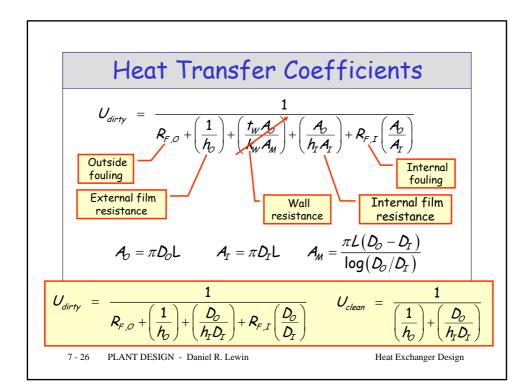
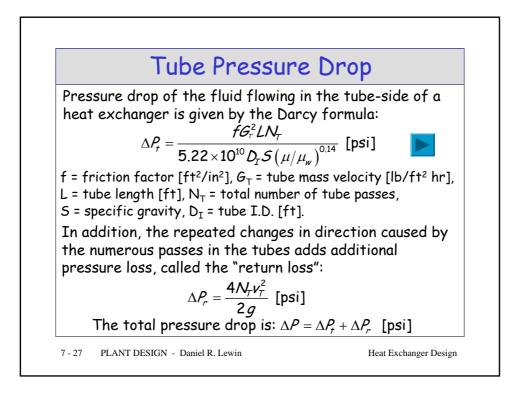
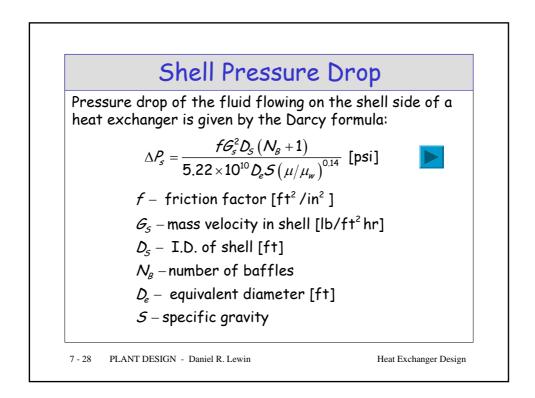
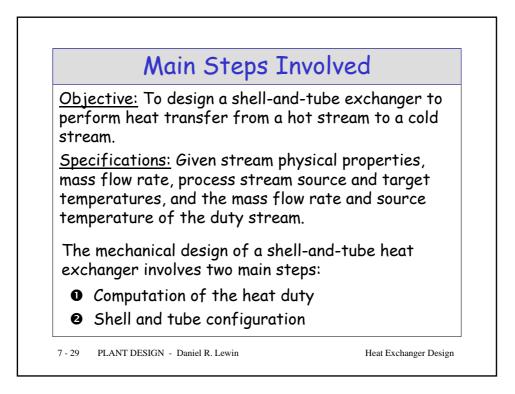
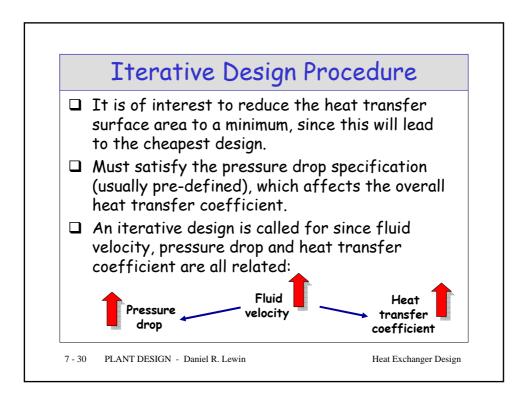

Example 13.	5
A hot stream is cooled from 200 to stream entering at 100 °F and exit Determine the true ΔT_{LM} and selec shell-and-tube configuration.	ing at 190°F.
Solution: For counter-current flow: $\Delta T_{LM} =$ For multiple-pass exchangers:	$\frac{40-10}{ln\left(\frac{40}{10}\right)} = 21.6 \ ^{\circ}F$
$\mathcal{R} = \frac{\mathcal{T}_{h,in} - \mathcal{T}_{h,out}}{\mathcal{T}_{c,out} - \mathcal{T}_{c,in}} = \frac{200 - 140}{190 - 100} = 0.667$	F_{T} for 1-2
$S = \frac{T_{c,out} - T_{c,in}}{T_{h,in} - T_{c,in}} = \frac{190 - 100}{200 - 100} = 0.9$	F_{τ} for 4-8

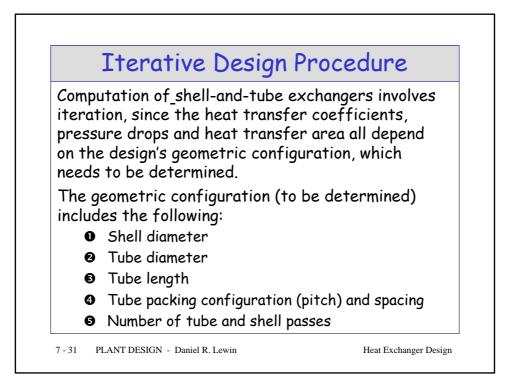




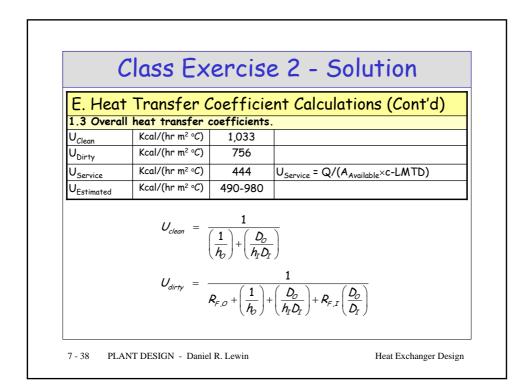








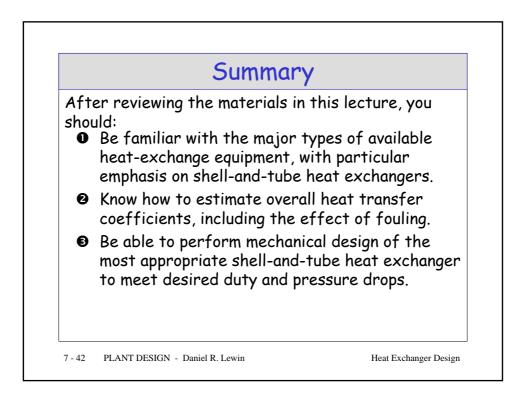
	Class Exerc	cise 2
a str	gn a shell-and-tube heat e> eam of 30 T/hr containing ene from 10 to 97 °C.	J 1
De Spi Thi	<u>tional data:</u> nsity - 856 kg·m ⁻³ , Viscosit ecific heat - 0.428 kcal·kg ⁻ ermal conductivity - 0.133 eat supply medium - Saturo	^{-i.} °C ⁻¹ , kcal·hr ⁻¹ ·m ^{-1.} °C ⁻¹
Notes	:: (a) For this application, the pr tubes. (b) Maximum ∆P in the proces.	

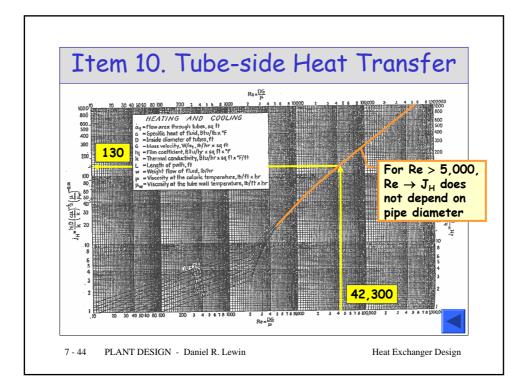

CIC	iss ex	ercise	2 - 50	olution		
A. Strear	n Data					
Parameter	Units	Cold side	Hot Side	Notes		
rurumerer	01113	Tube side	Shell side	110165		
Fluid		EB/Styrene	Sat. steam	$\begin{array}{l} \mathbf{Q} = \mathbf{m}_{tube} \cdot \Delta \mathbf{T} \\ = 30,000 \times 0.428 \times (97-10) \\ = 1,117,080 \text{ kcal/hr} \\ \mathbf{m}_{steam} = \mathbf{Q}/\lambda \\ \lambda = 528.7 \text{ kcal/kg} \end{array}$		
Mass Flow	kg/hr	30,000	2,113			
Inlet Temp	°C	10	115			
Outlet Temp.	°C	97	115			
Density	kg/m³	856	0.9712			
Viscosity	cP	0.4765	0.1262			
Ср	Kcal/kg °C	0.428				
К	Kcal/hr cm	0.133				
Fouling factor	hr m²/kcal	0.0002	0.0001			

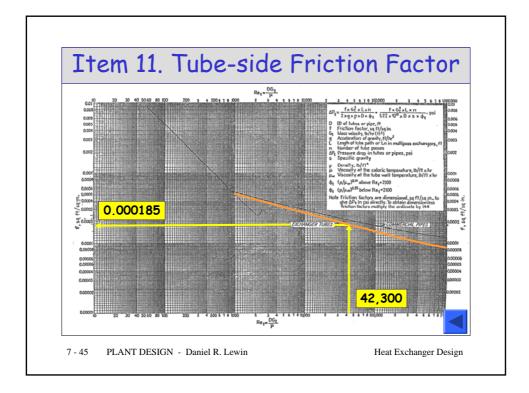
Cl	ass Exe	rcise	2 - Solution
B. LMTD	Calculation	: T- S	nell t-tube
Variable	Units	Value	Notes
$\Delta T_1 = T_i - t_o$	°C	18	
$\Delta T_{2} = T_{o} - t_{i}$	°C	105	
LMTD	°C	49.33	$LMTD = \frac{\Delta T_2 - \Delta T_1}{\ln (\Delta T_2 / \Delta T_1)} = \frac{105 - 18}{\ln (105 / 18)} = 49.3$
c-LMTD	°C	49.33	$c-LMTD = \Delta T_{LM} \times F_{T}$
C. Heat [$ F_T = 1 \text{ (phase change)}$
Q	Kcal/hr	1.117×10 ⁶	See previous table
U _{Estimated}	kcal/(hr °C m²)	490-980	Item 5: For light organics, U = 100-200 BTU/(hr °F ft²).
A _{Estimated}	m²	23-46	$A = Q/(U_{Estimated} \times c-LMTD)$

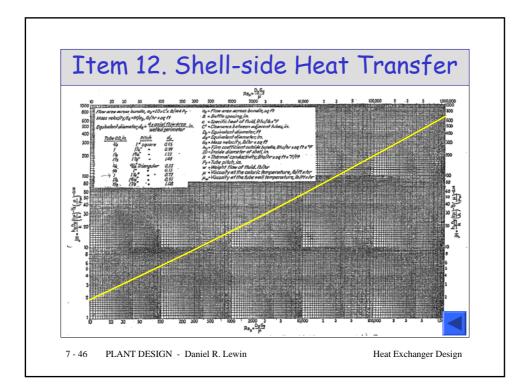
Class Exercise 2 - Solution							
D. Heat Exchang	er Cor	nfigurati	on				
Variable	Units	Value	Notes				
Tube passes, N _T		4	Assumed				
Shell passes, N _S		1	Assumed				
Tubing O.D., D _o	m	0.0254	Taking 1" (I.D.) 12 BWG tubing				
Tubing I.D., D _I	m	0.0198	as basis. Thus D _I = 0.782"				
Tube velocity, V_{T}	m/sec	1.4	Allowed range: 1.2-3 m/sec 1.4 m/sec = 4.59 ft/sec				
Tube c-section (I.D.), A_{T}	m ²	3.079×10 ⁻⁴	$A_{\rm T} = (\pi D_{\rm I}^2)/4$				
q_T in each tube	m³/hr	1.55	$q_{T} = A_{T} \times V_{T} = 4.31 \times 10^{-4} \text{ m}^{3}/\text{sec}$				
No. tubes per pass, N		23	N = m/(q _T ×ρ) = 30,000/(1.55×856)				
Total no. tubes, N _{Total}		92	$N \times N_T / N_S$				
Tube length, L	m	6	Accepted industry standard				

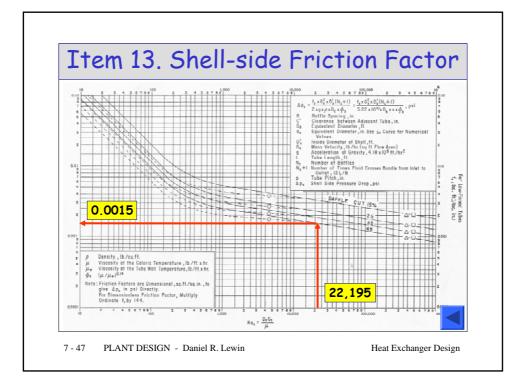
D. Heat Exchang	er Con	ifigurati	ion (Cont'd)
Variable	Units	Value	Notes
Heat exchanger area, A	m ²	44	$A = N_{S} \times N_{Total} \times L \times \pi \times D_{O} = 44 \text{ m}^{2}$
Pitch		∆-1 ¹ / ₄ ″	\triangle -pitch selected (why?)
Shell I.D., d₅	m	0.4382]17‡" shell holds 106 tubes. 上
A _{Available}	m²	51	$A = N_S \times 106 \times L \times \pi \times D_O = 51 \text{ m}^2$
can be reduced!	ie estin	nated pr	fer area, 51 m ² , is eviously, 23-46 m ² , so ansfer coefficient and d shell, and compare


Class E	xercis	e 2 - 5	Solution
E. Heat Transfe	r Coefficie	ent Calcu	lations
1.1 Tube-side heat exc	hange.		
Tube c-section (I.D.), A_{T}	m²	3.08×10 ⁻⁴	$A_{\rm T} = (\pi {\rm D_I}^2)/4$
c-section area/pass, A_{T}	m²	8.21×10 ⁻⁴	A _T ' = A _T ×(106/4)
G _T	Kg/(hr m²)	3,653,462	$G_{\rm T} = m_{\rm tube} / A_{\rm T}'$
Re _T		42,304	$Re = G_T \times D_I / \mu$
J _H		130	<u>See Item 10</u>
Pr		5.52	Pr = Cp×µ/K
Φ = (μ/μ _W) ^{-0.14}		1	Assume $\mu = \mu_W$
J _H = (h _I D _I /K)·	Pr ^{-1/3} (μ/μ _W) ^{-0.14}	\Rightarrow h _I = 1,538	Kcal/(hr m² °C)
hI	Kcal/(hr m² °C)	1,538	
1.2 Shell-side heat exc	hange.		4
h _o	Kcal/(hr m² ºC)	7,342	For steam, use accepted value: 1,500 Btu/(hr ft² °F


2.1 Tube-sid	e pressure d		
Re _T		42,304	$Re = \mathbf{G}_{T} \times D_{I} / \mu$
f	ft²/in²	0.000185	<u>See Item 11</u>
ΔP_{t} , friction	psi	2.80	-
∆P _r , return	psi	5.30	$\Delta P_{r} = 4N_{T}V_{t}^{2}/2g$ = 4×4×4.59 ² /2*g = 5.3 psi
ΔΡ	bar	0.55	$\Delta P_{TOT} = \Delta P_{t} + \Delta P_{r} = 8.1 \text{ psi}$


	sure Drop C		ons (Cont'd)
B	<mark>-side pressure dr</mark> a in	ор. 17,25	Assume baffle spacing = shell I.D.
N _R + 1		14	N _B = no. of baffles = L/B - 1 = 12.7
de	in	0.72	<u>Computed</u> as d _e = 0.72"
<u>C'</u>	in	0.25	$C' = P_T - D_Q$
As	ft²	0.413	$A_{s}=d_{s}C'B/(P_{T}\times 144)$
Gs	Kg/(hr m²)	55,030	$G_{\rm S} = m_{\rm steam} / A_{\rm S}$
Res		22,152	$Re = G_{S} \times d_{e}/\mu_{s}$
f	ft²/in²	0.0015	See Item 13:
ΔPs	bar	0.08	∆P _S = 1.16 psi


			olution
F. Summar	y of Step 1.		
Variable	Units	Target	Actual
U	Kcal/(hr m² °C)	490-970	444-1,033
Α	m²	23-46	51
ΔP_{tubes}	bar	0.8	0.55
contrast the			essary. In an its permitted
value. Possibl	pressure drop is m e next steps incluc	luch lower th le:	an its permitted
value. Possibl	pressure drop is m	luch lower th le:	an its permitted
value. Possibl 0]	pressure drop is m e next steps incluc	luch lower th le: the shell dia	an its permitted meter
value. Possibl 0] 2] 2]	pressure drop is m e next steps incluc increase/decrease	uch lower th le: the shell dia the number	an its permitted meter of tubes



				•	(Kern,			
	One	-Pass	Two	-Pass	Four	-Pass	Six-	Pass
Shell I.D.		Δ		Δ		Δ		Δ
(in)	Pitch	Pitch	Pitch	Pitch	Pitch	Pitch	Pitch	Pitcl
		1-i	in O.D. Tu	ibes on 1½	in Pitch			
8	21	21	16	16	14	16		14
12	48	55	45	52	40	48	38	46
15¼	81	91	76	86	68	80	68	74
17¼	112	131	112	118	96	106	90	104
19¼	138	163	132	152	128	140	122	136
211/4	177	199	166	188	158	170	152	164
25	260	294	252	282	238	256	226	252
31	406	472	394	454	380	430	368	424
37	596	674	574	664	562	632	544	614

