ENCH 445 -- Problem Set 1

Review of Numerical Methods

1. Consider the following set of nonlinear algebraic equations:

$$
\begin{gathered}
3 x y-3 x^{2}+4 \sin (y)+6=0 \\
3 x^{2}-3 x y^{2}+3 \cos (x)+4=0
\end{gathered}
$$

Use a numerical method to find at least two solutions to this set of equations in the region $-5<x<5$ and $-5<y<5$. (Hint: Vary the starting guess to find the different solutions).

Also try to solve the above problem specifically using a direction substitution method. If necessary, employ the Wegstein convergence procedure to find a solution using your direct substitution method. Briefly discuss the convergence properties of your method for this problem.
2. The feed to a distillation column contains four components, each having a mole fraction of 0.25 , and has a flow rate of $F=100 \mathrm{moles} / \mathrm{s}$. The relative volatilities with respect to component 4 (denoted as α_{i}) for components $1,2,3$, and 4 are $4.9,3.6,1.6$, and 1 , respectively. The mole fractions of the components in the top product (i.e., the distillate) are $x_{l, d}=0.9, x_{2, d}=.07, x_{3, d}=.02$, and $x_{4, d}=.01$, while the distillate flow rate is $d=28$ moles $/ \mathrm{s}$. Under these conditions (i.e., when the distillate contains very little of components 3 and 4), and when the feed to the column is saturated liquid, the minimum possible vapor flow rate in the column can be estimated by determining the value of ϕ which is between the relative volatilities of components 1 and 2, and which satisfies the equation:

$$
0=\sum_{i=1}^{n} \frac{\alpha_{i} F z_{i}}{\alpha_{i}-\phi}
$$

where z_{i}, is the mole fraction of component i in the feed. This value for ϕ can then be substituted into the relation:

$$
V_{\min }=\sum_{i=1}^{n} \frac{\alpha_{i} d x_{i, d}}{\alpha_{i}-\phi}
$$

where $V_{\text {min }}$ is the minimum vapor flow rate. Write a computer program (using MATLAB, Excel, or any other appropriate software) which can be used to solve for $V_{\text {min }}$ in general given the feed composition and flow rate, distillate composition and flow rate, and relative volatilities. Also, use your computer program to solve for $V_{\text {min }}$ for the particular conditions given above.
3. The following relations describe the surface of an ellipsoid and the surface of a flat plane in a rectilinear coordinate system

$$
\begin{aligned}
& x^{2}+2 y^{2}+3 z^{2}=10 \\
& 3 x^{\prime}+4 y^{\prime}+3 z^{\prime}=54
\end{aligned}
$$

Determine the distance of closest approach between these two objects. (Hint: develop a relation for the distance between the points (x, y, z) and $\left(x^{\prime}, y^{\prime}, z^{\prime}\right)$, then minimize this distance, making sure the above equalities are satisfied.)
4. Solve numerically the following set of nonlinear ordinary differential equations to determine the functions $z(t)$ and $w(t)$:

$$
\begin{aligned}
& \frac{d z}{d t}=w \quad z+3 \sqrt{t} \\
& \frac{d w}{d t}=2 w^{2}+z^{2}
\end{aligned}
$$

The initial conditions are $w=z=1$ at $t=0$, and a solution is to be determined to the extent that it is possible on the interval $0<t<0.5$. If you use Euler's method to integrate the above two equations, then use a step size of 0.0025 for t. Graph your results and note that the solution for $w(t)$ and $z(t)$ may involve vertical asymptotes where these functions approach infinity in the region $0<t<0.5$. You may find it useful to graph your results logarithmically to show the pertinent features of the solution.

