Harvey Mudd College Math Tutorial:
 The Multivariable Chain Rule

Suppose that $z=f(x, y)$, where x and y themselves depend on one or more variables. Multivariable Chain Rules allow us to differentiate z with respect to any of the variables involved:

$$
\begin{aligned}
& \text { Let } x=x(t) \text { and } y=y(t) \text { be differentiable at } t \text { and } \\
& \text { suppose that } z=f(x, y) \text { is differentiable at the point } \\
& (x(t), y(t)) \text {. Then } z=f(x(t), y(t)) \text { is differentiable at } t \\
& \text { and } \\
& \qquad \frac{d z}{d t}=\frac{\partial z}{\partial x} \frac{d x}{d t}+\frac{\partial z}{\partial y} \frac{d y}{d t} .
\end{aligned}
$$

Proof

Although the formal proof is not trivial, the variable-dependence diagram shown here provides a simple way to remember this Chain Rule. Simply add up the two paths starting at z and ending at t, multiplying derivatives along each path.

Example

Let $z=x^{2} y-y^{2}$ where x and y are parametrized as $x=t^{2}$ and $y=2 t$.
Then

$$
\begin{aligned}
\frac{d z}{d t} & =\frac{\partial z}{\partial x} \frac{d x}{d t}+\frac{\partial z}{\partial y} \frac{d y}{d t} \\
& =(2 x y)(2 t)+\left(x^{2}-2 y\right)(2) \\
& =\left(2 t^{2} \cdot 2 t\right)(2 t)+\left(\left(t^{2}\right)^{2}-2(2 t)\right)(2) \\
& =8 t^{4}+2 t^{4}-8 t \\
& =10 t^{4}-8 t
\end{aligned}
$$

Alternate Solution
We now suppose that x and y are both multivariable functions.

Let $x=x(u, v)$ and $y=y(u, v)$ have first-order partial derivatives at the point (u, v) and suppose that $z=f(x, y)$ is differentiable at the point $(x(u, v), y(u, v))$. Then $f(x(u, v), y(u, v))$ has first-order partial derivatives at (u, v) given by

$$
\begin{aligned}
\frac{\partial z}{\partial u} & =\frac{\partial z}{\partial x} \frac{\partial x}{\partial u}+\frac{\partial z}{\partial y} \frac{\partial y}{\partial u} \\
\frac{\partial z}{\partial v} & =\frac{\partial z}{\partial x} \frac{\partial x}{\partial v}+\frac{\partial z}{\partial y} \frac{\partial y}{\partial v}
\end{aligned}
$$

Proof

Again, the variable-dependence diagram shown here indicates this Chain Rule by summing paths for z either to u or to v.

Example

Let $z=e^{x^{2} y}$, where $x(u, v)=\sqrt{u v}$ and $y(u, v)=1 / v$. Then

$$
\begin{aligned}
\frac{\partial z}{\partial u} & =\frac{\partial z}{\partial x} \frac{\partial x}{\partial u}+\frac{\partial z}{\partial y} \frac{\partial y}{\partial u} \\
& =\left(2 x y e^{x^{2} y}\right)\left(\frac{\sqrt{v}}{2 \sqrt{u}}\right)+\left(x^{2} e^{x^{2} y}\right)(0) \\
& =2 \sqrt{u v} \cdot \frac{1}{v} e^{(\sqrt{u v})^{2} \cdot \frac{1}{v}} \cdot \frac{\sqrt{v}}{2 \sqrt{u}}+(\sqrt{u v})^{2} \cdot e^{(\sqrt{u v})^{2} .} \\
& =e^{u}+0 \\
& =e^{u} \\
\frac{\partial z}{\partial v} & =\frac{\partial z}{\partial x} \frac{\partial x}{\partial v}+\frac{\partial z}{\partial y} \frac{\partial y}{\partial v} \\
& =\left(2 x y e^{x^{2} y}\right)\left(\frac{\sqrt{u}}{2 \sqrt{v}}\right)+\left(x^{2} e^{x^{2} y}\right)\left(-\frac{1}{v^{2}}\right)
\end{aligned}
$$

$$
=2 \sqrt{u v} \cdot \frac{1}{v} e^{(\sqrt{u v})^{2} \cdot \frac{1}{v}} \cdot \frac{\sqrt{u}}{2 \sqrt{v}}+(\sqrt{u v})^{2} e^{(\sqrt{u v})^{2} \cdot \frac{1}{v}} \cdot\left(-\frac{1}{v^{2}}\right)
$$

$$
=\frac{u}{v} e^{u}-\frac{u}{v} e^{u}
$$

$$
=0
$$

Alternate Solution

These Chain Rules generalize to functions of three or more variables in a straight forward manner.

Key Concepts

- Let $x=x(t)$ and $y=y(t)$ be differentiable at t and suppose that $z=f(x, y)$ is differentiable at the point $(x(t), y(t))$. Then $z=f(x(t), y(t))$ is differentiable at t and

$$
\frac{d z}{d t}=\frac{\partial z}{\partial x} \frac{d x}{d t}+\frac{\partial z}{\partial y} \frac{d y}{d t} .
$$

- Let $x=x(u, v)$ and $y=y(u, v)$ have first-order partial derivatives at the point (u, v) and suppose that $z=f(x, y)$ is differentiable at the point $(x(u, v), y(u, v))$. Then $f(x(u, v), y(u, v))$ has first-order partial derivatives at (u, v) given by

$$
\begin{aligned}
\frac{\partial z}{\partial u} & =\frac{\partial z}{\partial x} \frac{\partial x}{\partial u}+\frac{\partial z}{\partial y} \frac{\partial y}{\partial u} \\
\frac{\partial z}{\partial v} & =\frac{\partial z}{\partial x} \frac{\partial x}{\partial v}+\frac{\partial z}{\partial y} \frac{\partial y}{\partial v}
\end{aligned}
$$

[I'm ready to take the quiz.] [I need to review more.]
[Take me back to the Tutorial Page]

