Matano interface. We develop explicit formulae
for the movement of this Wagner-Matano interface with respect to the ends of the diffusion
couple. We show that the ends of the couple and the Wagner-Matano interface move with
respect to one another by amounts that are proportional to

√
t where t is time. We then

relate this solution to an alternative description by Sauer and Freise [5] and show explicitly
the relationship of the Wagner-Matano interface to the two Matano planes of Sauer and
Freise which are fixed with respect to either end of the diffusion couple.

1 Diffusion Formalism

In this section we present the fundamental formalism that underlies diffusion. We first define
diffusive fluxes and relate these to one another. These relationships are purely kinematical
and hold irrespective of the form of the constitutive equations. Then we introduce constitu-
tive equations and relate diffusivities. We do this in three dimensions and later specialize to
one dimension.
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1.1 General description of diffusion

Observed fluxes We first define observed fluxes of the species (atoms or molecules) of
a multicomponent system. We consider a system with two chemical components (species)
which we denote by A and B.

The observed flux of a species, i, measured in units of moles m−2 s−1, is given by1

Ji := civi, i = A,B (1)

where ci is the concentration of species i, expressed in moles/m3, and vi is the average
velocity of species i, measured in m/sec with respect to an arbitrary observer. Such a flux
depends on the state of motion of the observer, or for an observer fixed in the laboratory,
the local relative motion of a portion of the sample, either via motion of the whole sample
and/or local flow within the sample. We emphasize that ci is concentration (“stuff” per
unit volume), not composition, which would be measured in terms of the mole fractions
X := XB := cB/c and 1−X = XA := cA/c, where the total concentration (reciprocal of the
molar volume) is c := cA + cB.

Alternatively, we could define observed mass-based fluxes

J̃i := ρivi, i = A,B (2)

measured in kg m−2 s−1, where ρi is the partial density of species i, expressed in kg/m3.
Here again, we emphasize that ρi is a type of concentration in the sense of “stuff” per
unit volume; the corresponding composition would be expressed in terms of mass fractions,
ω := ωB := ρB/ρ and 1− ω = ωA := ρA/ρ, where the total density ρ = ρA + ρB.

Provided that each species has a non-vanishing molecular mass (molecular “weight”) mi,
one has simply ρi = mici and J̃i = miJi. If one treats a lattice model in which vacancies are
considered to be a hypothetical species with zero molecular weight, the connection between a
mole-based description and a mass-based description is more complicated. In the following,
we limit ourselves to descriptions for which mi 6= 0, in which case the only difference in these
observed fluxes is the units in which they are measured.

Diffusive fluxes We now define diffusive fluxes, consistent with the notion that diffusion
is relative motion of species and therefore must be independent of the state of motion of the
observer. This requirement is met if the diffusive fluxes are expressed in terms of differences
of velocity fields [7]

jFi := ci(vi − vF )

= Ji − civF (3)

where vF is a velocity field, a vector quantity common to all species that can vary with
position and time. The quantity jFi is the diffusive flux, measured in moles m−2 s−1, of
species i with respect to the field vF .

We can also define a mass-based diffusive flux,

j̃Fi := ρi(vi − vF )

= J̃i − ρivF . (4)

1The notation := means “is defined to be equal to.” We use it to distinguish definitions from results.

2



Here, j̃Fi is the diffusive flux, measured in kg m−2 s−1, of species i with respect to the field
vF .

Center of moles, center of mass For the mole based description, a possible choice for
the field vF is the velocity field of the local center of moles,

v∗ :=
cAvA + cBvB

c
= XAvA +XBvB. (5)

The corresponding diffusive fluxes are

ji := ci(vi − v∗), (6)

so jA = −jB, as may be verified by adding Eq(6) for A and B.
The parallel treatment for mass fluxes is to choose vF to be the velocity field of the local

center of mass (also known as the barycentric velocity)

v :=
ρAvA + ρBvB

ρ
= ωAvA + ωBvB. (7)

The corresponding diffusive fluxes

j̃i = ρi(vi − v) (8)

so j̃A = −j̃B. The fluxes ji and j̃i are not only measured in different units but are measured
with respect to different reference velocity fields, so they are not simply related. We can,
however, relate them through the observed fluxes which obey J̃i = miJi. Thus

ρAv + j̃A = mAcAv∗ +mAjA (9)

ρBv + j̃B = mBcBv∗ +mBjB.

Adding these equations and recalling that ρi = mici leads to

v − v∗ =
mB −mA

ρ
jB =

1

c

(
1

mA

− 1

mB

)
j̃B. (10)

Eq(10) shows that the relationship between v and v∗ is purely diffusive, and further relates
the diffusive fluxes by

jA =
ρ

c

j̃A
mAmB

; jB =
ρ

c

j̃B
mAmB

(11)

which hold even though the ratio

ρ

c
= mA + (mB −mA)X =

1

m−1
A + (m−1

B −m−1
A )ω

(12)

varies with composition.
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Center of volume Another common choice for the field vF is the velocity field of the
local center of volume, which we denote by v2. In order to define this field, we note that for
a homogeneous system, the differential of the volume is given by

dV = V̄AdNA + V̄BdNB − V β dp+ V α dT (13)

= ṼAdMA + ṼBdMB − V β dp+ V α dT

where NA and NB are mole numbers of A and B, MA and MB are masses of A and B,
p is the pressure, T is the temperature, β is the isothermal compressibility, and α is the
isobaric coefficient of expansion. The coefficients V̄i are partial molar volumes and Ṽi are
partial specific volumes, related by the molecular weights such that V̄i = miṼi. Since V is a
homogeneous function of degree one in the Ni or the Mi, Eq(13) can be integrated by Euler’s
theorem2 to give

V = V̄ANA + V̄BNB = ṼAMA + ṼBMB (14)

which holds even when the partial volumes are variables. Division by V yields

1 = V̄AcA + V̄BcB = ṼAρA + ṼBρB (15)

which are assumed to hold locally, even for an inhomogeneous system.
We now define the velocity field of the local center of volume3 by

v2 := V̄AcAvA + V̄BcBvA = ṼAρAvA + ṼBρBvB. (16)

The corresponding diffusive fluxes for moles are

ji
2 := ci(vi − v2) (17)

and V̄AjA
2 = −V̄BjB

2. Similarly for the diffusive mass fluxes

j̃i
2

:= ρi(vi − v2) (18)

and ṼAj̃A
2

= −ṼB j̃B
2

. Because the reference velocity field is the same for both of these
diffusive fluxes, they are simply related by

j2A =
j̃2A
mA

; j2B =
j̃2B
mB

. (19)

Relationship of v2 to v∗ and v We can relate v2 to v∗ by equating observed fluxes to
obtain

cAv∗ + jA = cAv2 + j2A (20)

cBv∗ + jB = cBv2 + j2B.

2If f(λx1, λx2, . . . , λxn) = λnf(x1, x2, . . . , xn), the function f is said to be homogeneous of degree n in
the variables x1, x2, . . . , xn. Then Euler’s theorem states that nf =

∑n
i=1 xi(∂f/∂xi).

3The relationship to a physical center of volume should not be taken too seriously because the partial
volumes are defined as derivatives, and one of them can even be negative. If the partial volumes are constants,
a physical interpretation is possible.
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Adding these equations gives

v2 − v∗ = −(j2A + j2B)

c
=

(V̄B − V̄A)j2B
cV̄A

(21)

whereas multiplying the first equation by V̄A and the second by V̄B and adding gives

v2 − v∗ = V̄AjA + V̄BjB = (V̄B − V̄A)jB. (22)

Therefore the difference between v2 and v∗ is purely diffusive, and comparison of Eq(21)
with Eq(22) leads to

jA =
j2A
cV̄B

; jB =
j2B
cV̄A

. (23)

In a similar way, for the mass fluxes, we obtain

v2 − v =
(ṼB − ṼA)j2B

ρṼA
= (ṼB − ṼA)̃jB (24)

and

j̃A =
j̃2A
ρṼB

; j̃B =
j̃2B
ρṼA

. (25)

Solvent field Another possible choice for the field vF is vA itself, regarded to be the
solvent, with species B as solute. This leads to a single diffusive flux

jSB := cB(vB − vA) =
1

1−X jB =
1

cAV̄A
j2B (26)

for the mole based description and

j̃SB := ρB(vB − vA) =
1

1− ω j̃B =
1

ρAṼA
j̃2B (27)

for the mass based description. Such a description would only be useful if vA could be
determined independently. For example, if species A in a solid were substitutional and
immobile on a rigid lattice and species B were a mobile interstitial, its motion would be
described completely by jSB.

Lattice or marker field We could also choose the field vF to be the local velocity vL of
a crystal lattice (not necessarily a rigid lattice) or the velocity vM of inert markers (which
might very well move with the lattice). The formalism is the same in either case, so we
illustrate it for vM and for the mole based description. The diffusive fluxes relative to
markers are

jMi := ci(vi − vM). (28)

Equating observed fluxes gives

cAvM + jMA = cAv∗ + jA (29)

cBvM + jMB = cBv∗ + jB
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and adding these equations leads to

vM − v∗ = −(jMA + jMB )

c
. (30)

This yields

jA = cA(vA − v∗) = cA(vA − vM) + cA(vM − v∗) = jMA −
cA(jMA + jMB )

c
. (31)

Thus

jA = XBjMA −XAjMB (32)

jB = −XBjMA +XAjMB

and

j2A = cV̄B(XBjMA −XAjMB ) (33)

j2B = cV̄A(−XBjMA +XAjMB ).

Note, however, that it is not possible to solve Eq(32) and Eq(33) for jMA and jMB because the
determinant of the matrix of their coefficients is zero. This arises because jMA and jMB have
been introduced as independent fluxes. They can only be related by a detailed theory of
marker motion or given by postulated constitutive equations in terms of intrinsic diffusivities,
as discussed in the next section.

We emphasize that these relationships among diffusive fluxes are purely kinematical and
independent of constitutive equations.

1.2 Constitutive equations

In order to give a complete description of diffusion, we must close the problem by providing
a methodology to calculate the fluxes from the mole or mass densities or compositions.
This is accomplished by constitutive equations that relate the fluxes to gradients of suitable
potentials, and ultimately to gradients of mole density, mass density or composition. Such
constitutive equations are often postulated on purely empirical grounds, e.g., Fick’s first
law. Alternatively, they can be rationalized on the basis of irreversible thermodynamics.
We examine briefly their rationalization, but ultimately adopt them as laws that must be
validated by experiment.

Basis in irreversible thermodynamics We consider diffusion in an isothermal fluid
in terms of a mass based description with diffusion fluxes j̃i = ρi(vi − v) as in Eq(8).
Considerations of entropy production and the assumption of a linear relationship between
fluxes and thermodynamic forces leads to [8, 9]

j̃A = −L̃AA(∇µA − gA)− L̃AB(∇µB − gB) (34)

j̃B = −L̃BA(∇µA − gA)− L̃BB(∇µB − gB)
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where the µi are (intrinsic) chemical potentials per unit mass and the gi are species specific
external forces per unit mass. For these forces and fluxes [8], the mobility matrix L̃ij has
Onsager symmetry, and since j̃A + j̃B = 0 for these fluxes, the assumption of independent
driving forces ∇µA−gA and ∇µB−gB leads to L̃AA = −L̃BA = −L̃AB = L̃BB. Thus Eq(34)
contains only one mobility coefficient which we call L̃ and can be written in the form

j̃B = −L̃ [∇(µB − µA)− (gB − gA)] (35)

with j̃A = −j̃B. If the forces per unit mass are due to gravity, which we shall assume, then
gA = gb = g, and we are left with

j̃B = −L̃∇(µB − µA) = −L̃
[
∂(µB − µA)

∂ω
∇ω +

∂(µB − µA)

∂p
∇p

]
. (36)

If g is the Gibbs free energy per unit mass, then µB−µA = ∂g/∂ω and Eq(36) can be written

j̃B = −L̃
[
∂2g

∂ω2
∇ω + (ṼB − ṼA)∇p

]
(37)

where we have also identified the pressure derivative. Under many circumstances, the effect
of a pressure gradient on the diffusion flux can be neglected relative to that due to the
gradient of composition; for an estimate see Appendix B of [10]. We proceed as is customary
to neglect the pressure gradient term and adopt a flux law of the form

j̃B = −ρD∇ω (38)

where the diffusivity D = (L̃/ρ)∂2g/∂ω2. Provided that ρ and D are treated as variables,
there is no loss of generality in having the density ρ appear explicitly in Eq(38). As we shall
see, this choice will result in D being the diffusivity in the center of volume description, in
accord with common notation.

Constitutive relations for all fluxes Whether motivated by irreversible thermodynam-
ics or postulated on empirical grounds, we adopt Eq(38) for the diffusive flux of mass relative
to the velocity field of the local center of mass. Then by Eqs(11,19,23,25,26,27) we can write
constitutive relations for all of the other fluxes.

From Eq(11) we obtain

jB = − ρ2

cmAmB

D∇ω. (39)

By taking the derivative of Eq(12), we obtain dω/dX = mAmBc
2/ρ2,which enables Eq(39)

to be rewritten in the form
jB = −cD∇X (40)

which should be compared with Eq(38). Then from Eqs(26,27) we obtain

jSB = − c

1−XD∇X (41)

j̃SB = − ρ

1− ωD∇ω
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which are consistent4 with Wagner’s equation [4]

vA − vB = D ∇ω
ω(1− ω)

= D ∇X
X(1−X)

(42)

which he used as a definition of D.
For the diffusive fluxes with respect to v2, Eq(23) and Eq(25) give

j2B = −c2V̄AD∇X (43)

j̃2B = −ρ2ṼAD∇ω

which, although correct, are not in their usual form. To obtain such a form, we return to
Eq(13) for an isothermal system and also neglect the term in β to get

dV = V̄AdNA + V̄BdNB = ṼAdMA + ṼBdMB. (44)

In order to justify Eq(44), some researchers claim to be working at constant pressure, but
having no way to control the pressure internally (which might well be a driving force for fluid
convection) we prefer to claim that the compressibility β is small for condensed systems, to
which we confine our analysis. Comparison of Eq(44) with the differential of Eq(14) then
gives

0 = NAdV̄A +NBdV̄B = MAdṼA +MBdṼB. (45)

which can be divided by V to give

0 = cAdV̄A + cBdV̄B = ρAdṼA + ρBdṼB. (46)

Comparison of Eq(46) with the differential of Eq(16) then gives

0 = V̄AdcA + V̄BdcB = ṼAdρA + ṼBdρB. (47)

Eqs(46,47) are assumed to hold locally. Thus

dX = d
(
cB
c

)
=

dcB
V̄Ac2

(48)

dω = d

(
ρB
ρ

)
=

dρB

ṼAρ2
. (49)

Eqs(43) therefore lead to

j2A = −D∇cA; j2B = −D∇cB (50)

and
j̃2A = −D∇ρA; j̃2B = −D∇ρB (51)

which have the forms of Fick’s law.

4This relationship implies that dω/dX = ω(1−ω)/[X(1−X)] which is not obvious from Eq(12) but can
be verified by taking the logarithmic derivative of ω/(1− ω) = (mB/mA)[X/(1−X)].
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Marker diffusivities Following Darken [11], we postulate constitutive equations for the
diffusive fluxes relative to markers of the form

jMA = −DM
A ∇cA; jMB = −DM

B ∇cB (52)

where the diffusivities DM
A and DM

B are marker diffusivities. Such constitutive equations
might be rationalized on the basis of atomistic hopping models. The fact that ∇cA =
−(V̄B/V̄A)∇cB makes them quite general, even though it appears superficially that jMA is
driven only by ∇cA and jMB is driven only by ∇cB. Substitution into Eq(32) leads to

jB = XBD
M
A ∇cA −XAD

M
B ∇cB = −c(cBV̄BDM

A + cAV̄AD
M
B )∇X (53)

and similarly
j2B = −(cBV̄BD

M
A + cAV̄AD

M
B )∇cB. (54)

Comparison of Eq(53) with Eq(40) and Eq(54) with Eq(50) reveals that

D = cBV̄BD
M
A + cAV̄AD

M
B (55)

which is a generalization of Darken’s well-known result D = XBD
M
A +XAD

M
B , which is based

on V̄A = V̄B.
As pointed out to the author by P. K. Gupta [12], one could also write constitutive

relations of the form

jMA = −cDMG
A ∇XA; jMB = −cDMG

B ∇XB. (56)

In view of Eq(48) these are equivalent to Eq(52) provided that the diffusivities are related
by DMG

A = DM
A V̄Bc and DMG

B = DM
B V̄Ac. Substitution into Eq(55) then gives

D = XBD
MG
A +XAD

MG
B (57)

which has the same form of Darken’s original result. Note, however, that Eq(57) is expressed
in terms of different marker diffusivities than used by Darken. In the special case V̄A = V̄B =
1/c, we have DMG

A = DM
A and DMG

B = DM
B , and these diffusivities are the same as those of

Darken.

1.3 Conservation laws

Provided that there are no chemical reactions (which we assume throughout these notes),
each species is conserved, as expressed by equations of the form

∂ci
∂t

+∇ · Ji = 0 (58)

for the mole-based description, or

∂ρi
∂t

+∇ · J̃i = 0 (59)

9



for the mass-based description, where t is time and∇ is the gradient operator in the reference
frame of an arbitrary observer. These equations resemble what is referred to as Fick’s second
law, but we emphasize that they are in terms of observed fluxes, not diffusive fluxes. If Eq(58)
and Eq(59) are each summed for A and B, we obtain the continuity equations

∂c

∂t
+∇ · (cv∗) = 0 (60)

∂ρ

∂t
+∇ · (ρv) = 0 (61)

which are overall conservation equations for total moles and total mass, respectively. The
system can then be described by any pair of independent equations, for example Eq(61) and
Eq(59) for species B.

Diffusion equations To get diffusion equations, we must introduce diffusive fluxes by
means of Eq(3) or Eq(4), which requires specification of the field vF , and then substitute
into Eq(58) or Eq(59). This gives:

∂ci
∂t

+∇ · (civF ) +∇ · jFi = 0 (62)

∂ρi
∂t

+∇ · (ρivF ) +∇ · j̃Fi = 0 (63)

We have explored several possible choices of vF . The general strategy is to make a choice
that will simplify the problem of interest. For the choices v∗ for the mole description and v
for the mass description, Eqs(62,63) can be simplified by using Eq(60,61) to obtain

c

[
∂X

∂t
+ v∗ · ∇X

]
−∇ · (cD∇X) = 0 (64)

ρ

[
∂ω

∂t
+ v · ∇ω

]
−∇ · (ρD∇ω) = 0. (65)

For the choice vF = v2, we proceed to develop the mass based case, that for moles being
similar. Eqs(63) become

∂ρA
∂t

+∇ · (ρAv2 −D∇ρA) = 0 (66)

∂ρB
∂t

+∇ · (ρBv2 −D∇ρB) = 0.

We multiply the first of these by ṼA and the second by ṼB, add the results, and simplify by
using Eq(46) and Eq(47) to obtain

∇ · v2 = j̃2A · ∇ṼA + j̃2B · ∇ṼB = − D
ρBṼB

∇ρA · ∇ṼA. (67)

For the case in which ṼA (and therefore also ṼB) is a constant, one has

∇ · v2 = 0 (68)
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which can be integrated to give
v2 = ∇×A (69)

where A is some vector field. In other words, v2 is solenoidal5 and has no sources or sinks.
This results in the total volume of the system being constant, which can be demonstrated
as follows: If MA and MB are the total masses of the system, then

MA =
∫
V
ρAd

3x; MB =
∫
V
ρBd

3x (70)

For constant partial specific volumes, we can multiply the first of these by ṼA and the second
by ṼB and add to get

constant = ṼAMA + ṼBMB =
∫
V

(ṼAρA + ṼBρB)d3x = V (71)

where Eq(15) has been used in the last step. For the special case of A = (1/2)B(t)×r where
B(t) is a vector that depends on time but not on space, Eq(69) yields simply

v2 = B(t) (72)

and the vector field v2 becomes a rigid moving frame. We can then choose the observer’s
frame to move with the sample such that v2 = 0. This enables Eq(66) to take the simple
form

∂ρA
∂t
−∇ · (D∇ρA) = 0 (73)

∂ρB
∂t
−∇ · (D∇ρB) = 0

which is often assumed to hold without justification. For constant partial specific volumes,
such a simplification is always possible, but in more than one dimension, v2 can be more
complicated, consistent with Eq(69).

2 One Dimensional Diffusion Couple

In this section, we examine the problem of a strictly one dimensional diffusion couple, for
which the only spatial variable is x. This is a non-trivial simplification which can only
be approximated in certain real experiments. For a solid, the cross section of the sample
would have to remain constant throughout the diffusion process, although the sample could
lengthen or shorten along x. This might be approximately true for a sufficiently thick sample.
For a liquid in a cylinder with pressurized movable end caps, one might maintain a constant
cross section but it would seem to be very difficult to prevent buoyancy driven convection,
which would be intrinsically multidimensional. Even in strictly zero gravity, the no slip
condition at the container walls would result in multidimensional flows as the total volume
of the system changes.

5A “solenoidal” vector field forms closed loops, as do the lines of the magnetic field B for a solenoid.
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We shall proceed to treat a diffusion couple with left end located at xL(t) and right end at
xR(t), as measured by an observer. In the treatment of this problem by Sauer and Freise [5],
the observer is in a frame fixed with respect to either the right end or the left end of the
couple, which are located in that frame at −∞ and∞, respectively. We will also treat a very
long couple in the sense that xR(t) − x0(t) and x0(t) − xL(t) are both assumed to be very
large compared to

√
Dt, where x0(t), which will turn out to be the location of the Matano

interface, is somewhere within the couple such that the initial discontinuity of composition
is at x0(0). This will allow us to make a correspondence between Wagner’s treatment, which
is based on a unique Matano interface (hereafter the Wagner-Matano or WM interface) and
the two Matano planes of Sauer and Freise, one fixed in a frame that moves with xL(t) and
the other fixed in a frame that moves with xR(t).

2.1 Lagrangian Transformation

We use a mass based description of diffusion (the mole treatment is similar) and take the
governing equations in the form

ρ

[
∂ω

∂t
+ v

∂w

∂x

]
=

∂

∂x

(
ρD∂ω

∂x

)
(74)

∂ρ

∂t
+
∂(ρv)

∂x
= 0 (75)

which are the one dimensional versions of Eq(65) and Eq(61). As suggested by den Broeder
[1], we make a transformation to a new variable n(x, t). Although den Broeder stated that
dn = ρdx, this is insufficient to define n so we proceed to specify(

∂n

∂x

)
t

= ρ(x, t);

(
∂n

∂t

)
x

= −ρ(x, t)v(x, t). (76)

Then by means of Eq(75) we have
∂2n

∂t∂x
=

∂2n

∂x∂t
(77)

which is necessary for dn to be an exact differential. This defines n up to an additive
constant.6 From the differential

dn = ρ(x, t)dx− ρ(x, t)v(x, t)dt (78)

we deduce that

v(x, t) =

(
∂x

∂t

)
n

(79)

so that (
∂ω

∂t

)
n

=

(
∂ω

∂t

)
x

+

(
∂ω

∂x

)
t

(
∂x

∂t

)
n

=

(
∂ω

∂t

)
x

+ v

(
∂ω

∂x

)
t

(80)

6We could replace n by χρ0 where ρ0 is a constant with dimensions of density. Then the new variable χ
would have dimensions of length, and this transformation would more nearly resemble a transformation to
Lagrangian coordinates.
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which appears on the left hand side of Eq(74). Likewise

ρ

(
∂

∂n

)
t

=

(
∂

∂x

)
t

(81)

so Eq(74) becomes, after cancellation of a factor of ρ 6= 0,(
∂ω

∂t

)
n

=
∂

∂n

(
ρ2D∂ω

∂n

)
(82)

which is a diffusion equation with an effective diffusivity ρ2D but without a convective term.7

We proceed to obtain a first integral of Eq(82) for a very long diffusion couple with initial
condition

ω(x, 0) =

{
ω− for x < x00

ω+ for x > x00
(83)

where x00 is a constant. Then by Boltzmann’s scaling argument,

ω = ω̃(λ); λ :=
(n− n0)√

t
(84)

where n0 is a constant, independent of both x and t. We note that ρ and D depend only on
ω, and hence also on λ. Thus after cancellation of a factor of 1/t, Eq(82) takes the form

−λ
2

dω̃

dλ
=

d

dλ

(
ρ2Ddω̃

dλ

)
. (85)

Wagner-Matano interface We integrate Eq(85) from λL := (nL − n0)/
√
t ≈ −∞ to

λR := (nR − n0)/
√
t ≈ ∞ where nL(t) = n(xL(t), t) and nR(t) = n(xR(t), t) correspond to

the left and right ends of the diffusion couple. This yields∫ λR

λL
λ
dω̃

dλ
dλ = 0 (86)

where we have used dω̃/dλ = 0 at λ = λL and λ = λR. We proceed to evaluate Eq(86) by
breaking the integral at λ = 0 and integrating by parts to obtain∫ λR

λL
λ
dω̃

dλ
dλ =

∫ 0

λL
λ
d(ω̃ − ω−)

dλ
dλ+

∫ λR

0
λ
d(ω̃ − ω+)

dλ
dλ

= −
∫ 0

λL
(ω̃ − ω−)dλ−

∫ λR

0
(ω̃ − ω+)dλ. (87)

Thus ∫ 0

λL
(ω̃ − ω−)dλ+

∫ λR

0
(ω̃ − ω+)dλ = 0, (88)

7If χ had been used instead of n, the effective diffusivity would have been (ρ/ρ0)2D, which has the usual
units of a diffusivity.
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where we recall that λL ≈ −∞ and λR ≈ ∞ but choose to retain the finite values for
assistance in conversion to an integral over x and to other representations.

Indeed, the transformation from (n, t) to (x, t) can be written in the form

x(n, t)− x0(t) =
∫ n

n0

(
∂x

∂n′

)
t

dn′ =
∫ n

n0

1

ρ̃(n′, t)
dn′ =

√
t
∫ λ

0

1

ρ̃(λ′)
dλ′ (89)

where x0(t) ≡ x(n0, t) and ρ̃(λ) := ρ̃(n, t) = ρ(x, t). Eq(89) shows that

λx :=
x− x0(t)√

t
= h(λ) (90)

where h(λ) is an isotonic function of λ. Relating back to the initial conditions Eq(83) we
see that x00 = x0(0) = x(n0, 0). Thus8 ω̃(n, t) = ω̃(λ) = ω(λx) = ω(x, t) and Eq(88) can be
transformed at any fixed t to∫ x0(t)

xL(t)
ρ(ω − ω−)dx+

∫ xR(t)

x0(t)
ρ(ω − ω+)dx = 0 (91)

where we have used dλ = (1/
√
t)(∂(n− n0)/∂x)tdx = (ρ/

√
t)dx. Eq(91) is equivalent to

Eq(5) of Wagner (with a corrected relative sign between his integrals) which was stated
without derivation. We regard it as defining a unique Wagner-Matano (WM) interface
located at x0(t). If the weighting factor of ρ in the integrals were a constant, one would
obtain the usual Matano interface.

Formula for D To obtain a formula for the diffusivity D that is independent of the location
of the Matano interface (Eq(4.12) of Sauer and Freise [5], Eq(14) of Wagner [4], Eq(9) of
den Broeder [1]) in a simple way, we proceed as follows. We integrate Eq(85) from λL to λ∗

and then from λ∗ to λR to obtain the pair of equations

−1

2

∫ λ∗

λL
λ
∂ω̃

∂λ
dλ =

(
ρ2Ddω̃

dλ

)
λ∗

(92)

−1

2

∫ λR

λ∗
λ
∂ω̃

∂λ
dλ = −

(
ρ2Ddω̃

dλ

)
λ∗
.

We then integrate by parts as above to obtain

λ∗(ω̃∗ − ω−)−
∫ λ∗

λL
(ω̃ − ω−)dλ = −2

(
ρ2Ddω̃

dλ

)
λ∗

(93)

−λ∗(ω̃∗ − ω+)−
∫ λR

λ∗
(ω̃ − ω+)dλ = 2

(
ρ2Ddω̃

dλ

)
λ∗

where ω̃∗ := ω̃(λ∗). We multiply the first of Eqs(93) by (ω̃∗−ω+) and the second by (ω̃∗−ω−)
and add the resulting equations to get

−(ω̃∗ − ω+)
∫ λ∗

λL
(ω̃ − ω−)dλ− (ω̃∗ − ω−)

∫ λR

λ∗
(ω̃ − ω−)dλ = 2(ω+ − ω−)

(
ρ2Ddω̃

dλ

)
λ∗
. (94)

8For brevity, we use the same functional notation for the corresponding function of one or two variables,
either (n, t) or λ with a tilde, or (x, t) and λx without a tilde.
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Eq(94) can be simplified by introducing the dimensionless composition

Ỹ :=
ω̃ − ω−
ω+ − ω− (95)

to obtain

(1− Ỹ ∗)
∫ λ∗

λL
Ỹ dλ+ Ỹ ∗

∫ λR

λ∗
(1− Ỹ )dλ = 2(ρ̃∗)2D̃∗dỸ

∗

dλ∗
(96)

where Ỹ ∗, ρ̃∗ and D̃∗ are the corresponding values of Y , ρ and D at λ = λ∗. We then convert
Eq(96) for any fixed time to an integral over x to obtain

D∗ =
(1− Y ∗) ∫ x∗xL(t) ρY dx+ Y ∗

∫ xR(t)
x∗ ρ(1− Y )dx

2ρ∗t (∂Y ∗/∂x∗)t
(97)

where Y (x, t) = (ω(x, t)−ω−)/(ω+−ω−), Y ∗ = Y (x∗, t), andD∗ and ρ∗ are the corresponding
values of D and ρ at composition ω(x∗, t). Here, x∗ is related to λ∗ through Eq(90), although
it can be chosen to lie anywhere between xL(t) and xR(t) when applying Eq(97). We note
that Eq(97) is independent of the location x0(t) of the Wagner-Matano interface, which
makes it very useful.

Relative motion of xL(t), x0(t) and xR(t) Our diffusion couple is assumed to be so long
that the compositions at the ends of the couple are practically unchanged for diffusion over
the time t under consideration. Nevertheless, the ends of the couple move with respect to
one another, and with respect to the WM interface, located at x0(t), because of composition
and concomitant volume change within the couple. For a one dimensional problem, Eq(24)
becomes

v(x, t)− v2(x, t) = (ṼB − ṼA)ρD∂ω
∂x

(98)

where we have used the one dimensional version of Eq(38) to express the flux. Thus at the
ends of the couple we have

dxL(t)

dt
= v(xL(t), t) = v2(xL(t), t) = vA(xL(t), t) = vB(xL(t), t) (99)

dxR(t)

dt
= v(xR(t), t) = v2(xR(t), t) = vA(xR(t), t) = vB(xR(t), t).

The one dimensional version of Eq(67) is

∂v2(x, t)

∂x
= − D

ρBṼB

∂ρA
∂x

∂ṼA
∂x
≡ G(x, t). (100)

Integration of Eq(100) from xL(t) to x yields

v2(x, t)− dxL
dt

=
∫ x

xL(t)
G(x′, t)dx′. (101)
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But for any fixed t,

G(x′, t)dx′ =
1√
t

(
− D
ρBṼB

dρA
dλ′x

dṼA
dλ′x

)
dλ′x ≡

1√
t
H(λ′x)dλ

′
x. (102)

where λ′x = (x′ − x0(t))/
√
t. Thus Eq(101) can be integrated to obtain9

v2(x, t)− dxL
dt

=
1√
t

∫ λx

λxL
H(λ′x)dλ

′
x (103)

where λx := (x − x0(t))/
√
t and λxL := (xL(t) − x0(t))/

√
t ≈ −∞. Substituting Eq(103)

into Eq(98) gives

v(x, t)− dxL
dt

=
1√
t

[
(ṼB − ṼA)ρD dω

dλx
+
∫ λx

λxL
H(λ′x)dλ

′
x

]
(104)

For general x, and hence general λx, the dependence of Eqs(103,104) on t is rather
complicated, but for x = xR(t) and x = x0(t) there is enlightening simplification. For
x = xR(t), either of Eqs(103,104) become

dxR
dt
− dxL

dt
=
g∞√
t

(105)

where

g∞ :=
∫ λxR

λxL
H(λ′x)dλ

′
x ≈

∫ ∞
−∞

H(λ′x)dλ
′
x (106)

and λxL ≈ −∞ and λxR := (xR(t) − x0(t))/
√
t ≈ ∞ have been used in the last step. In

obtaining Eq(106), Eq(99) has been used to identify dxR/dt. Integration of Eq(106) then
leads to

xR(t)− xL(t) = xR(0)− xL(0) + 2g∞
√
t (107)

which determines the lengthening or shortening of the entire diffusion couple with time. For
x = x0(t), Eq(103) becomes

v2(x0(t), t)− dxL
dt

=
1√
t
g−∞ (108)

where

g−∞ :=
∫ 0

λxL
H(λ′x)dλ

′
x ≈

1√
t

∫ 0

−∞
H(λ′x)dλ

′
x. (109)

Similarly Eq(104) becomes

v(x0(t), t)− dxL
dt

=
1√
t

(
g−∞ + g0

)
(110)

9Eq(103) plays the same role as Eqs(2.16), (4.4) and (4.5) of Sauer and Freise [5] but the notation is
different. These S&F equations are based on a coordinate system in which dxL/dt = 0 and which has a
different origin. See later for a detailed comparison.
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where

g0 :=

(
(ṼB − ṼA)ρD dω

dλx

)
λx=0

. (111)

The velocities v2(x0(t), t) and v(x0(t), t) that appear on the left hand sides of Eqs(108,110)
are functions of time only. We shall proceed to show that v2(x0(t), t) = dx0(t)/dt which will
enable Eq(110) to be integrated. Expanding the notation somewhat, Eq(79) can be written(

∂x(n, t)

∂t

)
n

=: ṽ(n, t) = ṽ(n(x, t), t) = v(x, t) (112)

but since x0(t) = x(n0, t) where n0 is a constant, we have

dx0

dt
=

(
∂x(n0, t)

∂t

)
n0

= v(x0(t), t). (113)

Thus Eq(110) becomes
dx0

dt
− dxL

dt
=

1√
t

(
g−∞ + g0

)
(114)

which integrates to

x0(t)− xL(t) = x0(0)− xL(0) + 2(g−∞ + g0)
√
t. (115)

Subtracting Eq(115) from Eq(107) then leads to

xR(t)− x0(t) = xR(0)− x0(0) + 2(g+
∞ − g0)

√
t. (116)

where

g+
∞ := g∞ − g−∞ =

∫ λxL

0
H(λ′x)dλ

′
x ≈

∫ ∞
0

H(λ′x)dλ
′
x. (117)

Eqs(115,116) show that the Wagner-Matano interface moves like
√
t with respect to either

end of the diffusion couple. This should be contrasted with the two Matano planes of Sauer
and Freise [5], one of which is at rest with respect to the left end of the diffusion couple, and
the other of which is at rest with respect to the right end. We unravel this apparent paradox
in the next section.

2.2 Reconciliation of Wagner with Sauer and Freise

We proceed to reconcile the relationship between the unique Wagner-Matano interface, which
moves with respect to either end of the diffusion couple, and the two Matano planes of Sauer
and Freise, which are fixed with respect to either end. To do this, we define coordinates
xL and xR which are measured in frames that are at rest with respect to xL(t) and xR(t)
respectively. The specific transformations are:

xL − xLM = x− xL(t)− [x0(0)− xL(0)] (118)

xR − xRM = x− xR(t)− [x0(0)− xR(0)] (119)
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where xLM and xRM are constants that correspond10, respectively, to the two Matano planes
of Sauer and Freise. At t = 0, xL− xLM = x− x0(0) = xR− xRM . Following Sauer and Freise,
we require the coordinates xL and xR to be the same at t = 0. This requires the constants
xLM and xRM to be equal, so we designate either of them by xM and write Eqs(118,119) in the
form

xL − xM = x− xL(t)− [x0(0)− xL(0)] (120)

xR − xM = x− xR(t)− [x0(0)− xR(0)]. (121)

Subtracting Eq(121) from Eq(120), we obtain

xL − xR = [xR(t)− xL(t)]− [xR(0)− xL(0)] = 2g∞
√
t (122)

in agreement with Eq(5.9) of Sauer and Freise. At the “left Matano plane” of Sauer and
Freise, xL = xM , so this plane is located at coordinate xR = xM − 2g∞

√
t. Similarly, at the

“right Matano plane” of Sauer and Freise, xR = xM , so this plane is located at coordinate
xL = xM + 2g∞

√
t.

Eqs(120,121) can be rewritten in the form

x− x0(t) = xL − xM −∆XL(t) (123)

x− x0(t) = xR − xM + ∆XR(t) (124)

where

∆XL(t) : = [x0(t)− xL(t)]− [x0(0)− xL(0)] = 2(g−∞ + g0)
√
t (125)

∆XR(t) : = [xR(t)− x0(t)]− [xR(0)− x0(0)] = 2(g+
∞ − g0)

√
t. (126)

Thus if we define

λL :=
xL − xM√

t
; λR :=

xR − xM√
t

(127)

we can write Eqs(123,124) in the forms

λx = λL − 2(g−∞ + g0) = λR + 2(g+
∞ − g0) (128)

which also imply that λL − λR = 2(g−∞ + g+
∞) = 2g∞, in agreement with Eq(5.11) of Sauer

and Freise. Eq(128) shows that the variables λx, λ
L and λR differ only by constants. Thus

the composition can be written in the functional forms

ω(λx) = ωL(λL) = ωR(λR) (129)

and similarly for any other quantities, e.g., ρ and Y , that depend on composition. In other
words, if a “

√
t solution” can be found in some reference frame, then a “

√
t solution” can

also be found in any other reference frame that moves with respect to the original frame like√
t. Three such frames are ones that move with either end of the diffusion couple, or with

the Wagner-Matano interface.

10The corresponding notation is xLM = xM and xRM = x+
M . Just prior to their Eq(5.11), they show that

xM = x+
M .
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We shall now show that Eq(4.13) and Eq(5.12) of Sauer and Freise are just two different
ways of determining the same constant xM and follow from transformation of Eq(91) for the
Wagner-Matano interface. We first divide Eq(91) by ω+−ω− and use the definition of Y to
write it in the form ∫ xR(t)

x0(t)
ρ(1− Y )dx−

∫ x0(t)

xL(t)
ρY dx = 0. (130)

Then we add an integral to both sides to obtain∫ xR(t)

x0(t)
ρ(1− Y )dx−

∫ x0(t)

xL(t)
[ρ− − ρ(1− Y )]dx =

∫ x0(t)

xL(t)
[ρ− ρ−]dx. (131)

We make a change of variable to xL in the integrals on the left hand side of Eq(131) as
follows:∫ [xR(t)−xL(t)]−[x0(0)−xL(0)]+xM

xM+∆xL(t)
ρL(1− Y L)dxL −

∫ xM+∆xL(t)

−[x0(0)−xl(0)]+xM
[ρ− − ρL(1− Y L)]dxL

=
∫ ∞

0
ρL(1− Y L)dxL −

∫ 0

−∞
[ρ− − ρL(1− Y L)]dxL − ρ−[xM + ∆xL(t)]

where we have used ρL and Y L to denote ρ and Y as functions of λL and have used [xR(t)−
xL(t)] − [x0(0) − xL(0)] + xM ≈ ∞ and −[x0(0) − xL(0)] + xM ≈ −∞ in the second line.
Thus Eq(131) becomes∫ ∞

0
ρL(1−Y L)dxL−

∫ 0

−∞
[ρ−−ρL(1−Y L)]dxL = ρ−xM +ρ−∆xL(t)+

∫ x0(t)

xL(t)
[ρ−ρ−]dx. (132)

We shall proceed to show that

ρ−∆xL(t) +
∫ x0(t)

xL(t)
[ρ− ρ−]dx = 0 (133)

in which case Eq(132) becomes∫ ∞
0

ρL(1− Y L)dxL −
∫ 0

−∞
[ρ− − ρL(1− Y L)]dxL = ρ−xM (134)

which is in precise agreement with Eq(4.13) of Sauer and Freise [5]. To prove Eq(133), we
first note that it is true at t = 0 because ∆xL(0) = 0 and because ρ = ρ− in the domain of
integration (initial condition). We shall also proceed to show that its time derivative is zero,
and hence it is zero for all time. Indeed,

d

dt

∫ x0(t)

xL(t)
[ρ− ρ−]dx =

dx0

dt
[ρ(x0(t), t)− ρ−] +

∫ x0(t)

xL(t)

∂ρ

∂t
dx (135)

=
dx0

dt
[ρ(x0(t), t)− ρ−]−

∫ x0(t)

xL(t)

∂(ρv)

∂x
dx

=
dx0

dt
[ρ(x0(t), t)− ρ−]− ρ(x0(t), t)v(x0(t), t) + ρ−v(xL(t), t)

= ρ−(
dxL
dt
− dx0

dt
) = −ρ− d

dt
∆xL(t).
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Thus Eq(133) is proven and Eq(134) is established, which can also be written∫ ∞
xM

ρL(1− Y L)dxL −
∫ xM

−∞
[ρ− − ρL(1− Y L)]dxL = 0 (136)

which should be compared with Eq(130). Moreover, Eq(133) provides a succinct formula
for ∆xL(t) that is less explicit than that provided by Eq(115). Eq(133) can be motivated
physically by noting that all of the density change in the sample takes place in the interior
(near to x0(t) but far from xL(t)) so that the integral of the density deficiency ρ− − ρ must
result in an increase in the length of the “left segment” of the couple, resulting in relative
motion of the left end of the couple where the density, ρ−, is constant.

The transformation of Eq(130) to one in terms of xR follows along similar lines so we
present results with less detail. We first rewrite Eq(130) in the form∫ xR(t)

x0(t)
[ρ+ − ρY ]dx−

∫ x0(t)

xL(t)
ρY dx =

∫ xR(t)

x0(t)
[ρ+ − ρ]dx (137)

and then transform the left hand side to integrals over xR to obtain∫ ∞
0

[ρ+ − ρRY R]dxR −
∫ 0

−∞
ρRY RdxR = ρ+xM −∆xR(t) +

∫ xR(t)

x0(t)
[ρ+ − ρ]dx. (138)

Proceeding in a manner similar to that used to prove Eq(133), we can show that

−ρ+∆xR(t) +
∫ xR(t)

x0(t)
[ρ+ − ρ]dx = 0 (139)

which results in ∫ ∞
0

[ρ+ − ρRY R]dxR −
∫ 0

−∞
ρRY RdxR = ρ+xM (140)

in precise agreement with Eq(5.12) of Sauer and Freise. Eq(140) can also be written∫ ∞
xM

[ρ+ − ρRY R]dxR −
∫ xM

−∞
ρRY RdxR = 0 (141)

for comparison with Eqs(130,136). We emphasize that Eq(134) and Eq(140) are just two
different ways of computing the same number, xM , but for t > 0, one such determined Sauer-
Freise-Matano plane remains fixed with respect to xL(t) while the other remains fixed with
respect to xR(t). Finally, by combining Eq(133) and Eq(139) we obtain

[xR(t)− xL(t)]− [xR(0)− xL(0)] =
1

ρ−

∫ x0(t)

xL(t)
[ρ− − ρ]dx+

1

ρ+

∫ xR(t)

x0(t)
[ρ+ − ρ]dx (142)

for the lengthening of the entire diffusion couple. Note, however, that Eq(142) requires one
to know the location, x0(t), of the Wagner-Matano interface, so it is not as simple as it
appears.
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