
Adapted from (Zenebe & Miao, 2001)

CRC Cards

• A tool and method for systems analysis and
design

• Part of the OO development paradigm
• Highly interactive and human-intensive
• Results in the definition of objects and

classes

Adapted from (Zenebe & Miao, 2001)

HISTORY
• Introduced at OOPSLA in 1989 by Kent Beck and

Ward Cunningham as an approach for teaching
object-oriented design.

• In 1995,CRC cards are used extensively in
teaching and exploring early design ideas.

• CRC cards have become increasingly popular in
recent years. As formal methods proliferate, CRC
cards have become, for some projects,the simple
low-risk alternative for doing object-oriented
development.

Adapted from (Zenebe & Miao, 2001)

What’s a CRC Card?
CRC stands for Class,Responsibility,and Collaboration.
• Class

– A set of objects that share common structure and common behavior
Super-class : a class from which another class inherits
Subclass: a class that inherits from one or more classes

• Responsibility
– Some behavior for which an object is held accountable.

• Collaboration
– process whereby several objects cooperate to provide some higher-level

behavior.

Adapted from (Zenebe & Miao, 2001)

What’s a CRC CARD? (Cont.)

• An index card that is annotated in a group
setting to represent a class of objects, its
behavior, and its interactions.

• An informal approach to OO modeling
• Created through scenarios, based on the

system requirements, that model the
behavior of the system.

Adapted from (Zenebe & Miao, 2001)

Sample CRC Card (Front & Back)

Adapted from (Zenebe & Miao, 2001)

REQUIREMENTS
• Cards should be physical cards, not virtual cards.
• CASE tools for support of CRC cards are

useful,but cannot replace the interaction that
physical cards facilitate.

• 3x5 or 4x6 inch are the perfect size. But you can
really use anything you want. ….Napkins???
Envelopes???

• Refreshments (Optional)

Adapted from (Zenebe & Miao, 2001)

THE CRC CARD SESSION

• The session includes a physical simulation of
the system and execution of scenarios.

• Principles of successful session
– All ideas are potential good ideas
– Flexibility
– Group Dynamic

Adapted from (Zenebe & Miao, 2001)

BEFORE THE SESSION

• Forming the Group
– The ideal size for the CRC card team:

• 5 or 6 people

– The team should be composed of
• One or two domain experts
• two analysts
• an experienced OO designer
• one group’s leader/facilitator

Adapted from (Zenebe & Miao, 2001)

The CRC Card Team

Source:The CRC Card Book by Bellin et.al (1997)

Adapted from (Zenebe & Miao, 2001)

DURING THE SESSION

• All the group members are responsible for
holding, moving and annotating one or more cards
as messages fly around the system.

• Group members create, supplement, stack, and
wave cards during the walk-through of scenarios.

• A session scribe writes the scenarios.

Adapted from (Zenebe & Miao, 2001)

PROCESS
1.Brainstorming

– One useful tool is to find all of the nouns and verbs in
the problem statement.

2. Class Identification
– The list of classes will grow and then shrink as the

group filters out the good ones.

3. Scenario execution (Role play)
– The heart of the CRC card session

Adapted from (Zenebe & Miao, 2001)

STRENGTHS
• The cards and the exercise are non-threatening &

informal
• Provide a good environment for working and

learning.
• Inexpensive, portable, flexible, and readily

available
• Allow the participants to experience first hand

how the system will work
• Useful tool for teaching people the object-oriented

paradigm

Adapted from (Zenebe & Miao, 2001)

LIMITATIONS

• Provide only limited help in the aspects of design.
• Do not have enough notational power to

document all the necessary components of a
system.

• Do not specify implementation specifics.
• Can not provide view of the states through which

objects transition during their life cycle.

Adapted from (Zenebe & Miao, 2001)

CRC GOOD PRACTICE

• Start with the simplest scenarios.
• Take the time to select meaningful class names.
• Take the time to write a description of the class.
• If in doubt, act it out!
• Lay out the cards on the table to get an intuitive

feel for system structure.
• Be prepared to be flexible.

Adapted from (Zenebe & Miao, 2001)

Case Example:
 A small technical library system for an R&D

organization

• Requirement Statement
• Participants (Who? Why?)
• Creating Classes
• The CRC Card Sessions

– scenario execution

Adapted from (Zenebe & Miao, 2001)

Case example: Finding Classes
• Suggested Classes

– Library, Librarian, User, Borrower, Article,
Material, Item, Due Date, Fine, Lendable,
Book, Video, and Journal

• Classes after filtering
– Librarian, Lendable, Book, Video, Journal,

Date, Borrower and User

• Assigning Cards
– A CRC Card per Class, put name & description

of the class

Adapted from (Zenebe & Miao, 2001)

Scenario execution
• Scenario executions/Role Plays (For what?)

– Filter and test identified classes
– Identify additional classes
– Identify responsibilities and collaborators

• can be derived from the requirements/use cases
• responsibilities that are "obvious" from the name of

the class (be cautious, avoid extraneous
responsibilities)

– Filter and test responsibilities and collaborators
– Attributes (only the primary ones)

Adapted from (Zenebe & Miao, 2001)

 Finding Responsibilities
• Things that the class has knowledge about, or

things that the class can do with the
knowledge it has

• Tips/Indicators
– Verb phrases in the problem or use case
– Ask what the class knows? What/how the class

does ?
– Ask what information must be stored about the

class to make it unique?

Adapted from (Zenebe & Miao, 2001)

Finding Collaborators

• A class asks another class when it
– needs information that it does not have or
– needs to modify information that it does not have

• Client - Server relationship
• Tips/Indicators

– Ask what the class does not know and needs to
know? And who can provide that

Adapted from (Zenebe & Miao, 2001)

Case example: Scenario Execution

• Identify Scenarios (By domain experts)
• Main scenarios: check-out, return and

search
• Start with the simple ones
• The first one always takes the longest
• Domain experts have high level of

contribution during the early scenarios

Adapted from (Zenebe & Miao, 2001)

Case example: Checkout Scenario
• Who should have the overall responsibilities for

the task/check out? Librarian.
• What does the task entail?
• Shouldn't there be collaborations in the opposite

direction?
– Collaborations in CRC cards are one-way relationships

from the client to the server (OO)

• Who should do the checking out of the Book?
Librarian or Book itself? (Controversial)

Adapted from (Zenebe & Miao, 2001)

Case example: Checkout Scenario
• Who should tell Borrower to update its knowledge

about outstanding Book? Librarian or Book?
• Do we need a collaboration between Book and

Borrower for the “know set of books”
responsibility?
– Collaborations are not usually needed for

responsibilities that simply hold information, only for
situations where an object actually sends a message to
a Collaborator.

– Borrower does not need Book's help to put a Book in a
set.

Adapted from (Zenebe & Miao, 2001)

CRC Cards after the first scenario run

Adapted from (Zenebe & Miao, 2001)

Case example: Search Scenario

• "What happens when Ned comes to Library in
search of a book entitled The Mythical
Mammoth?"

• Discovery of new class: Collection class (Why?)
– Book can’t look for itself
– Collection looks over a set of Books to find the

correct one
• When to end scenario execution?

– When you have a stable model (does not cause new
C or R to be added)

Adapted from (Zenebe & Miao, 2001)

Grouping Cards
• CRC cards on the table provides a visual

representation of the emerging model
• Classes with hierarchical (is-a) relationship
• Class who collaborate heavily placed closer
• Class included by other class (has-a

relationship); e.g. Date in Lendable
• Card clustering based on heavy usage or

collaborations can provide visual clues to
subsystems

Adapted from (Zenebe & Miao, 2001)

Lower-Level Design
• CRC cards can be used to:

– continually refine the classes
– add implementation details
– add classes not visible to user, but to designers

and programmers
– add classes needed for implementation, e.g.

• Database
• User Interface
• Error Handling

Adapted from (Zenebe & Miao, 2001)

Lower-Level Design

• Considering Design Constraints
– Choice of supporting software components
– Target environment and language
– Performance requirements: response-time/

speed, expected availability, number of users
– Errors/exceptional handling
– Others: Security, Memory, etc.

Adapted from (Zenebe & Miao, 2001)

• “Design Classes”
– represent mechanisms that support

implementation of the problem
– contain the data structures and operations used to

implement the user-visible classes e.g. Array, List
– interface classes for UI and DBM subsystems
– classes to handle error conditions

Lower-Level Design

Adapted from (Zenebe & Miao, 2001)

• Important questions:
• Who creates this object?
• What happens when it is created and adopted?
• What is the lifetime of the object vs. the life time of

the information (persistence) held by an object?
• Attributes

• Discovery of attributes that are necessary to support
the task during examination of each responsibility

• Identification of persistent attributes
• Leads to a database design (database model)

Lower-Level Design

Adapted from (Zenebe & Miao, 2001)

• Brainstorming any classes that come to
mind based on design constraints such as

– User Interface, Database access, error handling
– User Interact class & DB interface Classes

• Scenario identification and execution
• Object creation scenarios
• Check-out Scenario
• Return Scenario
• Search Scenario

• Output: Design classes

Case example: Lower-level Design

Adapted from (Zenebe & Miao, 2001)

• Principles:
• make independent of specific hardware and

software products
• use specific class names instead of generic names

such as GUI and DBMS
• Work on both normal and exceptional scenarios

Case example: Lower-level Design

Adapted from (Zenebe & Miao, 2001)

• New classes identified:
– User interface: to get input from and output to

user using GUI software classes
– Database: To obtain and store Borrower

objects and objects of the Lendable classes
using DBMS software classes

Case example: Lower-level Design

Adapted from (Zenebe & Miao, 2001)

Deliverables

• Complete list of CRC Cards (class
descriptions)

• List of scenarios recorded as suggested and
executed

• Collaboration Diagram
• Application Problem Model

Adapted from (Zenebe & Miao, 2001)

Advantages of CRC Cards
• Common project vocabulary
• Spreading domain knowledge
• Spreading OO design expertise
• Implicit design reviews
• Live prototyping
• Identifying holes in the requirements
• Limitation: Informal notation

– “Designing is not the act of drawing a diagram”
(Booch)

