
A Prototype Experience Management System

for a Software Consulting Organization

Manoel Gomes de Mendonça Neto Carolyn B. Seaman*

Computer Networks Research Group (NUPERC) Department of Information Systems
Salvador University (UNIFACS) UMBC

Av. Cardeal da Silva 747 1000 Hilltop Circle
Salvador, Ba, Brazil, 40220-141 Baltimore, MD 21250 USA

+ 55 (71) 247-5177 +1 410 455 3937
mgmn@unifacs.br cseaman@umbc.edu

Victor Basili* Yong-Mi Kim
Dept. of Computer Science Q-Labs Inc.

University of Maryland College Park 6301 Ivy Lane, Suite 210
A. V. Williams Building Greenbelt, MD 20770 USA

College Park, MD 20742 USA +1 301 982-7773
+1 301 405-2739 Yong-Mi.Kim@q-labs.com

basili@cs.umd.edu

* Victor Basili and Carolyn Seaman are also with the Fraunhofer Center for Experimental Software Engineering – Maryland,
University of Maryland, 4321 Hartwick Rd., Suite 500, College Park, MD 20742-3290, + 1 301 403-2705.

ABSTRACT
The Experience Management System (EMS) is aimed at
supporting the capture and reuse of software-related
experience, based on the Experience Factory concept. It is
being developed for use in a multinational software
engineering consultancy, Q-Labs. Currently, a prototype
EMS exists and has been evaluated. This paper focuses on
the EMS architecture, underlying data model,
implementation, and user interface.

Keywords
Experience factory, knowledge management, experience
reuse

1 INTRODUCTION
Software is a major expense for most organizations and is
on the critical path to almost all organizational activities.
Individual software development organizations in general
strive to develop higher quality systems at a lower cost for
both their internal and external customers. Yet the
processes used to develop such software are still very
primitive in the way that experience is incorporated.
Learning is often from scratch, and each new development
team has to relearn the mistakes of its predecessors. Reuse
of an organization’s own products, processes, and
experience is becoming more accepted as a feasible
solution to this problem. But implementation of the idea, in

most cases, has not gone beyond reuse of small-scale code
components in very specific, well-defined, situations. True
learning within a software development organization
requires that organizational experiences, both technological
and social, be analyzed and synthesized so that members of
the organization can learn from them and apply them to
new problems.

Suppose, for example, that a member of a software
development group is considering the use of a particular
software engineering technology on a forthcoming project.
This member has heard that this technology has been used
successfully in other projects in some other part of the
organization, but cannot easily find out where or by whom.
He or she would like very much to learn from the
experiences of those previous projects, first to help make
the decision to use the technology or not, then to help
implement the technology in the current project. It would
be helpful, obviously, to avoid the inevitable mistakes that
are made the first time a new technology is tried. Also, it
would be useful to see the costs of using that technology
(e.g. the costs of new tools or training) in order to help
estimate those costs for the current project. Without the
organizational infrastructure to support access to previous
experience from within the organization, this type of
information would be very difficult, if not impossible, for
the development team member to get.

 Figure 1. Experience Factory structure

The subject of this paper is a system for supporting
experience management in a multinational software
improvement consultancy called Q-Labs. This Experience
Management System (EMS) is based on the Experience
Factory [1,2,3] concept proposed by Basili et al.

2 UNDERLYING CONCEPTS
This section discusses some of the underlying concepts
behind the Experience Management System and tries to
place it in the state of art.

Knowledge and Experience Management

Tiwana [15] defines knowledge management (KM) as “the
management of organizational knowledge for creating
business value and generating a competitive advantage.”
Experience can be thought of as a type of organizational
knowledge, in particular that knowledge gained as a result
of the work of the organization itself. EMS aims to support
the capture, storage, search, and retrieval of experiences
that are (or can be) explicitly represented. That is, the EMS
is concerned with explicit knowledge, as opposed to tacit
knowledge (knowledge that lies inside the minds of
individuals [15]). EMS supports very little knowledge
externalization, i.e., transforming tacit knowledge into
explicit knowledge. It supports storage and search of
explicit knowledge related to previous business experiences
of an organization. This supports knowledge
internalization, i.e., helping people to absorb explicit
knowledge.

Tiwana also presents a seven-layer model describing the
different types of technology components necessary to
support KM in an organization. These layers are the user
interface layer, the access and authentication layer, the

collaborative intelligence and filtering layer, the application
layer, the transport layer, the middleware and legacy
integration layer, and the repositories. The EMS includes
elements of all seven of these layers. However, it does not
intend to be a comprehensive system. It focuses on the use
of information visualization to foster experience
internalization. It does not intend to support workflow, to
allow collaborative work, or to capture expert reasoning, all
of which are enabling technologies for knowledge
management.

One of the crucial decisions to be made when building a
KM infrastructure is the choice between using Web-based
technology and using a proprietary set of tools such as
Lotus Notes and its related applications. The EMS uses a
combination of these approaches by utilizing an in-house
developed application to manage the search interface, but
using Web technology for the actual retrieval and
presentation of artifacts from the repository. Another
important choice that must be made when developing a KM
infrastructure is the level of granularity of the “knowledge
objects” in the system. In the case of EMS, the unit of
information is called an “experience package” and its size
and scope have to be defined by an experience
classification manager or librarian. The minimum size of an
experience package is a file, with a set of classification
attribute values. Whether or not this is a reasonable lower
limit for knowledge classification remains an unresolved
issue, but will be investigated in future studies of different
EMS prototypes.

Search strategies are also an important issue in designing
and integrating a KM infrastructure. Tiwana describes four
general types of searching: meta searching (based on broad
categories), hierarchical searching (based on increasingly

Project Project OrganizationOrganization

1. Characterize
2. Set Goals
3. Choose Process

Execution
 plans

4. Execute Process

Project
Support

5. Analyze

products,
lessons
learned,
models

6. Package

Generalize

Tailor

Formalize

Disseminate

environment
characteristics

tailorable
knowledge,
consulting

Computer-Computer-
intensiveintensive
supportsupport

project
analysis,
process

modification

data,
lessons
learned

Experience
Base

Human-intensive supportHuman-intensive support

Experience FactoryExperience Factory

more specific categories), attribute searching, and content
searching. These four categories can be combined in the
same system. EMS uses a type of attribute searching, but
the search interface provided for manipulating attribute
values is innovative, highly user-friendly, and lends itself to
information visualization and knowledge internalization.
The attributes chosen for use in searches generally fall into
the categories of activities, domain, form, type, products
and services, time and location. Taxonomies are defined by
classification managers or librarians and can be modified or
expanded as needed. Also, in EMS, packages are
categorized into broad “package types”, each of which has
its own set of attributes tailored to the types of artifacts
(e.g. documents, people, etc.) in the package type.

One final distinction is between “push” and “pull”
technologies, either (or both) of which can be utilized by a
KM infrastructure. EMS, at this time, is strictly a “pull”
system, meaning that the user must initiate all activity with
the system, and must specify the types of information they
want to search for. “Push” technology, on the other hand,
allows the system itself to notify or provide information
that may be of interest to a user, without an explicit request
from the user.

 Visual Exploration of Information

A crucial aspect of achieving success in implementing
systems for experience reuse is acceptance. In this scope,
the system’s user interface is critical, as even minor
usability problems will demotivate users, thus undermining
the use and success of the system. EMS uses a search and
retrieval interface that is based on information visualization
and visual data mining tools.

Humans have a poor short-term memory, i.e. they have
limited ability to search and interpret textual and/or tabular
data [10]. On the other hand, humans can interpret a visual
scene in a matter of milliseconds. Information visualization
tools play with this human ability to allow domain experts
– usually lay people – to view data in creative ways. Most
such tools allow active navigation on the visual screen,
enabling zooming, rotation, repositioning, and sweeps over
the visible areas. They also allow the interactive control of
the presentation formats and visible visual attributes.
Interactive control of the information being shown is also
usually an element of visualization tools, enabling users to
look at data from a high level perspective or quickly diving
into more detailed subsets of data.

This type of functionality can be very effectively used to
explore, interpret, and search information. It is our belief
that this approach is key for experience management tools.
It allows users not only to find information but also to

visualize the kind of information that is stored in the
repository. Combined with the right querying devices, this
type of functionality can be used to create fuzzy and non-
zero hit queries in which the number of results satisfying a
query can be visually previewed before any information is
retrieved from experience repositories [6]. It also aids
novices to learn by themselves about the organization’s
experience classification schema and its available body of
knowledge.

The Experience Factory

The Experience Factory is an organizational infrastructure
whose goal is to produce, store, and reuse experiences
gained in a software development organization [1,2,3]. The
Experience Factory organizes a software development
enterprise into two distinct organizations, each specializing
in its own primary goals. The Project Organization focuses
on delivering the software product and the Experience
Factory focuses on learning from experience and improving
software development practice in the organization.
Although the roles of the Project Organization and the
Experience Factory are separate, they interact to support
each other’s objectives. The feedback between the two
parts of the organization flows along well-defined channels
for specific purposes, as illustrated in Figure 1.

Experience Factories recognize that improving software
processes and products requires: (1) continual accumulation
of evaluated and synthesized experiences in experience
packages; (2) storage of the experience packages in an
integrated experience base accessible by different parts of
the organization; and (3) creation of perspectives by which
different parts of the organization can look at the same
experience base in different ways. Some examples of
experience packages might be the results of a study
investigating competing design techniques, a software
library that provides some general functionality, or a set of
data on the effort expended on several similar projects.

The Experience Factory concept has been implemented in a
number of software development organizations that have
addressed the above questions in various ways (e.g.
[4,5,8]). The Software Engineering Laboratory (SEL) [4]
is an example of an Experience Factory. The SEL Process
Improvement Paradigm provides a practical method for
facilitating product-based process improvement within a
particular organization, based on effective use of that
organization’s own experience. Because it directly ties
process improvement to the products produced, it allows an
organization to optimize its process for the type of work
that it does. Using this approach, the SEL has reduced
development costs by 74%, decreased error rates by 85%,
and increased reuse by over 300% over the past 15 years

 Figure 2. The three levels of an Experience Management System

Establishing an Experience Factory is a long-term endeavor
requiring a great deal of commitment on the part of both
management and development staff. Implementing an
Experience Factory involves substantial up-front costs. It
requires instilling a new philosophy of learning into an
organization, and establishing an organizational structure
and processes for the Experience Factory to collect,
package and share experiences. Once in place, it will also
require an ongoing effort and commitment to maintain as
an effective agent for continuous software process
improvement.

We believe that emerging computing technologies - such as
distributed systems, visualization tools, visual query
interfaces, and intranets - offer great potential to support
the establishment and maintenance of Experience Factories
in organizations. This paper reports on our recent efforts to
exploit these technologies to support an Experience Factory
within an industrial setting.

3 PRINCIPLES BEHIND EMS.
We have found it useful to discuss the problem of software
experience capture and reuse, and our approach to
addressing it, in terms of the 3-layer conceptual view
shown in Figure 2. This view shows three aspects of the
problem, all of which need to be addressed before a
complete solution can be implemented.

At the lowest level, there are issues of how experience
should be electronically stored in a repository and made
accessible across geographical boundaries. The middle
level deals with user interface issues, including how
experiences are best presented to a user and how the user
interacts with the automated system to manipulate, search,
and retrieve experience. At the top level, the organizational

issues of how experience reuse will fit into the work of the
organization, how the experience base will be updated and
maintained, and how experiences will be analyzed and
synthesized over time, are addressed. The bottom two
levels of Figure 2 define the computer-intensive support
pictured in Figure 1. The top level of Figure 2 defines the
interface between the human-intensive and the computer-
intensive areas in Figure 1.

Allied with this conceptual view, we have defined a set of
high-level requirements aimed at making the EMS reliable,
easy to use, and flexible enough to support the Experience
Factory concept.

R1. The system shall support geographically distributed
organizations allowing them to share and manage
experience packages remotely.

R2. The repository shall be robust, reliable, and portable to
standard computer platforms.

R3. The user interface level shall be as platform
independent as possible, and allow for visual
exploration of information.

R4. The data model shall be simple but powerful enough to
model diverse classes of “experience packages.” The
system will adapt to the current practices, processes,
and products of different organizations, and not vice-
versa.

R5. The system shall be easy to learn and easy to use to the
point that it presents no identifiable usability barriers,
based on well-defined and implemented usage and
usability studies.

This conceptual view, along with the requirements, forms

Repository Level Standards

Projects
information

Guidelines

Lessons
learned Cost

models
Defect
models

User Interface Level
View information
about packages

Search
repository

View packages

Retrieve
packages

Procedural Level
Populating EF

Maintaining EF

Accessing EFUpdating EF

Experience Packages

People

Load
packages

Perspectives

the basis of several ongoing efforts to implement
experience management systems in a variety of settings.
The first of these efforts, the Q-Labs EMS, is described in
this paper. Lessons learned from our work with Q-Labs are
being fed into other EMS projects.

4 THE Q-LABS EMS
The Experimental Software Engineering Group (ESEG) at
the University of Maryland and Q-Labs, Inc., have been
working together for some time on a project aimed at
building the infrastructure to support a true Experience
Factory within Q-Labs [12]. Q-Labs is a multi-national
software engineering consulting firm that specializes in
helping its clients improve their software engineering
practices by implementing state-of-the-art technologies in
their software development organizations. Q-Labs has
helped many of its clients implement some of the principles
of the Experience Factory. Q-Labs’ objectives for this
project have been to provide a “virtual office” for the
organization, which is spread across two continents, and to
allow each Q-Labs consultant to benefit from the
experience of every other Q-Labs consultant. The system
being developed as a result of this effort is called the Q-
Labs EMS.

System Architecture
In order to fulfill the first requirement presented in section
3, to support geographically distributed organizations, the
Q-Labs EMS is a client-server system. The architecture is
shown in Figure 3. It follows a three-tier model. At the top
level, we have the EMS Manager and EMS Visual Query
Interface (VQI) applications. They work as client
applications sending requests to a “middle tier” of services.
This EMS Server receives messages from the client
applications and translates them into low-level SQL
(Standard Query Language) calls to an EMS Repository.

 Figure 3. Q-Labs EMS architecture

In order to fulfill the second requirement, the EMS
Repository is managed by a commercial DBMS (Data Base
Management System), and the middle level server connects

to it using a standard protocol. Our first prototype uses Java
Database Connectivity (JDBC) for this.

Data Model
In order to fulfill our fourth requirement we adopted the
following data model. An experience package is described
by three parts: a characterization part used to classify
packages in the experience base; a relationship part used to
establish relations between packages; and a body part that
contains the content of the experience package itself. Each
package is associated with a package type that defines the
type of attributes that will be used in its characterization
part, the type of links that will be used in its relationship
part, and the type of elements that will compose its body.
In other words, each package type establishes a well
defined set of attributes for classification, links for
establishing relationships, and elements for storing the
contents of the instantiated packages.

Package elements are typed as a file or as a list of files. In
order to facilitate the later usage of retrieved files, each file
is kept associated with its original name extension. This
way, the retrieved files can be opened directly by the client
machine if its file extension is consistent with its OS
registry.

Package attributes have well-defined naming and typing.
These attributes build a classification taxonomy for each
package type. The attributes effectively define facets that
are filled in by the author of an experience package to
characterize the package being submitted to the repository.
These attribute values are then used to search the repository
for packages of interest. In this respect, our approach is
similar to Prieto-Diaz’s faceted classification schema for
software reuse [11]. Package attributes are typed as
numbers, strings, dates, or a list of one of those.

Package links also have well-defined naming and typing.
As they are used to establish relationships between
packages, a package link can be typed as a pointer to a
package of a certain package type, or a list of them. The
system also supports URL addresses as pointers to
“external” packaged information. For this reason, a link can
also be typed as a URL address or a list of them.

A package is created by giving values to the attributes,
links, and elements defined by its package type. This
arrangement provides a simple yet powerful data model, as
per requirement 4. An example of a package type and one
package instantiation are shown in Figure 4. In this
example, a package type named “Document” is shown
along with its attributes, links, and elements in the top left
dashed box of the diagram. A package named “Document
10” in which all those parameters are instantiated is shown
in the bottom left box of the diagram. Another package
named “Consultant 12” is shown to exemplify the
instantiation of the link “Produced by” of the package
type “Document.”

EF Manager EF VQI

EF Repository

Remote
machine

Remote
machine

IP Network

EF Server Server
machine

Database
server

PL-SQL

DBMS-proprietary
protocol

EF-proprietary
protocol

UI for a chosen
perspective

EF VQI

Commercial
DBMS

Standard
protocol

 Figure 4. An Example of a Package Type and a Package Instantiation

Visual Query Interface
The user interface for a system such as the EMS is a crucial
component. The fifth requirement states that the search and
retrieval interface must be easy to learn, self-explanatory,
and platform independent. This is a weightier requirement
than it appears. The long-term success of an EMS depends
heavily on the willingness of users to start using it early on,
thus providing both feedback on the contents of the
repository and new experience packages. The smallest
usability obstacles would discourage early users and thus
jeopardize the success of the system.

To fulfill this crucial requirement, we adopted a visual
query interface (VQI) concept. As proposed by
Shneiderman [14], visual query interfaces let users “fly
through” stored information by adjusting query devices
(checkboxes and slider bars) and viewing animated results
in the computer screen. In EMS, VQI’s allow easy
interactive querying of the repository based on various
attributes of the experience packages. Built in to the
interface is the set of attributes defined for the perspective
currently being viewed

Upon login a user will have a set of perspectives (each of
which corresponds to a package type) from which he/she
can look at stored experience packages. A user will fire a
VQI by selecting one of those perspectives. The VQI will
display the packages that are associated with this
perspective together with the attributes and query devices
used to search and browse those packages. Figure 5 shows
such a VQI.

Using the VQI, the user can interactively search the
experience packages by manipulating the query devices on
the right and observing the number of selected packages
(dots) on the two-dimensional grid on the left. The grid has
two axes, each of which corresponds to one of the attributes
in the perspective. Once a small subset of packages is
selected, the user can quickly examine a specific package
by clicking on the corresponding dot in the grid.

The VQI has two features that we believe are fundamental
to EMS. First, its search is interactive and controlled by the
user. This allows the user to easily control the number of
matches by widening or narrowing the search scope with a
few mouse clicks on the VQI’s query devices. We
hypothesize that this will significantly help users to find
packages that are useful to them even when an exact match
is not available.

The second key feature of this type of interface is that it
allows people to visualize the amount of stored experience
and the classification schema used by the organization. We
believe that this will significantly help new users get used
to EMS and is also an important learning medium for new
team members.

The user interface also has functionality for submitting new
experience packages to the experience base. This
functionality uses the attributes, links, and elements
associated with the package types to produce the forms that
a user must complete to describe new packages.

Attributes
Title: string
Author: string
Tech area : list of string <PL, EF, Inspection,
Design, Testing, Risk Analysis, Process, Other>
Purpose: string <training, assessment, guidance>
Size in pages: integer
Date of creation : date

Links
Produced by: link to “Consultant”
Produced at: link to “Project”

Body
Abstract: file
Main text : list of files

Document Consultant

Project

Title: C++ Training Module 1
Author: Hector Rizzoli
Tech area: <PL>
Purpose: training
Size in pages: 58
Date: 04-05-1991

Document 10
Produced by: Consultant 12
Produced at: N/A

Abstract: file123.doc
Main text: <file124.doc>

Consultant 12
Name: Hector Rizzoli
Office: College Park
Tech area: PL, Design,
 Testing
 . . .

 Figure 5. Q-Labs Visual Query Interface (VQI)

Lastly, in order to fulfill the third requirement – the search
and retrieval interface must be platform independent – the
interface component is completely implemented in Java.
We have ported it to two different platforms, Windows
NT/98 using Sun’s Java Runtime Environment 1.1.6 and
MacOS using Apple’s Java Environment.

The first of several planned empirical studies to evaluate
the Q-Labs EMS prototypes was an evaluation of the
interface [12]. This study relied largely on qualitative
research methods [9], including observation, interviews,
and the constant comparison method for analyzing the data.
The evaluation study found some significant, but not
fundamental, usability problems. But more importantly, it
showed that the EMS will eventually be acceptable to its
intended users. This evaluation was a valuable and timely
tool for getting feedback from the eventual users of EMS.

5 CONCLUSIONS
We have described an ongoing project involving the
Experimental Software Engineering Group (ESEG) at the
University of Maryland and Q-Labs, Inc. that aims to
provide a system to support software engineering
experience capture and reuse. The EMS architecture
follows a three-tier model, with client applications running
the user interface, a server application to process user
queries, and an underlying repository. Currently, an
interface prototype of the Q-Labs EMS exists and has been
evaluated. The results of the evaluation have assured us
not only that the EMS can eventually be successfully
deployed throughout Q-Labs, but can also serve as a
testbed for our further investigation of software experience

capture and reuse. However, much needs to be done before
a robust version of this system is in place. The prototype
that has been evaluated encompassed only some of the
automated features that are required from a system aimed at
supporting an Experience Factory. Much technical and
organizational work remains. The latter includes
designing, implementing, and evaluating new
organizational procedures and deployment strategies to
ensure the acceptance of EMS at Q-Labs.

Parallel to the work with Q-Labs, researchers at the
University of Maryland and the Fraunhofer Center for
Experimental Software Engineering have started the
development of EMS II, also called “Fraunhofer EMS.”
This system will extend the functionality of Q-Labs EMS
by adding: (1) new interfaces for links navigation and
keyword search; (2) support for different experience
factory roles; (3) a new software layer for accessing files
already stored in corporate databases; and (4) support for
package annotation and rating by its users. This system is
being validated inside Fraunhofer and will later be made
available to its industrial research partners.

ACKNOWLEDGEMENTS
The authors would like to thank the consultants at Q-Labs
for so kindly spending their valuable time to make this
study possible. The authors also recognize the invaluable
contributions from Jon Valett (at Q-Labs), Marvin
Zelkowitz and Mikael Lindvall (at Fraunhofer Center MD),
and Baris Aydinlioglu (at the University of Maryland) to
this work. Thanks also go to the anonymous reviewers of
various versions of this paper. This research was supported

in part by Maryland Industrial Partnerships (MIPS) grant
no. 2015.22.

REFERENCES
1. Basili, Victor R. Software Development: A Paradigm

for the Future. COMPSAC ‘89, Orlando, Florida, pp.
471-485, September 1989.

2. Basili, Victor R. The Experience Factory and its
Relationship to Other Improvement Paradigms . 4th
European Software Engineering Conference (ESEC),
Garmish-Partenkirchen, Germany. The Proceedings
appeared as the Springer-Verlag Lecture Notes in
Computer Sciences Series 717, September 1993.

3. Basili, Victor R., and Gianluigi Caldiera. Improve
Software Quality by Reusing Knowledge and
Experience. Sloan Management Review, MIT Press,
Volume 37, Number 1, Fall 1995.

4. Basili, V.R., G. Caldiera, F. McGarry, R. Pajerski, G.
Page, and S. Waligora, The Software Engineering
Laboratory - an Operational Software Experience
Factory. Proceedings of the International Conference
on Software Engineering , May 1992, pp. 370-381.

5. Basili, V.R., M. Daskalantonakis, and R. Yacobellis.
“Technology Transfer at Motorola.” IEEE Software,
March 1994, pp. 70-76.

6. Greene, S., Tanin, E., Plaisant, C., Shneiderman, B.,
Olsen, L., Major, G., Johns, S. “The End of Zero-Hit
Queries: Query Previews for NASA’s Global Change
Master Directory.” International Journal on Digital
Libraries, Vol. 2 No.2+3 (1999), pp.79-90.

7. Hackos, J.T. and J.D. Redish, User and Task Analysis
for Interface Design. New York:John Wiley and Sons,
1998, chapter 9, pp. 258-9.

8. Houdek, F., K. Schneider, and E. Wieser. Establishing
Experience Factories at Daimler-Benz: An Experience
Report. In Proc. of 20th International Conference on
Software Engineering, Kyoto, Japan, April 1998, pp.
443-447.

9. Miles, M.B. and A.M. Huberman, Qualitative Data
Analysis: An Expanded Sourcebook , second edition,
Thousand Oaks:Sage, 1994.

10. Miller, G. “The Magical Number Seven, Plus or
Minus Two: Some Limits on Our Capacity for
Processing Information.” Psychological Review,
101(2), pp. 343-352, April 1994.

11. Prieto-Diaz, R. Classifying of Reusable Modules. In
T.J. Biggerstaff and A. Perlis, editors, Software
Reusability, Volume I, ACM Press, 1990.

12. Seaman, Carolyn B., Manoel Mendonca, Victor Basili,
and Yong-Mi Kim. An Experience Management
System for a Software Consulting Organization.

Presented at the Software Engineering Workshop,
NASA/Goddard Software Engineering Laboratory,
Greenbelt, MD, December 1999.

13. Seaman, C.B. Qualitative Methods in Empirical
Studies of Software Engineering. IEEE Transactions
on Software Engineering, 25(4):557-572, July/August
1999.

14. Shneiderman, B. Dynamic Queries for Visual
Information Seeking. IEEE Software, Vol. 6, No. 11,
November 1994, pp. 70-77.

15. Tiwana, A. The Knowledge Management Toolkit:
Practical Techniques for Building Knowledge
Management Systems. Prentice Hall PTR, 2000.

16. von Mayrhauser, A. and A.M. Vans. Identification of
dynamic comprehension processes during large scale
maintenance. IEEE Transactions on Software
Engineering, 22(6):424-437, June 1996.

17. Webby, R., C. Seaman, M. Mendonça, V.R. Basili, and
Y. Kim. Implementing an Internet-Enabled Software
Experience Factory: Work in Progress. Position paper
at the 2nd Workshop on Software Engineering over the
Internet (ICSE’99) , Los Angeles, CA, May 1999.

