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2nd Order Linear Ordinary Differential Equations 
 

Solutions for equations of the following general form: 
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dx
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dx

a x y h x
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Reduction of Order 

 
If terms are missing from the general second-order differential equation, it is sometimes possible 
to reduce the equation to a first-order ordinary differential equation.  Second-order differential 
equations can be solved by reduction of order for two cases. 

 

Dependent Variable (y) is Missing 
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The procedures is to define a new variable p as: 

dy
dx

p=  

which can be differentiated again with respect to x to give: 

d y
dx

dp
dx

2
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These are substituted into the differential equation to give: 

dp
dx

a x p h x+ =1( ) ( )  

which can then be solved by integrating factors to give (see handout on solution methods for 1st 
order differential equations):   
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The solution y is found by substituting for p = dy / dx and integrating again with respect to x.   
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where I1 and I2 are constants of integration.  (Note that throughout this document constants of 
integration will be indicated by this notation.) 
 

Independent Variable (x) is Missing 
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The procedures is to define a new variable p as: 

dy
dx

p=  

which can be differentiated again with respect to x to give: 

d y
dx

dp
dx

2
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but remember that p can be written as a function of y which is a function of x.  That is p = 
f(y(x)).  This can be differentiated by chain rule to give (remembering that p = dy / dx): 

dp
dx

dp
dy

dy
dx

dp
dy

p= =  

These relationships for p are substituted into the differential equation to give: 

p dp
dy

a p a y+ + =1 2 0  

The 2nd order differential equation of y with respect to x has now been converted into a 1st order 
differential equation of p with respect to y.  This equation is nonlinear (because p multiplies 
dp / dx) and can only be solved analytically if it is possible to separate and integrate.  Once p is 
determined as a function of y (e.g., p = f(y)), then y can be found by integrating f(y) with respect 
to x to give: 

dy
f y

x I
( )z = + 2  

The first constant of integration will be contained in the function f(y). 
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Variation of Parameters 
This method can be used anytime you already know one solution, y x1( ) , to the homogeneous 
form of the general differential equation given below.   
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dx
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The complete solution is found by substituting y u x y x= ( ) ( )1   into the above differential 
equation.  The differentials of y are as follows: 

′ = ′ + ′y uy u y1 1 

′′ = ′′+ ′ ′ + ′′y uy u y u y1 1 12  

which when substituted into the differential equation gives: 

′′ + ′ ′ + + ′′+ ′ + =u y u y a x y u y a x y a x y h x1 1 1 1 1 1 1 2 12 ( ) ( ) ( ) ( )b g b g  

Since y1 is a solution to the homogeneous form of the differential equation shown at the top of 
the page, ′′+ ′ + =y a x y a x y1 1 1 2 1 0( ) ( ) , and the above equation reduces to give the following 
differential equation in u: 

′′ + ′ ′ + =u y u y a x y h x1 1 1 1 12 ( ) ( )b g  

The function u can be found from this differential equation by reducing order and then solving 
by integrating factors.  The complete solution y can be found by multiplying u by y1 to give the 
general solution: 
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1
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From which you can identify the second solution and the particular solution as follows: 

y y dx
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Constant Coefficient Ordinary Differential Equations 
 

a d y
dx

b dy
dx

cy
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where a, b and c are constants 

The form of the differential equation suggests solutions of y erx= . 

(At this point this form is deduced by understanding the properties of differentiating erx .  Later, 
we will develop a general approach for determining that this is the form of the solution.) 

′ =y rerx  

′′ =y r erx2  

( )ar br c erx2 0+ + =  

Characteristic Equation:  r b b ac
a

=
− ± −2 4
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Case 1:  Real & Unequal Roots  (b ac2 4 0− > ) 

 

(a)    If  r r1 2≠  and r r1 2≠ −  ,  then 

y I e I er x r x= +1 2
1 2  

 

(b)    If  r r r1 2= − =  ,  then 

y I e I erx rx= + −
1 2  

or 

y A rx B rx= +sinh( ) cosh( )  

where I A B
1 2
=

+   and I B A
2 2
=

−  

 

Case 2:  Complex Roots  (b ac2 4 0− < ) 

 

r = ±α βi , complex conjugate 



 5

where     α = −
b
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     and     β =
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y e I e I ex x x= +α β β
1 2

i -ie j  
But  e x xxi i= +cos sin  

y e I x i x I x i xx= + + −α β β β β1 2cos( ) sin( ) cos( ) sin( )c h  
Let  I A B1 1 1= + i   and I A B2 2 2= + i   and  A A A= +1 2   and  B B B= −2 1  

y e A x B xx= +α β βcos( ) sin( )b g  
 

Case 3:  Real and Equal Roots  (b ac2 4 0− = ) 

 

r r r b
a1 2 2

= = = −  

The characteristic equation gives only one solution, 

y erx
1 =  

The second solution can be found by variation of parameters to give: 

y y dx
y F2 1

1
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y I e I xerx rx= +1 2  
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Equidimensional Ordinary Differential Equation  
 

d y
dx

a
x

dy
dx

b
x

y
2

2 2 0+ + =  

where a and b are constants 

The form of the differential equation suggests solutions of y xr=  

(At this point this form is deduced by understanding the properties of differentiating xr .  Later, 
we will develop a general approach for determining that this is the form of the solution.) 

′ = −y rxr 1 

′′ = − −y r r xr( )1 2  

r r ar b xr( )− + + =−1 02b g  

Characteristic Equation:   r a r b2 1 0+ − + =( )  

r
a a b

=
− ± − −1 1 4

2
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Case 1:  Real & Unequal Roots   ( )1 4 02− − >a b  

 

y I x I xr r= +1 2
1 2  

 

Case 2:  Complex Roots   ( )1 4 02− − <a b  

r = ±α βi  

where     α =
−1
2

a      and     β =
− −4 1

2

2 2b a( )
 

y I x x I x x I x e I x ex x= + = +− −
1 2 1 2

α β α β α β α βi i i iln ln  

But  e x xxi i= +cos sin  

Let  I A B1 1 1= + i   and  I A B2 2 2= + i   and A A A= +1 2   and  B B B= −2 1  

y Ax x Bx x= +α αβ βcos( ln ) sin( ln )  
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Case 3:  Real and Equal Roots   ( )1 4 02− − =a b  

 

r r r a
1 2

1
2

= = =
−  

The characteristic equation gives only one solution, 

y xr
1 =  

The second solution can be found by variation of parameters to give: 

y y dx
y F2 1

1
2= z   where exp exp lnF a

x
dx a x xa=
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y x dx
x x

x dx
x x

x dx
x

x xr
a a

r
a a

r r
2 2 1 2 1= == = =

− − zzz ( )/ ( ) ln  

y I x I x xr r= +1 2 ln  
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Special Equations 
 

Several second-order ordinary differential equations arise so often that they have been given 
names.  Some of these are listed below. 

 

Harmonic Equation  
The following differential equation commonly arises for problems written in a rectangular 
coordinate system. 

d y
dx

b y
2

2
2 0+ =  

where b2 is not a function of x or y 

This differential equation is a constant coefficient equation with the solution: 

y I b x I b x= +1 2sin( ) cos( )  

 

Modified Harmonic Equation 
Like the harmonic equation, this equation commonly arises for problems written in a rectangular 
coordinate system. 

d y
dx

b y
2

2
2 0− =  

where b2 is not a function of x or y 

This differential equation is a constant coefficient equation with the solution: 

y I b x I b x= +1 2sinh( ) cosh( )  

This equation can also be written in terms of the exponential as: 

y I b x I b x= + −1 2exp( ) exp( )  

As a general rule, it is usually convenient to use the sinh/cosh form of the solution for problems 
with finite boundaries and to use the exponential form of the solution for problems with one or 
more infinite boundaries. 

 

Bessel's Equation 
The following differential equation commonly arises for problems written in a cylindrical 
coordinate system. 

x d y
dx

x dy
dx

b x p y2
2
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where b2 and p2 are constants.  This differential equation has the solution 

y A J b x B J b xp p= + −( ) ( )  

where A and B are constants of integration, and Jp
  is the Bessel function of the first kind and 

order p.  If p is an integer or if p = 0, then the differential equation is: 

x d y
dx

x dy
dx

b x n y2
2

2
2 2 2 0+ + − =e j  

where n is an integer or zero.  The solution to this equation is: 

y A J b x BY b xn n= +( ) ( )  

where Yn is the Bessel function of the second kind and order n. 

The Bessel functions of the first and second kind are similar to the sine and cosine functions (i.e., 
solutions to the harmonic equation).  In particular, like the sine and cosine functions, Bessel 
functions of the first and second kind are periodic for real arguments.   

 
Modified Bessel's Equation 

Like Bessel's equation, this equation commonly arises for problems written in cylindrical a 
coordinate system. 

x d y
dx

x dy
dx

b x p y2
2

2
2 2 2 0+ − + =e j  

where b2 and p2 are constants.  This differential equation has the solution 

y A I b x B I b xp p= + −( ) ( )  

where A and B are constants of integration, and Ip
  is the modified Bessel function of the first 

kind and order p.  If p is an integer or if p = 0, then the differential equation is: 

x d y
dx

x dy
dx

b x n y2
2

2
2 2 2 0+ − + =e j  

where n is an integer or zero.  The solution to this equation is: 

y A I b x B K b xn n= +( ) ( )  

where Kn is the modified Bessel function of the second kind and order n. 

Modified Bessel functions of the first and second kind are similar to the hyperbolic sine and 
hyperbolic cosine functions (i.e., solutions to the modified harmonic equation).  Most 
importantly, modified Bessel functions of the first and second kind are not periodic functions.   
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Special Functions 
 

Error Function 
A number of physical problems of interest to chemical engineers will produce equations in 
which 

dy
dx

e x= − 2
 

which has the solution 

y x dx I= − +z exp 2e j  

where I is a constant of integration.  To clarify the exact operation that is intended by the above 
equation, it is better to write the solution as: 

y s ds I
x

= − +z exp 2

0
e j  

The integral of the exp(-s2) must be determined numerically, except when x is infinity, in which 
case 

exp − =
∞z s ds2

0 2e j π  

Because problems with this type of solution arise frequently, it was convenient to define a 
function that represents this integral.  The name of this function is the Error Function and it is 
defined as: 

erf x s ds
x

( ) exp= −z2 2

0π
e j  

By defining it in this way, erf(x) = 0 when x = 0 and erf(x) = 1 when x → ∞.  Using the error 
function, the solution to the differential equation at the top of this page is: 

y erf x I= +
π

2
( )  

 

Complementary Error Function 
The complementary error function erfc(x) is defined as: 

erfc x erf x( ) ( )= −1  

 


