ENCH 445 -- Problem Set 1

Review of Numerical Methods

1. Consider the following set of nonlinear algebraic equations:

$$3xy - 3x^2 + 4\sin(y) + 6 = 0$$

$$3x^2 - 3xy^2 + 3\cos(x) + 4 = 0$$

Use a numerical method to find at least two solutions to this set of equations in the region -5 < x < 5 and -5 < y < 5. (**Hint:** Vary the starting guess to find the different solutions).

Also try to solve the above problem specifically using a direction substitution method. If necessary, employ the Wegstein convergence procedure to find a solution using your direct substitution method. Briefly discuss the convergence properties of your method for this problem.

2. The feed to a distillation column contains four components, each having a mole fraction of 0.25, and has a flow rate of F = 100 moles/s. The relative volatilities with respect to component 4 (denoted as α_i) for components 1, 2, 3, and 4 are 4.9, 3.6, 1.6, and 1, respectively. The mole fractions of the components in the top product (i.e., the distillate) are $x_{1,d} = 0.9$, $x_{2,d} = .07$, $x_{3,d} = .02$, and $x_{4,d} = .01$, while the distillate flow rate is d = 28 moles/s. Under these conditions (i.e., when the distillate contains very little of components 3 and 4), and when the feed to the column is saturated liquid, the minimum possible vapor flow rate in the column can be estimated by determining the value of ϕ which is between the relative volatilities of components 1 and 2, and which satisfies the equation:

$$0 = \sum_{i=1}^{n} \frac{\alpha_i F z_i}{\alpha_i - \phi}$$

where z_i is the mole fraction of component i in the feed. This value for ϕ can then be substituted into the relation:

$$V_{\min} = \sum_{i=1}^{n} \frac{\alpha_i d x_{i,d}}{\alpha_i - \phi}$$

where V_{min} is the minimum vapor flow rate. Write a computer program (using MATLAB, Excel, or any other appropriate software) which can be used to solve for V_{min} in general given the feed composition and flow rate, distillate composition and flow rate, and relative volatilities. Also, use your computer program to solve for V_{min} for the particular conditions given above.

1

3. The following relations describe the surface of an ellipsoid and the surface of a flat plane in a rectilinear coordinate system

$$x^2 + 2y^2 + 3z^2 = 10$$

$$3x' + 4y' + 3z' = 54$$

Determine the distance of closest approach between these two objects. (**Hint:** develop a relation for the distance between the points (x, y, z) and (x', y', z'), then minimize this distance, making sure the above equalities are satisfied.)

4. Solve numerically the following set of nonlinear ordinary differential equations to determine the functions z(t) and w(t):

$$\frac{dz}{dt} = w \quad z + 3\sqrt{t}$$

$$\frac{dw}{dt} = 2w^2 + z^2$$

The initial conditions are w = z = 1 at t = 0, and a solution is to be determined to the extent that it is possible on the interval 0 < t < 0.5. If you use Euler's method to integrate the above two equations, then use a step size of 0.0025 for t. Graph your results and note that the solution for w(t) and z(t) may involve vertical asymptotes where these functions approach infinity in the region 0 < t < 0.5. You may find it useful to graph your results logarithmically to show the pertinent features of the solution.