Chapter 7

Binary Multistage Distillation: The McCabe-Thiele Method

Binary implies that there is one independent composition variable

$$
X_{A} ; X_{B}=1-X_{A}
$$

Description Rule: DOF= number of variables set by construction and controlled by operation by independent means.

Variables:

Conclusion: DOF=10

More commonly the feed variables and the column pressure are fixed ($\mathrm{P}, \mathrm{Q}_{\mathrm{f}}, \mathrm{T}_{\mathrm{f}}, \mathrm{P}_{\mathrm{f}}, \mathrm{F}, \mathrm{za}_{\mathrm{A}}$) so that four degrees of freedom are left.

Simulation Problem

D
Reflux ratio (reflux flow/D)
m
n

Design Problem

\(\left.$$
\begin{array}{|l|l}\hline \begin{array}{l}\text { Specify } \\
\text { desired } \\
\text { separation }\end{array}
$$ \& -\left[\begin{array}{l}x_{A, D}

x_{A, D}

Reflux ratio\end{array}\right]\end{array}\right]-\)| 3 variables
 are
 specified |
| :--- |

Vary feed late location to minimize
$\mathrm{n}+\mathrm{m} \quad$ Design the column

Variables and control volume used in McCabe-Thiele method:
Top of column

The subscripts on the variables denote the source of the quantity.

Overall material balance:

$$
V_{p}=L_{p+1}+D
$$

Component material balance:

$V_{p} y_{A, p}=L_{p+1} X_{A, p+1}+D y_{A, D}$
Assume "constant molar overflow" which implies

$$
\begin{aligned}
& L_{p+1}=L_{p}=\ldots \equiv \mathrm{L} \\
& V_{p+1}=V_{p}=\ldots \equiv V
\end{aligned}
$$

Operating Line: Line on y-x diagram formed by composition of streams passing each other.
\& A graph with an example of a related type of operating line can be found on page 2 of Lecture 5

For the rectifying section of the column (the top section), the plate number subscripts can be dropped to yield:

$$
y_{A}=\underset{\text { Slope }}{\left(\frac{\mathrm{L}}{\mathrm{~V}}\right)} \mathrm{x}_{\mathrm{A}}+\underbrace{\left(\frac{D}{V}\right) y_{A, D}}_{\text {Intercept }}
$$

Intersection with the 45% line

$$
\begin{gathered}
y_{A^{-}}=\left(\frac{L}{V}\right) y_{A}+\left(\frac{D}{V}\right) y_{A, D} \\
\left(1-\frac{L}{V}\right) y_{A}=\left(\frac{D}{V}\right) y_{A, D} \Rightarrow y_{A}=x_{A}=y_{A, D}
\end{gathered}
$$

Stripping section- the bottom section of the column

Operating line:
$y_{A}=\left(\frac{L^{\prime}}{V^{\prime}}\right) x_{A A}-\underbrace{x_{A, B}}_{\text {Slope }}\left(\frac{b}{V}\right)$

Intersection of operating lines:
Subtract the two equations for the operating lines to obtain an equation which holds for the intersection.

Properties
Slope: $-\frac{L_{f}}{V_{f}}$
Intersection with 45° line: Z_{A}

Summary:

