
Why Do Programmers Avoid Metrics?

ABSTRACT
Software process improvement initiatives such as metrics
programs have a high failure rate during their assimilation in a
software organization. Social and organizational issues are some
of the factors affecting the adoption and acceptance of metrics,
and these issues have not been discussed in detail in existing
metrics literature. We undertook an interview-based study with
the purpose of studying factors that influence the buy-in of
metrics. We interviewed 12 members of the metrics team of a
large multi-national corporation, with a thriving metrics program.
We found that there was some resistance to standardization of
corporate metrics processes introduced by the metrics team. This
resistance centered on the metrics data collection and reporting
processes. One cause of resistance was the presence of sub-
cultures and native data collection and reporting processes within
organizational units that were independent businesses before they
were acquired. Some of the pushback manifested itself through
begrudging compliance, and avoidance activities like scripting
and gaming of metrics. In this paper, we present the perspectives
of developers, managers and upper-level management to
emphasize that each stakeholder in the metrics initiative has a
valid viewpoint that should be taken into account while
implementing a metrics program and that each metrics effort is
inextricably enmeshed with the organizational context. We
provide actionable recommendations to understand the different
perspectives and to adapt the metrics effort accordingly.

Categories and Subject Descriptors

D.2.8 [Software Engineering]: Metrics – process metrics,
product metrics.

General Terms
Management, Measurement, Human Factors, Standardization.

Keywords
Software metrics, unit testing, static analysis, code review,
quality, phase containment, in-process metrics.

1. INTRODUCTION
In the past two decades, there has been considerable progress in
the technical design and understanding of software quality and
software metrics. Several methodologies such as the Goal
Question Metric (GQM) paradigm [1], as well as the Capability
Maturity Model (CMM/I) framework [2] for process assessment
have been defined for improving software processes and products
through the use of metrics.

While there is plenty of good advice on how to start a metrics
program (e.g., GQM) and what the indicators of success are (e.g.,
use in decision-making, and improvement in organizational
performance [3]) there is little knowledge about how a metrics
program can be tailored to an organization‟s cultural and social

context, in order to be successful. The research presented in this
paper aims to understand the social, behavioral and cultural
obstacles to getting the buy-in of developers and managers.

In this paper we present an investigation of the factors that
influence the buy-in and routinization of metrics within the
dynamics of a large multi-national corporation. We interviewed
12 people from the metrics team at ABC Corporation (name
disguised). These interviews were largely exploratory. We
leveraged the complex, multi-national environment at ABC to get
a multitude of perspectives through our participants who interact
with all strata of management and development. Our primary
research question was: what are the problems surrounding full-
fledged acceptance of metrics in ABC’s software metrics
implementation?

It was encouraging to learn that all the organizational units saw
the usefulness of metrics and were interested in collecting metrics
to learn about how they were doing internally. However, other
organizational dynamics were at play, such as the fact that they
were hesitant to report their metrics to the corporate metrics team,
and there was a pushback on the standardization of in-process
metrics across all organization units. This hesitation and pushback
resulted in practices that we term gaming, i.e. avoiding full
compliance with the metrics program while appearing to provide
all requested data.
The metrics literature is bereft of case studies that discuss in rich
detail the trials and tribulations of metrics data collection and
reporting, and our work is an important contribution. Although we
do not have sufficient evidence to link these issues directly to the
success or failure of a metrics program, several studies have
reported that these nuances could impede the progress of a well-
designed metrics program [4, 5].

Medha Umarji
Dept. of Information Systems

UMBC
Baltimore, MD, USA
+1 (410) 455 3956

medha1@umbc.edu

Carolyn Seaman
Dept. of Information Systems

UMBC
Baltimore, MD, USA
+1 (410) 455 3937

cseaman@umbc.edu

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
ESEM’08, October 9–10, 2008, Kaiserslautern, Germany.
Copyright 2008 ACM 978-1-59593-971-5/08/10...$5.00.

129

The problems we report, however, are only a small part of the
story of metrics at ABC. It is important to note at this point that
despite our discussion of the problem of gaming and other
negative practices, the metrics program at ABC was actually quite
mature and successful. The reasons for, and indicators of, the
success of metrics at ABC are many and varied, but are outside
the scope of this report, which focuses on one type of difficulty
that could arise in any metrics program.
In the following section we discuss the related work on metrics
programs. In Section 3, we present a detailed report of the
research methodology that we used for this study. Sections 4 and
5 discuss the background of the organization and findings
pertaining to gaming of metrics, respectively. We follow on with a
set of implications for research and practice in Section 6 and
Conclusions in Section 7.

2. RELATED WORK
We discuss below some of the issues that have been raised by
prior empirical work in metrics programs. Based on the prior
research in this domain, we report representative findings about
people issues that can influence the acceptance and use of a
metrics program by developers.
Gopal, Mukhopadhyay and Krishnan [3] discuss that usage of
metrics in decision making and improved organizational
performance are key indicators of success of metrics initiatives.
It was found that there is a cyclical relationship between the two
indicators of success: increased use of metrics in decision-making
leads to increased organizational performance and vice versa.
Having a systematic process of data collection and analysis in
place has a significant influence on use of metrics in decision-
making. Similarly, collecting the basic and advanced metrics
(basic first, followed by advanced) also has a positive influence
on this variable.)
Metrics data being used for project comparison purposes is one
of the potential causes for dishonesty in reporting metrics, by
project managers and developers. Herbsleb and Grinter [5] report
that if uniform definitions are called for across projects, it can be
perceived as a threat by the employees because it raises the
possibility of being compared across projects and organizational
units. They reason that this may make developers reluctant to
share their data due to apprehensions about unfair comparisons
with other projects.
In contrast, an example in which such uniformity was not pursued
is that of Contel Corporation, discussed by Pfleeger [6]. At
Contel, project managers were given the flexibility of choosing a
metrics tool, best suited for their purposes. Pfleeger [6] and her
colleagues adopted this approach, primarily because the projects
were very different and collecting uniform metrics across projects
would have been problematic. Since projects had considerable
flexibility in choosing the metrics tools, and types of data and
analysis to be performed, managers as well as developers had a
feeling of control over the metrics program. Pfleeger reports that
as the metrics were local to each project and were used for process
improvement pertaining mainly to that project, managers as well
as developers were genuinely interested in the results of metrics
data analysis, and there were no doubts about the usefulness and
integrity of the data. This study is the closest to our work, as it
closely matches the situation at ABC. Unfortunately, Contel had
to shut down during the attempt to integrate metrics across
different projects.

Another finding of the Herbsleb and Grinter study was that
developers do not believe in the integrity of metrics data.
Accordingly, they do not whole-heartedly participate in metrics
activities. Fenton and Hall [4] conclude that it is very important
for practitioners to believe that the data is accurate and reflects
reality, i.e. it satisfies the representation condition. Fenton and
Hall [4] also found that some developers believe that the data will
be massaged (by their managers), and this affects their motivation
to collect data, since they feel that it will be modified anyway.
A related issue discussed by Fenton and Hall [4] is that of
differences in thinking between managers and developers.
They found that managers do not believe that developers are
receptive about collecting metrics, and this in turn influences the
thinking of developers. Weinberg [7] observed that faking time
sheets is a part of the universal culture of software development
and that “programmers tend to tell the lies that their managers
want to hear”. Developers‟ acceptance of metrics activities as part

of their work practices is, to some extent, within the managers‟

control [4].
Another issue is that developers feel threatened that metrics
might be used against them. Dekkers [8] reports that there should
be a safe environment for collecting and reporting data. Once the
developers are convinced that metrics data is being used for
measuring the process and the products, not them, then their
resistance will be reduced. For this purpose, Iversen et al., [9]
suggest that developers should have complete access to data they
submitted, in order to keep the process transparent. They claim
that data collection routines should be tied to the project
milestones and treated as deliverables along with other
deliverables of the project. They report that impressions about the
metrics program are formed through the informal channels of
communication and are influenced by past similar initiatives, if
any. They find that this influences developers‟ perceptions of the

current initiative and in turn, their acceptance of it.
Most studies conducted on metrics programs have stressed the
importance of using automated tools and techniques for
collecting data [6, 9, 10]. The rationale behind using automated
tools is that it reduces developer resistance to the metrics program
by reducing the burden of extra work, by helping to ensure the
validity and integrity of the data and helping in the presentation
and evaluation of metrics data. However, it is not always possible
to collect accurate data without active developer involvement [4].
Dekkers [8] recommends realigning the corporate reward system
to promote collection of complete and accurate data thus tying a
formal incentive structure to the metrics program, and
encouraging developer involvement.
Based on these findings from the literature, it is clear that there is
awareness about the fact that gaming occurs in software metrics.
Many solutions have been proposed to stop gaming and collect
accurate data. However, these solutions have limited success
because metrics data collection is a practice that is very
organization-specific and very people-specific. So
recommendations must be tailored to that organization‟s specific

context and the opinions and perceptions of people collecting and
reporting those metrics.

3. METHODOLOGY
As described in the Introduction, we were working with ABC
Corporation, a large, multi-national, U.S.-based networking
technologies company, to understand the complex dynamics at
play in their corporate-wide roll-out of metrics. We used a

130

qualitative research methodology, specifically unstructured
interviews, because we sought to have an in-depth understanding
of organizational, metrics-related and people-related factors. It is
well documented that such insights could be obtained through
qualitative research techniques such as interviews and
observations [11].
Our contact at ABC helped us in identifying and talking to people
that would give us an overall view of corporate metrics in an
unbiased manner. The sampling strategy was purposive, as we
chose each of the participants for a specific reason and their
inclusion was intentional. All of the 12 interviewees were chosen
based on their particular position in the company such as the
group they worked for or the tool they had created or the process
they had championed. However, as in any industrial case study,
we were constrained by the type of people we had access to. For
this phase of the study we did not have access to current
developers, but only to people who were actively involved with
metrics across multiple projects. The advantage of this sample is
that each of our participants had interacted with several hundred
developers and managers as well as with higher levels of
management. So while we did not have a pure developer
perspective, our participants brought a much more rich and
diverse set of perspectives to the study.
All the interviews were held on a one-to-one basis, either through
telephone or in-person. All the interviews were recorded and
transcribed, in addition to taking notes. Of the twelve participants
we spoke to, three were champions of three practices i.e. static
analysis, unit testing and code review. Two of the respondents
were people in charge of the dashboards for product and in-
process metrics respectively. Two participants were leads in the
Quality Improvement initiative (QII), which is the product quality
initiative at ABC introduced 4-5 years earlier than the process
initiative. Five of the respondents were on the corporate metrics
team that makes the decisions for rolling out programs on a
company-wide basis.
Our interviewing strategy was to ask simple questions about the
background and components of the metrics program, with the
expectation that the participants would give us more information
voluntarily, in the course of the conversation. We did not ask all
the questions to each participant and other questions were asked,
to keep the flow of the conversation going. Since we intended to
use a grounded theory approach our interview questions were
fairly open-ended and were used more as starting points for a
conversation. In cases where a participant was talking about
related issues, we did not stop them. Consequently we received a
rich, detailed account of each participant‟s perspective of the

current and past metrics programs at ABC Corporation.
 The interview prompts included but were not limited to:

1. Could you tell me about the history of metrics in this
organization?

2. What were the goals behind introducing the metrics
program?

3. In what way was the program introduced, example: by
piloting one unit, or an organization-wide adoption?

4. How many and which metrics does this metrics program
collect?

5. Is it mandatory for organizational units to participate in
the metrics activities?

6. Was there any kind of training given to organizational
units, prior to starting the metrics program?

7. Was this metrics program marketed? If yes, how?
8. How far has this metrics initiative met the goals it was

designed for?
9. Is there any other information that you think we should

know?
The collected data was analyzed using a grounded theory
approach. We started with open coding, where passages in the
interview data were identified as pertaining to specific themes or
topics, then related passages were sorted and grouped. The
process continued with axial coding, in which emerging patterns
were noted. Findings were documented through selective coding,
which resulted in this paper [12].

Admittedly in a case study of this nature, there are several threats
to validity of the results [13]. Foremost is the issue of
generalizability of findings. Keeping this limitation of our study
design in mind, whenever possible, we have compared and
contrasted the results of our study with other studies in the metrics
literature. In cases where the findings are not supported by the
literature, we have been very cautious in drawing conclusions
from the data.
Our findings about process-related metrics are limited to those
related to the three practices of code reviews, unit testing and
static analysis, even though the organization has several other
practices in place for ensuring software quality. We were focused
on these three practices partly because they were of interest to the
organization and partly because these practices are widely
deployed in the industry and thus our study results would have a
potentially larger impact.
Since our interviewees were primarily the people involved in the
corporate metrics team, they were sensitive to the introduction of
incomplete or inaccurate data. The interviews and qualitative
analysis were performed by one author, and the other author
thoroughly reviewed all the findings from the analysis. During
the interviews the focus was on the difficulties of getting a metrics
program accepted by developers. This may be a source of bias for
our study. To mitigate this bias, we shared all our findings and
conclusions with our contact at the organization and had them
verified for accuracy. Our contact provided useful feedback and
contributed additional explanations for our conclusions. The
opinions expressed here are based principally on the intuitions and
perceptions of people on the metrics team, and should be treated
as such.
The other concern - that of objectivity of the data - has been
addressed by our sampling strategy as we have taken the
precaution of talking to people from different groups within the
company, not just one particular team or unit.

4. ORGANIZATIONAL CONTEXT
From its inception, ABC has expanded greatly through
acquisitions of several small companies. ABC currently has over
65,000 employees worldwide. Typically each business group or
organizational unit corresponds to a start-up company that was
acquired by ABC at some point. Organizational units have their
own sub-cultures, their own tools and processes for collecting
metrics and their own indicators of quality.
There is a focus on using and developing in-house tools, rather
than adopting “academic” metrics frameworks such as the CMM/I

family [2], and we found that there were many people who were
passionate about metrics, including our interviewees.

131

Overall, ABC is a highly motivated and driven company that is
knowledgeable about the good aspects of metrics. Due to their
„silo-ed‟ structure and history of acquisitions, communication
across different units is strained and there is a competitive spirit
between different organizational units.

4.1 The quality improvement initiative
In order to understand the metrics culture at ABC, it is important
to understand and discuss the hugely successful Quality
Improvement Initiative (QII – name disguised) that was
introduced many years ago at ABC Corporation.
The QII was introduced to monitor product reliability and to avoid
frequent bug-blitzes. Some of the metrics collected for this
initiative were mean-time-to-repair (MTTR), customer found
defects (CFDs) and internally found defects (IFDs). Due to the
fact that customers, products and markets differ across each
organizational unit, each unit was allowed the flexibility of
developing their own metrics for quality (as long as they included
MTTR, CFDs and IFDs), and setting goals around those metrics.
The metrics team that implements QII works with customers and
designs the customer satisfaction survey, results of which are
factored in to employee bonuses; they also serve the role of a free
press – an unbiased voice that conveys the state of quality and
customer experience to rest of the company; and thirdly, they
work with organizational units to help them improve their quality
and resolve any other quality-related problems.

4.2 The process improvement initiative
Two years before the study reported here, the corporate metrics
team (a sister concern of the quality metrics team) decided to go a
step further than product quality, and focus their efforts on
measuring phase containment i.e. catching defects during the
phases of software development and testing, rather than later, in
the field. The underlying assumption was that all the defects that
are not contained in development, ultimately end up as customer-
found-defects (CFDs).
Phase containment is an umbrella term for a range of activities
and metrics at ABC. One of the phase containment related
activities is the escape detection process (EDP). It is an elaborate
subsystem that assesses defects that flow from one phase into the
next downstream phase. EDP involves the collection of numerous
metrics. EDP-related metrics, as well as other metrics associated
with phase containment, such as defect density and mean-time-to-
repair, are considered in-process metrics because they are
indicators of an ongoing process, rather than a finished product. In
our interviews we focused on metrics related to code review,
static analysis and unit testing. These phase containment practices
are used widely throughout ABC.
At the start of the initiative to measure and track phase
containment, each organizational unit had their specific way of
collecting and analyzing in-process metrics. Each organizational
unit performed a subset (or superset) of the phase containment
activities. There were some groups that were very active in
performing unit testing, some in static analysis and others in code
reviews. Looking at the success of these practices at the
organizational unit level, the corporate metrics team then decided
to institutionalize these three practices, and actively urged all the
organizational units to adopt them.
The phase containment and overall process improvement
initiatives were mainly an effort to standardize these practices and
metrics around them, across all the organizational units. As will

soon be evident, much of the pushback originated from this effort
to standardize practices and metrics – as it raised the possibility
that different organizational units would be compared with each
other based on their metrics.
Due to the large number of small organizations at ABC and their
tendency to have their own tools and practices, it was impossible
for the metrics team to design metrics around these three practices
that would account for work practices across all the organizational
units. Therefore, they decided to create a very simple metric to
begin to gauge adoption of the three practices. Each code commit
and each bug report had to include attachments indicating whether
or not these three practices had been performed on that piece of
code. A count of such attachments constituted a rough measure of
adoption.
The adoption measures for different practices can be seen through
dashboards, with aggregated views for different levels of the
organizational hierarchy.

4.3 Dashboards
Dashboards are at the intersection of these initiatives and the
metrics data. In this section, we discuss the quality dashboard and
the process dashboard, which represent data from the quality
improvement and process improvement initiatives respectively.
The quality dashboard provides data on metrics such as mean-
time-to-repair (MTTR) and customer found defects (CFDs) to
different levels of the organization. The process dashboard is built
on top of a database of code commits and defect reports (each
with their attachments, as described earlier). The dashboard
queries this database for attachment-related information and
presents data to the users by drill-down and roll-up operations,
based on the user‟s position in the organizational chart.
Dashboards are the interface of metrics program at ABC. The
dashboards at ABC are enormously successful. A program
manager is constantly monitoring the dashboards and is always
around to answer questions and quell doubts. The program
managers of these dashboards strive to make sure that there are no
errors in the reported data. The dashboards are thought to be very
intuitive and there is no training required for using any of the
dashboards.
From our understanding of the dashboards and the two metrics
initiatives discussed above, we believe that the corporate metrics
team at ABC is doing the best they can in implementing metrics
and standardizing them across different organizational units.

5. FINDINGS
In this section we start by presenting some of the general findings
from our interviews. We believe that behaviors such as those
we‟ve observed are evident in many metrics programs, and so we
highlight these findings so that other organizations can learn from
them. Based on our interview findings, we also present the various
social, psychological and situational impediments to corporate
wide adoption of effective metrics data collection and reporting
strategies, which in turn can influence the overall health of a
metrics program.

5.1 Problems with data collection
In our interviews, some of the problems surfaced surrounding the
complete adoption and acceptance of software metrics. Many of
our participants revealed interesting insights and stories about
how developers were resistant to collecting metrics and, in some
cases, how metrics data was manipulated.

132

Some of the ways in which metrics data was (intentionally or
unintentionally) misrepresented are discussed next.
Suppressing partial information: When developers (and
managers) wanted to comply with metrics processes, but did not
want to report bad information about their colleagues and friends,
they would report only the really important bugs and suppress
other information. An example is suppressing the reporting of
defects with lowest severity.
One of our participants, who was actively engaged in training
developers from several different organizational units to perform
effective code reviews, had this to say about reporting code
review related metrics such as bugs found:
“So one of the problems that we have… in China is that… do not

make your friends lose face. So they only write up the high
priority and medium priority defects. They don’t write up low

priority defects. Well… usually it’s the low priority defects that

clarify something going on in the comments… Maybe one
defect by itself isn’t a big deal but when you put them all together
it makes something really difficult to understand.”
This class of metrics reporting problems seems innocuous and is
probably the least harmful, but the prevalence of such behavior
highlights the fact that programmers are very sensitive about what
information is released about them into the organization –
especially defects found in their code are taken very personally.
These subtleties should be taken into account by managers and
peer developers when performing processes like code reviews.
Scripting: This is the act of writing scripts to enter values within
specific data ranges into metrics reports. The idea is to
demonstrate that metrics are being collected, while at the same
time avoiding the unpleasant task of reporting them manually.
The adoption metric used at ABC was a target of some scripting.
Recall that the adoption metric was a measure of whether a bug or
work item had attachments pertaining to code review, unit testing
and static analysis. The contents of the attachments could not be
verified completely in terms of accuracy of reported data. Usually,
only the presence or absence of an attachment was logged
regularly by the metrics team. Therefore, in some cases teams
would resort to scripting (i.e. writing a script to automatically
generate an empty attachment) in order to push their adoption
numbers up.
One of our participants was in charge of monitoring the
dashboards that reflected how often phase containment practices
were performed within each organizational unit, and in the
participant‟s words:
 “…you can just put your adoption numbers up if you are doing a

unit test, by putting a script that will generate the attachments.
And we call that gaming the metric.”
Scripting is also one of the obvious side-effects of begrudging
compliance. As our participant who is an expert on unit tests puts
it:
“And you can put a statement on that, you can say, “Yes. I

performed unit tests and there were no problems.” So, sometimes,
when we look at the bug data, we see attachments that were added
by scripting, you know, at night.”
Entering false data: Scripting also enters false data, but in some
cases metrics are intentionally falsified while being entered into
metrics reports in order to appear compliant and to make numbers

look good. This class of misrepresentation is a cause for worry in
any metrics implementation.
It is difficult to detect if false metrics data has been reported.
Sometimes a member of the metrics team might find a team‟s

numbers suspicious like one of our participants did:
“It’s just that their numbers are kind of suspicious, because they
are reaching the upper average of 80. Earlier we were average of
70, now we are average of 80, before that we were supposed to
reach 95 percent, so lot of people were aware of that, so lot of
people you know were trying to jack up their numbers…”
Falsifying metrics data is a very common problem with metrics
programs and if it happens on a small scale, it goes unnoticed.
However, it is important to realize that this class of problems with
metrics reporting is not only a political issue it is also an issue of
priority. The fact that people resort to gaming could be interpreted
to mean that metrics are not perceived as useful and meaningful,
rather they are viewed as an afterthought and taken lightly.
Illusion of compliance: In some cases, people just give the
illusion of participating. Like one participant said -
“Sometimes when we look at attachments, they will be blank,

there will be no data… that just makes me mad”
In this case, the team or organizational unit does not want to
misrepresent information – but because of the way that the
adoption metric works, they may still get credit for submitting an
empty attachment.
Another participant had something similar to say about metrics
data:
“So when they [dashboards] say 95% have adopted this metric,
they [dashboards] mean 70% because a chunk of them
[attachments] are [useless].”
The problem of illusion of compliance is really a reflection of
loopholes in the design of metrics collection and reporting
processes. It is relatively easy to circumvent this problem if the
right controls are added in the metrics processes, for example – a
mechanism to detect empty attachments in this case.
There are many suggestions in prior literature (as discussed in
Related Work) to circumvent these problems in data collection
and reporting. For example, a preference for automated data
collection has been emphasized, especially as it increases the
quality of metrics data. Automation might, in some cases, make
various forms of gaming more difficult. On the other hand,
removal of a human to check the data being submitted might
actually facilitate other forms of gaming, and as is evident from
these results, especially in organizations with such a broad range
of metrics and different metrics being applicable to different
projects, automation has a dangerous side as well. For example,
when the overhead of reporting metrics manually is too high,
people perform the required practices (like unit tests) but write
scripts to fill in the reports.

5.2 Reasons for pushback
In the previous section we discussed different classes of problems
in metrics data collection processes. In this section we focus on
some of the reasons that these problems arise. It is worthwhile to
note that even though these problems are specific to ABC, they
can be observed in different forms across organizations, as
documented in several prior studies of metrics programs. In this
section, we present views about management as well as
developers.

133

5.2.1 Maintaining image
At ABC, people were concerned about their image. Moreover in
some cases, the polarity of their feelings towards metrics was
based on whether metrics data enhanced their image.
One of our participants worked extensively on the product quality
dashboards and based on his experiences with publishing the data,
he told us that:
“People feel like you are measuring them, well if you are

measuring them, and they are doing good, it is OK.”
This sentiment was echoed by two other participants:
“Of course as soon as we provide the information, some people

say, “Oh, this is good!” because their numbers look good, some

will say - this is not right, because you know …”
“(People say) but before you put it on the dashboard, can you
show me how I’m going to look? I don’t want to be embarrassed.”
Therefore we glean that managers and developers do not mind
collecting and reporting metrics as long as it does not cause them
to look bad in front of their superiors and colleagues. The
converse is also true, i.e. in cases where metrics data reflects
poorly on a unit, they will oppose the publishing of that data, and
find fault with the metrics program, e.g. protesting that the metric
does not adequately represent their processes.
However, it is important to realize why managers and developers
are willing to fight tooth and nail to make sure that they maintain
a good image.
The first reason is that people genuinely believe that they are
doing good work. Through the interviews, we learned that
developers and managers alike were extremely passionate about
their projects and they took great pride in their work. Therefore it
was unacceptable for them to see metrics data inadequately
representing the amount of effort they had put into the process.
This quote from one participant who was the program manager for
a dashboard reveals how passionate people are about their work:
“ (the process) dashboard is pretty accurate, because people fight

with you if you are wrong for one bug…, they can easily see how

many bugs they have, if it is different from their list they are going
to fight with you, so we have to make it very clear and very
accurate. If you publish the wrong data, they are going to fight
with you, they are going to escalate… and you know your

dashboard is gone, nobody can use it.”
A related issue was that developers take pride in their code, and
they like to do things their way. Having someone else find bugs in
their code, for example, hurts their pride. One of our participants
who had close to thirty years of experience in working on metrics
pointed out that:
“If (a programmer’s) code has more bugs than somebody else’s

code, they don’t want anyone to know about it. So next time, they

may not record the number of bugs found, or they will not do code
review until they are pretty darn sure that their code is good.”
We also learnt that in some instances there was a disconnect
between actually performing a phase containment activity and
reporting metrics about that activity. Our participant who
specialized in code reviews reported that:
“One of the problems we are finding is that people actually do the

reviews, they collect the measures but they don’t report them.

Well the reason for that is the cultural issue. People don’t want to

find defects in their friends’ code.”
In such situations, one cannot help but sympathize with the
developers or managers. Software development is a very social
activity and if metrics were allowed to strain social relationships,
they would in fact have a negative impact on collaboration and
this could potentially impact the product quality.

5.2.2 Resistance to standardization
As discussed in Section 4, each organizational unit was a small
company by itself before it was acquired by ABC. All the
companies had some form of measurement and improvement
processes that they had tried and tested, and that had worked for
them. Therefore there was a great deal of resistance to changing
from the way things were done while the unit was an independent
entity.
One of the participants interfaced with product groups and had to
convince them to adopt the corporate metrics and processes. Some
of the resistance that he faced was:
“…because you (metrics team) want to change, why do we have to

change this process, if we change this process, we will have to
change all the big processes associated with it, you know its going
to be a big headache, and its not going to be effective”
 “…we are publishing data every week, sometimes every day,

listen we are not doing static analysis every day, we are doing
that once a week, some organizations twice a week, because we
want to get together and do it all at once, if something comes up
then we will fix all at once, so that’s our schedule.”
As can be seen, the organizational units in some cases had
legitimate reasons for not wanting to participate in the
standardization of metrics initiated by the corporate metrics team.
Another common theme was that developers considered their
projects to be unique, and did not believe that data about their
projects would lend any insight to the metrics implementation.
“... It is impossible to standardize anything here because everyone

thinks their project is special...”
It is also interesting to note that the resistance was not against
collecting and reporting metrics data, but against the
standardization process. When interpreted with our other findings,
one possible explanation (in addition to resistance to change)
could be that standardizing processes and metrics would
immediately lead the metrics team to compare between different
organizational units and this was not acceptable to those units.
Another barrier to standardization of these practices is that the
adoption metric gives rise to data that does not represent effort
equally, and results in an unfair depiction of work.

5.2.3 Begrudging compliance
By begrudging compliance we mean that developers and/or
managers have not bought into metrics, but they are forced by
their superiors or other influential people or circumstances to
collect certain data. So there is a dogged determination in
collecting these metrics but the focus is only on following the
process and not on producing useful metrics data.
As one of our participants put it, the attitude is:
“You asked me to do this, now I am going to show you what a bad

idea it was.”
Sometimes, people are determined to report the metrics they were
asked to, but do not show an active interest in how the data will be

134

used, how it will provide a feedback on their processes and
whether they should be reporting some other metrics in
conjunction with the current ones to provide a complete picture of
their work.
“If you tell them you are measuring them on these three things, all
of a sudden their world shrinks to those three things. And nothing
else matters! And even if they know that not focusing on these two
other things is going to hurt overall quality, they will say - hey my
manager told me to focus on these three things…”
While reluctant compliance may be better than no compliance at
all, it is just as tricky especially because the quality of metrics
data may be affected and not much can be learned from metrics
data of poor quality. Therefore, while begrudging or reluctant
compliance may be a good start for a metrics effort, care should
be taken while interpreting data obtained from these sources.

5.2.4 Metrics are not representative of effort
It is disheartening for developers and managers to see efforts go
unrecognized in the metrics data. Especially if a metric is not
designed to distinguish between amounts of effort put in by
different groups, there is a lot of resistance and people lose
interest in the metrics program.
“One bug counts as one item in the dashboard for 10,000 lines of
code. And then somebody makes a one line code change on a bug
fix and that counts equally…”

Another example is that the metrics that are typically used for
code review are not representative of the code quality and the
reviewer effectiveness. Two of our participants discussed this
issue:
“It is difficult to put a goal on finding defects in a code review -
More is better or more is worse? Well, more is good because the
person doing the review did a good job, but it is bad because the
coder did a bad job…”
“If Code Review A found more defects than Code Review B, it was

probably because they were looking at buggier code… and more

defects are still there in the code…” [Clarification – In this quote
the participant refers to the fact that more bugs does not
necessarily mean that the programmer had created those bugs, it
could also mean that he was working on a buggier piece of code
to begin with].

5.2.5 Product and process related metrics
At ABC Corporation, we found that product-related metrics were
a part of the routine work practices – measures of customer
experience were even tied to incentives. Product quality measures
such as CFDs are reported by customers, or are measured by a
post-hoc analysis of the product. Therefore the data is objectively
verifiable and difficult to misrepresent. A strong focus on product
metrics may explain why the Quality Improvement Initiative was
such a success.
The perceptions were different, however when it came to
implementing in-process metrics and the process improvement
initiative. For starters, in-process metrics are much easier to
misrepresent as discussed by one of our participants:
“….It is very hard for a sales person to game how many sales they

make. But it could be easy to game the in-process metrics they
use. It does not necessarily result in sales of the product but it
makes their numbers look good.”

When it came to in-process metrics, there was a lot of resistance
to routinization, and several attempts to achieve uniform adoption
of tools and metrics for code reviews, unit testing and static
analysis were unsuccessful. Most of the metrics related to these
practices could be objectively and automatically assessed.
However, since they reflected developers‟ daily work, developers

were not comfortable with sharing that information. Prior attempts
at automating such metrics collection had been met with
resistance, and as discussed previously the company had to rely
on self-reporting.
Some of the resistance around in-process metrics stemmed from a
suspicion about the role of the corporate metrics team (for process
metrics) and how the data would be used. There seemed to be a
general feeling that it was fine for the corporate metrics team to
monitor product quality, but when it came to individual process
improvement practices, the project or team manager should be
given the authority to deal with metrics data, as they are closer to
it and understand it better.
On the other hand, one respondent mentioned that it was unfair to
evaluate people and organizational units based on “end-results
metrics” (i.e. product metrics), such as customer experience. One
reason was that these metrics were not actionable. Developers did
not know what they could change, in order to impact the product
quality metrics, as they were calculated at the end of the product
development lifecycle.
Thus we conclude that although product-related metrics are easier
to measure they are not actionable; and while in-process metrics
are hard to measure they provide immediate feedback for process
improvement. For an effective metrics program, it is necessary to
have both.

6. RECOMMENDATIONS FOR PRACTICE
In this section, we synthesize our understanding of the metrics-
related difficulties we found in our study by describing two
strategies for discovering and addressing the attitudes and
perceptions that can lead to such problems. We first describe
contextual interviews as a mechanism for tailoring the metrics
program. Then we discuss our prior work in metrics acceptance.
Our suggestions are based on preemptively addressing problems
that can arise in a metrics implementation.

These strategies can be employed by an organization during the
planning and early implementation phases of a metrics initiative,
so that mitigating actions can be taken early on if there is evidence
that problems may arise. Contextual interviews and the survey to
gauge metrics acceptance (as will be discussed next) should
ideally be used together. Interviews should be conducted before
the start of the metrics program and the survey should be
conducted within the first three months. The reason is that the
survey assumes that developers have an idea of the impact that
metrics will have on their routine work activities. These two
techniques assume that there is no problem with the actual design
of the metrics program and that management has valid, well-
defined reasons for implementing metrics.

6.1 Contextual interviews to facilitate metrics
Contextual interviews are an excellent way of learning about the
organizational background, attitudes, opinions and overall
perceptions[11]. Talking to the right people can give a well-
rounded picture of metrics, and can also give insights into
problems specific to that organization, which were not foreseen by
metrics implementers.

135

As is documented in several case studies of metrics, poor quality
of metrics data can be a threat to the overall health of the metrics
program. Our data revealed that gathering different perspectives
in the organization gives a good indication of whether gaming
occurs, and also how it can be stopped. Factors such as those that
influence gaming are very specific to an organization‟s context

and design of metrics, and it would be fruitless to explore blanket
techniques to avoid gaming. Therefore we discuss ways in which
information can be used to tailor metrics implementations.
In our study, contextual interviews enabled us to get an in-depth
insight into the ways in which metrics data was being reported by
the different organizational units. As well, we learnt that the
presence of “sub-cultures” was a major reason for resistance

towards metrics. The organization units already had a “metrics

mindset” and were collecting their own metrics, but they did not

want to be part of the corporate program. One respondent even
pointed us in the direction of a solution – by recommending that
in-process metrics should be kept private to each project group,
and product related metrics should be reported to the corporate
metrics team.
Such organization-specific issues are not incorporated in any
textbook. They can only be learnt by studying the given context
thoroughly, from different perspectives of people within the
organization. However, it is important to note that since we were a
neutral third party and had no influence on any decision-making
people were very candid and open with us. We are concerned that
it would not be the case if someone from the same organization
were to conduct these interviews.
Therefore it is indeed an open, and very sensitive, issue who
should conduct these interviews. Our approach was to serve as a
neutral third party, and we feel there are some advantages to this
approach. We were able to get a “feel” for such issues, and

identify potential roadblocks, without preconceived and personal
perceptions based on past experience. On the other hand, an
“insider” might be better equipped to interpret the findings in light
of the organization culture, and to make recommendations that are
better tailored to the company. In either case, the management
should also start avenues of open communication with developers
and managers and design brainstorming sessions around specific
practices, such as code reviews, that would identify potential
usage problems. The feasibility of doing such an investigation is
of course a concern, but given the trade-offs, and based on the rich
data that we obtained through our interviews, we think it would be
worthwhile in most cases.

6.2 Metrics Acceptance Model
In the context of this study, our prior work on metrics acceptance
deserves a mention. We created and validated a list of predictive
factors that captured metrics context, opinions and attitudes
toward metrics, and give an indication of a person‟s intention to

whole-heartedly participate in the metrics program. Our model,
known as the Metrics Acceptance Model (MAM) [14], is
grounded in the literature on metrics programs and social
psychology, and on our own experience with metrics. The MAM
is currently undergoing empirical validation and evaluation, and
preliminary results are very promising. It is one of the ways of
diagnosing whether developers have bought into the idea of
collecting and reporting of metrics.
In practice, we recommend the use of the MAM and its associated
questionnaire, to identify potential problems (such as those we

found at ABC) before or during early implementation of a metrics
program. For more details on the MAM refer to [14].
The MAM is made up of several constructs and each construct
tackles a specific problem in metrics implementations. One of the
constructs in the MAM is about social influences. If one
developer feels that the metrics program is not effective or
worthwhile, this belief may spread through the group. Or if the
manager is not keen on metrics, developers may not be very
interested in participating in the metrics program either.
One of the main problems with software metrics programs is that
costs are immediate and rewards are long-term. Developers have
to have an understanding that metrics are immediately useful to
the organization even if their benefits to developers are not
immediately evident. Organizational usefulness is another
construct in the MAM and it checks whether developers have an
understanding of the organizational usefulness of metrics. It also
inquires about whether developers think that metrics about their
project would be useful to the organization.
In an organizational setting image and visibility are very
important to a person‟s career, and this was evident at ABC as

well. In fact, “an individual may perceive that using a system will

lead to improvements in his or her job performance indirectly due
to image enhancement” [15]. Also, people do not like to report
problems about themselves or their colleagues as this might affect
relationships with them. We found several instances of this
reluctance at ABC. The fear of adverse consequences is due to the
thought that metrics data can be used to harm a person or someone
in his/her social network [6]. These and similar factors are
considered to have a positive (or negative) impact on the notion of
personal usefulness of metrics, and are included in the MAM for
that reason.
Factors such as relevant documentation, availability of a help
facility, reliable and experienced personnel, adequate time,
financial stability, and sufficient documentation are important
resources in a metrics program and lack of availability of these
can also impact a developers‟ perception of metrics. For example,

if sufficient schedule time is not factored into metrics collection
processes, a developer is bound to get harried and have negative
perceptions. These factors make up the feeling of control that a
developer has over the external resources of a metrics program.
Self-efficacy is the belief in one‟s capability to perform a certain
task, and it accounts for internal behavioral control. For example,
if a developer is confident that he can analyze metrics data well,
that is bound to increase his/her intention to participate in the
metrics program.
Compatibility of the metrics tool with existing systems and
compatibility of the changes induced by the metrics program with
the existing work practices also influence intentions to perform
metrics activities. This appears to underlie the resistance of
different organizational units at ABC to changing their work
processes to accommodate corporate-wide metrics.
Ease of use of the metrics tool and dashboards as well as
generally easy to use metrics processes are also vital to a metrics
effort. A metrics tool should have an intuitive interface that is
clear to interact with and easy to learn. Most prior studies have
insisted that the use of automated data collection [4, 6] is very
important as it makes metrics easy to use and less cumbersome.
Attitude “is the overall evaluation of desirability of performing
the behavior, by the individual” [15]. Attitude has two sub-

136

components: affective (e.g., happy-sad) and cognitive (e.g.,
beneficial-harmful). It has been discussed in previous metrics
literature that attitude towards metrics could have an influence on
the success of the metrics initiative [4].
The list of factors mentioned above is by no means exhaustive,
but gives an indication of the types of information that can be
revealed through the MAM. Additionally, each construct in the
MAM is operationalized through a questionnaire item, and the
entire model is essentially a survey of developers‟ perceptions.

Results of this survey can point out areas where developers are
dissatisfied with metrics.
It is easily evident that the factors that surfaced at ABC are only a
small subset of the factors that are outlined in the MAM. And the
MAM is a basically a combination of all the factors that have been
encountered in the literature on metrics programs. This just goes
to show that problems in metrics programs are highly specific to
the organizational context and differ widely across organizations.

7. IMPLICATIONS FOR RESEARCH
We now frame some research questions that can guide the study
design and variables studied in future metrics implementation
research.

We propose and find support for our assertion that product-related
metrics are assimilated more easily compared to process-related
metrics. Therefore, the next obvious question is whether it would
be better to start a metrics initiative with product-related metrics,
as they are less intrusive and more objective as compared to
process-related metrics. Such a strategy, if proven to be effective
would indeed set the stage for a measurement mindset in the
organization and provide valuable indicators to potential
obstacles. ABC provides a good example of such a strategy.
Although there is some resistance to process metrics, one could
easily envision that the resistance would be much higher if there
had not been a basic level of acceptance of product metrics first.
Our interview data revealed that “who is asking for the metrics

data” has a great impact on its quality and accuracy. If process-
related data is to be shared with higher level management, there is
a fear that there will be misinterpretation and trouble. Project
managers are closer to the developers and are more likely to
receive accurate data (especially about the process). However a
related finding is that managers are frequently skeptical about
metrics themselves.
“We had a survey few years back, and developers were asked

basically - does your manager care about quality as much as you
do? The answer was no. So when managers tell me that people do
not care about the quality, I will just say, well, it is not what the
survey shows. The survey shows you do not care.”
Hall and Fenton also report a similar finding [4], and therefore it
is indeed an open question as to how managers should be first
bought into the ideal of collecting metrics. Also, it is interesting to
study whether managers should be given autonomy over in-
process metrics data as we discussed in the beginning of this
section.
An interesting question that emerged from the discussion of
national culture is - Does the culture of a country have an impact
on metrics implementations? Hofstede [16] has characterized
organizations in different countries and they report that in most
instances, the culture of the country supersedes the organizational
culture. This finding in fact corroborates our conclusion that

several key aspects of each metrics program are different, as they
are determined by organizational culture, which is in turn
influenced by national culture. As an increasing number of
organizations outsource their quality assurance activities, and
even software development activities to other countries it would
be very interesting to study the cross-cultural differences in
metrics program implementations.
Herbsleb and Grinter [5] discuss the importance of boundary-
spanning roles in large metrics implementations. We also found
that, at ABC, the reason that static analysis, code review and unit
testing practices got so much visibility and were adopted by the
corporate metrics team was that they were championed by people
who spanned different organizational units, and sparked interest in
different parts of the organization as they moved around. The
corporate metrics team at ABC is, in effect, an attempt to span the
boundaries of the organization by implementing common metrics.
However, it is this attempt at commonality that is encountering
considerable resistance. The issue of boundary spanning in
metrics program implementation is a complicated issue and
deserves further study.

8. CONCLUSION
During the course of our investigation we learnt that if people
have not bought into the metrics program, they can resort to
unhelpful practices such as gaming and scripting to produce
metrics data. If metrics are forced on them, they might go into a
begrudging compliance mode i.e. they are not convinced that
metrics are useful, and they will prove what a bad idea it really is.
We also learnt that each process improvement practice in a
metrics program has several nuances surrounding it that may be
responsible for the accuracy and quality of metrics data relating to
that practice. One of our findings is that product-related metrics
are easier to implement and manage than in-process metrics. This
may be because process-related metrics can be complex to
implement, but easy to game.

From a practical standpoint we propose that contextual interviews
by are an effective mechanism for uncovering and understanding
the nuances in any metrics effort. Through this technique, an
organization can get valuable insights into potential social and
cultural problems with metrics. Further, we recommend using the
MAM, in concert with contextual interviews, to identify potential
problem areas.

From the discussion in this paper, it is easily evident that although
overarching issues might be similar, each metrics implementation
is significantly different than the other, and the factors vary by
organizational context.
We conclude that any metrics implementation is inextricably
enmeshed with the organizational context. And the context is
determined not just by quantifiable variables such as size, and
level of process maturity, but by cultural aspects too, such as the
national culture, presence of sub-cultures within an organization,
perception that management is intrusive and competition between
different organizational units. In order to succeed, metrics
programs have to be tailored, which requires that the factors that
make each organization unique must be identified. We provide
actionable recommendations for doing so.

9. ACKNOWLEDGMENTS
Our thanks to all our participants who took the time to share their
experiences with us. Thanks also to ABC Corporation and our
primary contact there.

137

10. REFERENCES
[1] V. R. Basili and H. D. Rombach, The tame project :

Towards improvement-oriented software environments. College
Park, Md.: University of Maryland, 1988.

[2] M. C. Paulk, Capability maturity model for software.
Pittsburgh, Pa.: Carnegie Mellon University, Software
Engineering Institute, 1991.

[3] A. Gopal, M. S. Krishnan, T. Mukhopadhyay, and D. R.
Goldenson, "Measurement programs in software development:
Determinants of success," IEEE Trans. Softw. Eng., vol. 28, pp.
863-875, 2002.

[4] T. Hall and N. Fenton, "Implementing effective
software metrics programs," IEEE Softw., vol. 14, pp. 55-65,
1997.

[5] J. D. Herbsleb and R. E. Grinter, "Conceptual simplicity
meets organizational complexity: Case study of a corporate
metrics program," in Proceedings of the 20th international
conference on Software engineering. Kyoto, Japan: IEEE
Computer Society, 1998.

[6] S. L. Pfleeger, "Lessons learned in building a corporate
metrics program," IEEE Softw., vol. 10, pp. 67-74, 1993.

[7] G. M. Weinberg, Quality software management, vol. 4.
New York: Dorset House Publishing, 1997.

[8] C. A. Dekkers, "The secrets of highly successful
measurement programs," Cutter IT Journal, vol. 12, pp. 29-35,
1999.

[9] J. Iversen and L. Mathiassen, "Lessons from

implementing a software metrics program," in Proceedings of the
33rd Hawaii International Conference on System Sciences-
Volume 7 - Volume 7: IEEE Computer Society, 2000.

[10] D. J. Paulish and A. D. Carleton, "Case studies of
software-process-improvement measurement," Computer, vol. 27,
pp. 50-57, 1994.

[11] C. B. Seaman, "Qualitative methods in empirical studies
of software engineering," IEEE Trans. Softw. Eng., vol. 25, pp.
557-572, 1999.

[12] A. L. Strauss and J. M. Corbin, Basics of qualitative
research : Techniques and procedures for developing grounded
theory. Thousand Oaks: Sage Publications, 1998.

[13] R. K. Yin, Case study research : Design and methods.
Thousand Oaks: Sage Publications, 1994.

[14] M. Umarji and H. Emurian, "Acceptance issues in
metrics program implementation," in Proceedings of the 11th
IEEE International Software Metrics Symposium (METRICS'05) -
Volume 00: IEEE Computer Society, 2005.

[15] V. Venkatesh and F. D. Davis, "A theoretical extension
of the technology acceptance model: Four longitudinal field
studies," Manage. Sci., vol. 46, pp. 186-204, 2000.

[16] G. H. Hofstede, Culture's consequences: Comparing
values, behaviors, institutions, and organizations across nations.
Thousand Oaks, Calif.: Sage Publications, 2001.

138

