Chapter 8

Multicomponent Distillation - The Design Problem

Consider on a qualitative basis the distillation of a hydrocarbon mixture (C₁-C₆) designed to separate the mixture between C_3 and C_4

Degree of Freedom Analysis:

Compared to the binary case, there is an extra degree of freedom for each additional component

Objective: Calculate n and m by adjusting the feed plate location

Design the column using the remaining DOFs as the independent variables.

Operation at infinite reflux: The Fenske Equation

Consider the bottom of the column for the case of a binary mixture:

Material Balance:

 $V_b y_{Ab} = L_1 x_{A1} - x_{Ab} b$

At infinite reflux b is small and $V_b \approx L_1$ so $y_{A,b} = x_{A1}$ and $\begin{pmatrix} x_A \\ x_B \end{pmatrix}_I = \mathcal{A}_B \begin{pmatrix} x_A \\ x_B \end{pmatrix}_b$

Nomenclature

n = # of plates above the feed plate including the feed plate.
m = # of plates below the feed plate.
A figure illustrating n and m can be found in Lecture 7.

Equilibrium in the Reboiler:

 $\left(\begin{array}{c} \underline{u}_{A} \\ \underline{u}_{B} \end{array}\right)_{b} = \left(\begin{array}{c} \underline{X}_{A} \\ \underline{X}_{B} \end{array}\right)_{b} \left(\begin{array}{c} \underline{X}_{A} \\ \underline{X}_{B} \end{array}\right)_{b}$

ຂ

Similarly for Stages 1 and 2:
$$\begin{pmatrix} X_{A} \\ X_{B} \end{pmatrix}_{2} = \propto_{AB} \begin{pmatrix} X_{A} \\ X_{B} \end{pmatrix}_{I} = \propto_{AB}^{2} \begin{pmatrix} X_{A} \\ X_{B} \end{pmatrix}_{0}$$

For N Stages: $\begin{pmatrix} X_{A} \\ X_{B} \end{pmatrix}_{d} = (\propto_{AB})^{Nmin} \begin{pmatrix} X_{A} \\ X_{B} \end{pmatrix}_{0}$
or N_{min} = $\frac{IO9}{I} \begin{bmatrix} \begin{pmatrix} X_{A} \\ X_{B} \end{bmatrix}_{d} & \begin{pmatrix} X_{A} \\ X_{B} \end{pmatrix}_{d} \end{bmatrix}$

For a multicomponent system, the above equations also apply with A and B taken as the 2 key components

"Short-Cut" methods for a multicomponent distillation column design

See chapter 7 of Wankat for additional details

The Gilliland Correlation:

• Nmin can be determined from the Fenske Equation

• $\left(\frac{L}{D}\right)_{min}$ can be determined from the Underwood Equation $\left(\frac{L}{D}\right)_{min}$ see Chapter 7.2 of Wankat

When the "non-key" components are entirely in one product or the other

$$\bigvee_{f} = \sum_{i=1}^{N} \frac{\alpha_{i} F z_{i}}{\alpha_{i} - \emptyset} + \text{then} \quad \forall min = \sum_{i=1}^{N} \frac{\alpha_{i} D y_{i,D}}{\alpha_{i} - \emptyset}$$
Solve for value of \emptyset between values of the key component

€ ChemSep (TM) - multicomponent_example.sep

File Edit Solve Analysis Databanks Tools Help

Title Components Operation	Tables Graphs McCabe-Thiele FUG Fenske-Underwood-Gilliland Analysis						
Properties Properties Properties Provide a properties		Auto select key comp's			_		
✓ Reactions	Light	Benzene	 Recovery in 	n D 0.95	×lb = 0.0166676	×ld = 0.949843	
Feeds	Heavy	Toluene	 Recovery in 	n B 0.95	×hd = 0.0499917	×hb = 0.316684	
Analysis Pressures Heaters/Coolers	Relative volatility	Geometric average	✓ Design RR	/RRmin 1.2			
Column specs	Relative volatility	q feed = 1	q feed = 1				
Results	Minimum number (of stages (Fenske) = 7.0968	21 D = 0.2500	D = 0.250041 (kmol/s)			
Graphs	Minimum reflux rat	io (Underwood) = 1.570468	B = 0.7499	B = 0.749959 (kmol/s)			
FUG	Number of Stages	: (Eduljee) = 16.47214	phi = 1.478	phi = 1.478696			
Solve options	Reflux ratio (Edulje	err = -0.00	err = -0.0000248674				
Paths	'aths Feed stage (Fenske) = 8.236072						
< >							
Saved Converged 14 iterations C:\Users\frey\save_dell\chem_sep\multicomponent_example.sep							

_

 \times