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Abstract

This paper contributes to the literature on the effectiveness of schools.  The analysis is unique in
five respects.  First, the data employed include the minutes of instruction per five day week in
each of four subjects for all the public schools in Illinois.  Few education production function
papers have any information on the amount of instruction students receive in a given subject. 
Second, the theory section of the paper argues that class size should interact with student,
teacher, and school characteristics as well as with the instructional times.  The empirical analysis
tests this hypothesis.  Third, the interactions show that the small marginal effects of class size or
of teacher qualifications may result because the harm of larger class sizes is undone by better
trained personnel, and the benefits of better trained teachers is undone by large class sizes. 
Fourth, the data span three years enabling the use of panel data techniques.  Individual school
specific effects are estimated and found to be strongly significant.  Moreover, in the presence of
these effects, class size always has the theoretically predicted sign and is highly significant.  Fifth,
the time series aspect of the data allows for tests of the comparability of test scores over time.  If
the test scores are to be compared over time as a guide to school performance and improvement,
then those scores should not differ significantly over time.  The results reveal that year to year
differences can be substantial and statistically significant. 
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Education reform is a hot topic among politicians, academics and even around the dinner

table these days.  The issues are complex and important.  One focus of the debate is on the level

of resources appropriated by state and local politicians to the public school system.  This debate

has come to be identified with the question “Does money matter?”  

There seems to be no consensus on this issue.  On the one hand, researchers (Hanushek,

1996, for example) point out that school expenditures per pupil have risen many times over in the

last thirty or so years, but educational achievement, as measured by scores on standardized tests,

has not.  Others point out that much of this expenditure growth has been directed at special

education students, not the average student.  When this is accounted for, spending per pupil has

risen, though not nearly so rapidly.

Still others (Hedges and Greenwald, 1996) chime in by suggesting that over this same

period of time family structures have deteriorated, more children are in single-parent households,

more are living in poverty, more have less connection to books or well-educated people, than ever

before.  Consequently, the task of educating children has grown more difficult over time.  More

resources are needed just to stay in the same place given the deterioration in other circumstances.

Much of the research that underlies these conclusions is rooted in a production function

paradigm, familiar to economists but not nearly so well-known among non-economists.  Given the

work that economists have done in this area, however, just how familiar economists are with the

production model may also be questioned.  This paper goes back to the basics of production

theory to motivate a new empirical approach to the estimation of an education production

function.  Specifically, the analysis here recognizes that production functions are flow, not stock,

relationships.  Consequently, any attempt to model the process of education must account not
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only for static characteristics of the schools and teachers, the children and their families, but also

for the continual application of resources to production.

The results of rethinking the production relationship indicate that the functional forms and

variables included in the typical education production function equation are lacking.  The results

indicate that the amount of time spent in instruction is important in determining average test

scores.  Moreover, the effect of instruction time varies with class size; a given instructional time

has smaller impact on test scores when classes are big than when classes are small.  In addition,

increased class size has negative consequences for average test scores once the instructional times

variables are included.  

Pooling the data reveals that year and school specific effects are very important.  That year

effects are important is troublesome for any program which professes to use aggregate test scores

as measures of performance because significance of the year effects indicates that whether a

school appears to have improved or not is in part determined by fluctuations in the difficulty of

the test from year to year.  This also raises a question about the use of the “value added”

approach to education production functions because what appears to be value added may have

more to do with the tests and their grading than with what students have learned.   Moreover,

using the pooled data with year and school specific effects reveals a very strong effect of average

class size with the expected sign. 

The next section of the paper returns to the production function as typically defined and

described by microeconomists.  This analysis suggests some respecifications of the empirical

model which are implemented on data from the state of Illinois.  The data are described in section

XX and the results in YY.  A conclusion follows.
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I) The Production Function

Careful discussions of production functions describe the function as relating the amount of

output produced per unit of time to the amount of resources utilitized per unit of time in

producing the output.  Having machinery in the factory sit idle produces nothing whereas having

that machinery operating results in generation of output.  Idle machinery supplies no services per

unit of time, operating machinery does.  Similarly, workers produce nothing when not actually

doing their jobs.

At the same time, the services per unit of time from one type or vintage of equipment or

machinery might be very different from those of another type or vintage.  Workers with different

skills or experience might also provide different levels of labor services in a given amount of time. 

It is also likely that the ability to get services from some machinery or to use some materials

effectively, depends upon the skills and experience of the worker.  For example, the quality of the

framing for a building that a new worker, one without prior construction experience, produces

with warped and knotty wood may be quite different from the quality produced by a master

carpenter with the same wood.  And the time it takes the former to produce the same structure

may be substantially more than what it takes the latter.

These examples suggest that when discussing production, three concerns regarding

resource usage are likely to be quite important.  The first of these is the time spent in the

production process.  The second concern is with the quality of the resources used in the process. 

Finally, the effects of the quality of resources and time spent by the resources are interdependent.

Few studies of education production functions address these issues.  Exceptions to this



     Fredrick and Walberg (1980) discuss review a broad array of studies of the relationship of time to learning.  For1

example, attendance rates, number of absences and number of times tardy are reflective of time inputs in the education
process.  More relevant for the issue raised here, their survey also examines the effects of hours of classes, minutes of
study, and minutes or proportion of time on task. 
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include Fredrick and Walberg (1980) , Walberg, Fraser, and Welch (1986) and Betts (1997).  One1

possible reason for this omission in most studies is that data on the time spent in instruction is

rarely available in precise form.   For example, in Walberg, Fraser, and Welch (1986) instructional

time is measured as the number of semesters of science a student took in grades 9 through 12. 

Betts (1997) uses the teacher’s report of the number of hours of math class as his measure of

instructional time. This paper has the advantage of having instructional times by subject matter,

english, mathematics, science and social studies, measured as the average minutes per five-day

week in the third grade classrooms for each of the Illinois public schools.   

Several studies have, however, suggested that a nonlinear relationship exists between

inputs into the education process and the output of that process.  Summers and Wolfe (1977), for

example, argue that the impact of teacher quality and class size differ by the race of the student. 

Ferguson (1992) suggests that the effect of class size is nonlinear, that there are discrete jumps in

the effect of class size not constant marginal impacts.  Ferguson and Ladd (1996) take account of

these types of nonlinearities as well.  

Betts (1996) examines the effects of longer homework assignments on standarized test

scores in mathematics.  He notes that homework “appears to be a much more significant predictor

of gains in math test scores than the more standard measures of school inputs such as class size

and teachers’ credentials.”  Moreover, the analysis indicates that the marginal productivity of

homework in producing test scores is constant, at least within the range of homework assigned



     Hanushek, Rivkin, and Taylor (1996) explicitly ignore interactions because they find that the effects of race or2

student scores on earlier tests do not influence the effects of school characteristics.  Krueger (1997) uses experimentally
generated data on school children from Tennesee to assess the importance of class size.  He makes no control for
interactions of teacher characteristics and class size.  This may be especially important in his analysis because while
small classes are shown to be beneficial, regular size classes with full-time teachers’ aides show no differential effects
over regular size classes without aides.  Krueger hypothesizes that this may be due to measurement error because even
the regular classrooms routinely have part-time aides.  Interaction of teacher characteristics with classroom size might
enable one to assess this possibility.  
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observed in the data.  The clear inference from Betts’ analysis is, therefore, taken to its logical

conclusion, that an inexperienced poorly trained “teacher” facing a class of several hundred need

only assign several hours of homework a night to produce students with high test scores.   

Interestingly, these studies do not address the possible interaction of class size with

teacher characteristics.   Yet intuition suggests that better trained or more experienced teachers2

may be better able to educate in large classes than are poorly trained or inexperienced teachers. 

Ehrenberg and Brewer (1994) find different effects of teacher characteristics by race and,

indirectly, by class size and other school and student variables besides.  They note that in the High

School and Beyond data, a student that was surveyed as a sophomore may have dropped out

before being surveyed as a senior.  Not accounting for these possibly non-random withdrawals

from the sample could bias the results of the education production function estimates. 

Consequently, they correct for sample selection bias using the inverse Mills’ ratio constructed

from a probit equation predicting continuation in the sample from sophomore to senior surveys. 

Of course, this correction introduces the teacher, school and student variables into the education

production function in a highly non-linear fashion.  Ehrenberg and Brewer (1994) find the inverse

Mills’ ratio to be statistically significant, suggesting sample selection biases exist.  At the same

time, they note that the magnitudes and statistical significance of the other variables are not much

affected.  An alternative interpretation is that the significance of the inverse Mills’ ratio indicates
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substantial nonlinearity and interaction among the explanatory variables.  To assess the marginal

impact of any variable is, therefore, more involved than simply performing a t-test on its

coefficient.

Ludwig and Bassi (1997) test for specification errors using the Ramsey RESET test in

their analysis of NELS data on the relationship between school spending and student acheivement. 

They find evidence that the typical “gain equation” is misspecified, though they cannot conclude

whether the problem is omitted variables, incorrect functional form or endogeneity.  The RESET

test, recall, uses the fitted values of the dependent variable in higher order terms as regressors.  If

these terms are statistically significant, that indicates that the error from the original equation

contained the influence of the explanatory variables in highly nonlinear fashion.  From the

perspective of this paper, such a finding supports the idea that the typical equation does not

account sufficiently for the interactions of the inputs in the production process.

Ludwig and Bassi use a feasible generalized least squares estimator in which the

regression errors from a first stage are used to construct the first-order correlation in the error

terms.  This correlation is then used as a weight in the differences of differences in both the

dependent and independent variables.   Since the errors are constructed from the dependent

variable and the independent variables in a highly nonlinear fashion, one might interpret the

analysis as favoring a highly nonlinear education production function, one in which current and

past values of the input variables interact in complicated ways.  Ludwig and Bassi find no

evidence, in this specification, of misspecification or omitted variables.

The discussion above suggests that an education production function ought to include

instructional time, characteristics of the teachers, students, school and community and interaction
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terms between time and the other variables.  The interaction terms expressly address the issue of

producing education with “inputs” of variable quality.  More time spent in instruction may be an

approach to counteract the effects of large class size, say.  Better trained or more experienced

teachers may be able to impart the knowledge to children in less time than less trained or

inexperienced teachers.  

Additionally, instructional time in one subject may have beneficial effects in other subjects. 

Or it might be detrimental.  In other words, this analysis may be able to provide guidance to the

type of internal restructuring that many see as the best hope for improving the state of public

education in the United States.

Some work has been done on the effects of different production techniques on learning. 

For example, Julian Betts has working papers on the role of homework in improving school

quality, the effects of ability tracking, and on grading standards.   In the paper on the role of3

homework, Betts finds that additional homework and additional time in class each have significant

effects on test scores.  More interesting still, he finds that one cannot reject equality of the effects. 

That is, more time spent on math homework improves scores on standardized tests by the same

amount as more time in class.

II) The Model

This section describes the research strategy and the empirical specification of the

educational production function.  The estimation strategy is to begin with models most like those

typically found in the literature, then to progress to more complicated models which more
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(1)

accurately reflect the true nature of production.

The first model estimated is given by the following equation:

Where S  is the average score on the Illinois Goal Assessment Program test of subject matter k injtk

school j in year t, X  is district specific variables for school j in year t, X  is school specificjt            jt
d           s

variables for school j in year t, ( and µ are vectors of parameters to be estimated, " is the

intercept, and , is an iid disturbance term.  I will describe the data in detail below.  To help fix

ideas, note that I will estimate equation (1) for math, reading and writing, for each of the three

years 1994-95, 1995-96, and 1996-97.

The second model estimated pools the data across years.  This makes two possibilities. 

The first possibility is to restrict all slope coefficients and the intercept to equality across years. 

This approach implies that the relationship between the X variables and test scores is invariant

over time and that the test scores are, on average, the same across years.  Second, one can allow

the intercept to vary by year but force the slope coefficients to be constant across years.  

This second model addresses an interesting question which has been the subject of recent

research.  Ferguson and Ladd (1996) and Ladd, Roselius, and Walsh (1997) have examined the

methods states use to evaluate progress within schools.  These models are built on the assumption

that the test scores are comparable over time; that is, a given score in one year means the same as

that same score in a subsequent or previous year.  If exams are successfully written so that scores

are comparable over time, then the intercept should be constant over time.

The panel nature of the data makes one further extension of the basic model possible. 
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(2)

Since each school may appear in the data from 1 to 3 times, school specific intercepts are

estimable.  The final specification of the typical model then will include both year and school

specific intercepts.   The school specific intercepts may be thought of as controls for specific

principals, to the extent the principal does not change over time, or an infinite variety of other

possible characteristics of the school’s environment.

The traditional model is then extended to include measures of the time spent on instruction

in each of four different subjects and interactions of the instructional time variables with the

average class size.  The argument for including these variables is simply that student learning of

any subject should be related to the time spent on teaching it.  In the extreme, one would not

expect students who have never been exposed to a foreign language to fare well on a test on the

grammar of that language.  Similarly, schools which devote many hours each week to instruction

in mathematics should find the students performing better on math exams than schools whose

students get little math instruction. 

This model may be written as:

where MPD  is a vector of instructional time variables and X  = (X , X ).  The theory suggestsjt         jt  jt  jt
d  s

that the element of the parameter vector $ most closely related to the subject matter of test k have

a positive sign.  Theory does not have unambiguous implications for the signs of the other

elements of $.  For example, what role increased instructional time in social studies will have on

math test scores is not clear.  On the one hand, more social studies instruction means less time for

math, all other things equal, and lower math test scores.  On the other hand, more time in social
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(3)

(4)

studies instruction might help students maintain focus on the subjects by peaking their interest or

breaking up the monotony.

The vector of parameters * captures the interaction effects.  For example, one element in

the vector measures the indirect effect of added science instructional time at different average

class sizes.  Consequently, to determine the effects of average class size requires knowing both

the coefficient on class size but also each of the coefficients on the instructional time-class size

interaction variables and the instructional times.  The partial effect of class size on test scores

would be:

where the ACS sub and superscripts indicate that only those elements of the vectors which

involved the average class size variable are included.    The effect of instructional time on test4

scores is:

where MPD is any of the instructional time variables, without loss of generality.

The individual elements of the vector *  are the cross partial derivatives of theACS

instructional time variables on the marginal effect on test scores of increased average class size or,
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by Young’s theorem, the effects of increased class size on the marginal effect (productivity),

measured as gains in test scores, of additional instructional time * .  The individual *  are, ofMPD     MPD

course, simply the elements of  * .  Intuition suggests that the  *  should be negative; asACS        MPD

average class size rises, the marginal benefit (productivity) of instructional time declines.  Said

another way, given two classes of different size but the same instructional time, one would expect

an increase in instructional time to have a greater beneficial effect in the smaller class.  Simply put,

each student in the smaller class gets a larger share of the added time than each student in the

larger class, and so derives greater educational benefit from that time than the students in the large

class.

Indeed, intuition suggests that class size ought to interact with most of the other variables. 

More qualified teachers, as measured by education or experience, might be expected to do better

with large classes than less well trained or inexperienced teachers.  Large classes might not have

the same impact in schools with low attendance as in schools with high attendance; or the effect

of class size may differ between low and high income schools, between schools with

predominantly white student bodies and those with predominantly nonwhite students, and so on. 

In the most extensive model, this analysis includes interactions between average class size and

every other variable except the school and the year specific intercepts.

III) The Data

The data used in this analysis comes from the Illinois Goal Assessment Program in the

years 1994-95, 1995-96, and 1996-97.  In 1985 Illinois passed education reform laws requiring



14

the improvement of education through setting of “clear learning outcomes, assessing student

attainment of the learning outcomes, and developing plans for school improvement”.  The

assessment portion of this reform, the IGAP program, started in 1988.  The IGAP program was

designed with four purposes in mind.  These are:

 

1.  Help the state evaluate the extent to which public schools in Illinois are meeting
the state goals for learning; 

2.  Describe how schools and districts perform in comparison to the state and
nation;

3.  Chart progress of schools, districts, and the state over time; and

4.  Generate information which can be used for school accountability, policy
making, and school improvement.

The program tests 3rd, 6th, 8th, and 10th grades each year in reading, mathematics, and writing,

and 4th, 7th and 11th grades in science and social studies.  The results of the test are reported to

the school and the district in summary form and individual information is provided to the school

or district and the parents of each child.  Classroom summaries are not prepared.

The Illinois State Board of Education evaluates each school by the share of its IGAP

scores that fall into three performance levels.  The levels are “does not meet”, “meets”, or

“exceeds” the state goals.  However,  “meets state goals” is further divided into high, middle and

low levels.  It is important to note that the evaluations apply to a “school building” and depend,

therefore, on all the IGAP scores in the building.  So, for example, the evaluation of a school

which houses first through seventh grades would be based on the reading, writing, and math

scores of the third, and sixth graders and the science and social studies scores of the fourth and



     The typical software used for estimating the Rasch model imposes a mean of 0 and a standard deviation of 1 on the5
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seventh graders.  The IGAP scores are described in more detail below.

The schools in the sample for this analysis come from over 800 districts in Illinois, totaling

more than 2500 schools in which third grade is taught at least one year between 1994-1995 and

1996-1997.  The full sample comprises 6807 observations over the three year period.  About

1300 of these observations come from schools in the City of Chicago School District.  No other

single district contributes more than 125 observations. 

Variable definitions are provided in Table 1.  Descriptive statistics are in Table 2 for the

full sample, all schools in all three years combined, and for the schools in each of the three years.

The general rule of thumb is that any variable that ends with an “s” is a school level variable, any

variable ending in “d” is a district level variable.

The test score variables are “scale scores” as opposed to “raw scores”.  The reading and

mathematics scores range from 0 to 500 with the average score for 1993 set to 250.  The writing

scores range from 6 to 32.   Scale scores are developed from a Rasch latent variable model and

set to be comparable to the results from previous years.  The Rasch model estimates from answers

to each question for each test-taker one parameter for each question reflecting how easy that

question is and an ability parameter for each student.  (Rasch, 1966) In the first year of testing,

Illinois transformed the student ability scores giving them a mean of 250 and a standard deviation

of 100.   In subsequent years, similar conversions are made.  However, to assure comparability5

across years, several questions from earlier exams are asked on the current exam.  In the Rasch

model, the “easiness” parameters for these repeated questions are constrained to be those



     However, if average class size enters the equation quadratically, the linear and quadratic terms have opposite sign,6

each is generally statistically significant at the 10% level or better, and the quadratic term typically has the higher
absolute t.  Moreover, evaluated at the mean of the average class size, the marginal effect of class size is negative, as one
would expect.
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obtained on the earlier data.     

IV) Results

This section of the paper reports the results of the estimations of the models described

above.  Table 3 shows the results of estimating equation 1 on the 1995 data for each of the three

tests, reading, math, and writing.  The results are typical in that average class size is not

statistically significant in any of the equations, though it does have the expected sign in both the

reading and the math estimations.  Results for 1996 and 1997 are very similar to these.  Of the

nine estimates of the effect of class size on test scores, just five have the correct sign and only two

of those are statistically significant at conventional levels.6

The estimates in Table 3 also indicate the commonly found importance of income,

attendance and mobility, the enrollment in the school and the racial composition of the student

body.  These variables all have the intuitive signs.  For example, the higher the proportion of the

student body that is in a family which receives income support from the government, the lower are

achievement test scores.  The greater the proportion of students who attend school everyday, the

higher are test scores and the higher is the proportion of the student body that moves in or out of

the school during a school year the lower are test scores.  High parental involvement also is

positively and statistically significantly related to test scores.  

Low proficiency in English amongst the student body would seem intuitively to suggest
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lower test scores.  Yet that variable is found to be positive and statistically significant.   However,

only bilingual students who have participated in a “state-approved Transitional Bilingual

Education (TBE) program or Transitional Program of Instruction (TPI)” for at least three years

are required to take the IGAP examinations.  Students in such programs for less than three years

sit for the exams only if local school personnel judge their English proficiency sufficient for them

to understand the tests.  Consequently, low English proficiency students are not included in the

sample.  

None of this explains the strong positive association between low English proficiency and

IGAP scores.  One possibility is that this variable is a strong proxy for motivation and effort.  The

efforts of students from Asia to succeed academically in the United States despite language

barriers are well publicized.

Teacher characteristics such as experience, education and race are inconsistent in sign and

significance across equations.  In Table 3, the percent of teachers with bachelors degrees and the

percent with more than a masters degree each have positive but insignificant coefficients in the

reading and math equations, but negative and insignificant coefficients in the writing equation. 

But for the 1996 and 1997 data these variables frequently have negative and significant

coefficients.  Teacher experience carries negative coefficients about half the time but these are not

statistically significant.  The percent of teachers that are white has negative coefficients

throughout and is almost always significantly different from zero.  Unlike the previously discussed

variables, however, these are measured at the district level rather than at the school level.  As they

are possibly quite poor measures of the characteristics of the teachers of third grade in any given



     Interestingly, this analysis stands on its head Hanushek’s critique that those studies which find significance school7

resources tend to use more aggregated data.

18

school, the coefficient estimates are highly suspect.   7

For each subject matter and for each year, tests were performed of both the null

hypothesis that all instructional time variables have zero coefficients and the null that all

instructional times and instructional times interacted with average class size have zero

coefficients.  Tables of the coefficient estimates are available upon request.  The key finding here

is that these variables clearly belong in the regression equation.  Only for the writing test is it ever

impossible to reject the null at standard probability levels.  Even for the writing test, the null must

be rejected for either formulation, instructional time or instructional time and interaction, for

1997, and for the exclusion of instructional times for 1996.  Discussion of the coefficient

estimates is put off until all structural form issues are addressed.

Table 4 presents estimates when the years are pooled.  Pooling was tested in two ways for

each test.  First, the hypothesis that both the slopes and the intercepts varied by year was tested

against the hypothesis that all were the same for every year.  The hypothesis of identical slope and

intercept coefficients was rejected.  However, restricting the slope coefficients to be the same

across years but allowing year-specific intercepts gave a different result.  In this case, one could

not reject the restrictions.  In other words, the effects of the inputs are the same across years, but

the mean of the test scores is not after controlling for systematic effects of inputs.  Note the

strong significance of at least one year specific dummy variable in every equation.  Moreover,

though the results are not reported in the table, pooling cannot be rejected for models including



     The tables of coefficient estimates are available upon request.8
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instructional times or instructional times and average class size interacted with those times.8

Pooling the three years does not improve the outlook with respect to the average class

size and teacher characteristics variables, however.  These variables continue frequently to be of

the wrong sign and their statistical significance is not stable.  The characteristics of the student

body are consistent in sign and significance between the individual year regressions and the pooled

regressions.

Table 5 provides the estimates from the pooled data when school specific intercepts are

introduced.  The year specific intercepts remain large and statistically significant.  Among the

remaining variables there are impressive differences resulting from inclusion of the school specific

intercepts.  

The sign of the average class size now accords with intuition and the statistical

significance of this variable is undeniable ( the t-statistic nearest to indicating insignificance is -

3.46).  The size and significance of the student characteristics are dramatically affected by

inclusion of the school specific intercepts, though the signs of the variables are unaffected.  The

most dramatic impact is on the low English proficiency variable which is no longer statistically

significant at any conventional level.  

On the other hand, the teacher characteristic variables remain a puzzle. The teacher

education variables become strongly significant but of the wrong sign in both the reading and

math equations.    Experience is statistically significant in only the math equation, at the 10%

level, but carries the wrong sign.  And the percent of district teachers that are white becomes

positive in every equation, though significant in only the math equation and that only at the 10%



     In Illinois, school districts with third grades can be either Unit or Elementary districts.  Tests for pooling of the9

district types indicate that pooling is appropriate.  Chicago schools comprise roughly one-third of the schools from Unit
districts.  It is not possible to test for pooling with Chicago schools and all others because there is no variation in the
Chicago schools’ teacher variables which are measured district wide.

     Table 6 is based upon the pooled sample over the three years as is obvious from the inclusion of the year specific10

dummy variables.
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level.

The null hypothesis that all the school specific intercepts are equal is rejected easily for

every equation.  The adjusted R squared rises from .69 to .86 in the reading equation, from .57 to

.85 in the math equation and from .42 to .76 in the writing equation.  In other words, the model

fits substantially better, explaining at a minimum 17%, and up to 34%, more of the variation in

test scores after the school specific intercepts are included than before they were introduced.  9

Table 6 returns to the standard style of the education production function, not including

the instructional times or the interactions between times and class size, but introduces the square

of the average class size.   Ferguson (1991) and Ferguson and Ladd (1996) contend that class10

size enters non-linearly into the production function.  Their approach is to use dummy variables

for different ranges of class size.  Here non-linearity is captured by both average class size and

average class size squared in the production function.  Note that in each of the three equations

both variables are significant at least at the 10% level.  Moreover, five of the six coefficients are

significant at the 5% level or even better.

Interestingly, in each case, the marginal effect of average class size at very small sizes is

positive.  However, each marginal effect turns negative.  This result suggests that economies of

scale in class size exist for small class sizes but that eventually all such economies are exhausted. 

The class size at which the marginal effect of class size turns negative is between 18.8, for
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reading, and 23.5, for writing.  The turning point is at 19.1 students in the math equation. 

Average class size is about 23.1.  Consequently, for most classrooms, the effect of increasing the

number of students is to reduce the average test score.

Consider Table 8, however.  In this table, the results are for the same model as in Table 6,

except that the school specific fixed effects are introduced.  Note that the class size variables no

longer matter in the writing equation.  But more interestingly, the sign of the class size and class

size squared coefficients flip.  Now as class size rises from 1 student on, the average test scores in

both reading and mathematics decline, and continue to do so through class sizes of 28 to 30. 

Note that these turning points occur at from 5 to 7 more students than in the average class in the

sample.  

At the mean of the average class size, the marginal effect of an additional student is -.36 in

reading, -.54 in math and -.02 in writing.  One standard deviation above and below the mean each

of these marginal effects remains negative.  Relative to the mean of the test scores, these effects

are very small.  For example, raising the average class size from 23 to 24 results in a reduction in

the average test score from 245.1 to 244.74.  These effects hardly seem worth worrying about. 

Even raising the class size by a full standard deviation, from 23 to almost 28 students per class has

no appreciable effect, less than one point, on the average score.

Other results in Table 6 look very much like those of Table 4.  The school, district and

student characteristics variables and the year specific intercepts all have essentially the same size

and the same level of significance between the two models.  The adjusted R squared is unaltered. 

The only effect of the nonlinearity in average class size is to make class size and its square

statistically significant.  But over the relevant range, average class size has very little practical 
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impact on the IGAP scores.

Introduction of the instructional times and their interactions with the average class size

cannot be rejected.  Table 7 reports the estimates of the production function when these variables

are included.  Note that in every equation at least three of these variables is individually significant

at the 5% level.  They seem also to indicate interesting things about the nature of education.  For

example, more time spent in mathematics instruction leads to improved reading scores.  However,

more instruction in language arts has no impact on math scores.  Social studies instruction has

negative consequences for math scores, but positive implications for reading and writing scores. 

Science instruction reverses the pattern of social studies, reducing reading and writing scores and

raising those on the math test.

Table 9 repeats the analysis of Table 7 with the addition of the school fixed effects. 

(Alternatively, it extends the model of Table 8 to include the instructional time and interaction

variables.)  The first point to note is that after introduction of the school fixed effects the number

of the time variables or time and class size interactions variables that are individually significant

drops dramatically.  For example, in Table 7 of the 24 coefficients across the three equations 13

are individually significant at the 5% level and one at the 10% level; in Table 9 only five are

significant at either the 5 or the 10% levels.  Indeed, for this model, the hypothesis of joint

insignificance of these variables cannot be rejected at standard levels in the reading equation and is

rejected for the math equation only at the 10% level.  The hypothesis is rejected at the 5% level in

the writing equation.

Just as was the case in the standard model when the school fixed effects were introduced,

other parameter estimates were dramatically affected in size or significance or both.  For example,
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in Table 7, the low English proficiency variable is highly significant in every equation.  Yet in

Table 9 it is never even close to significance.  Low income status of the school drops from

extremely highly significant, with absolute t-statistics of 20 or more, to significant at the 5% level

in only the reading equation.  The coefficients fall in size by several times; in the reading equation

from -.764 to -.146, for example.  Teacher characteristics variables are still of the wrong signs and

hugely significant. 

Unlike the class size variables, the effects of instructional times seem more substantial. 

For example, suppose that time spent on math instruction were raised by ten minutes a week. 

That would raise the average math score almost 1.5 points.  It would also raise reading scores by

half a point, which is more than enough to compensate for raising the average class size by one

student.

Suppose now that we examine the possible interactions of average class size with the

teacher characteristics.  Tables 10 and 11 present the results when these variables are introduced

to the model without and with the instruction times and class size-instruction time interactions,

respectively.  As is clear, adding the interactions to the standard model with the fixed effects

reveals that those interactions belong.  However, in the reading and math equations, inclusion of

these variables indicates that the interactions with instructional times and the instructional time

variables do not belong.  Only for the writing equation can one reject the null hypothesis of joint

insignificance of the set of interactions between average class size and instructional time variables

and the levels of the time variables.

Finally, Table 12 reports the effects of adding interactions between average class size and

the characteristics of the school and its student body.  F-tests indicate that inclusion of these
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additional interactions is warranted in the case of the writing test but not warranted in the reading

or math test equations.

The discussion so far has been stilted toward “statistical significance” of variables.  From a

policy perspective, one would wish to know if the issues raised in this paper have any practical

relevance.  For example, much of the literature indicates that more and better trained teachers are

essentially irrelevant, at least until the internal workings of the schools are straightened out.  The

analysis of this paper indicates that average class size does matter, and does so in rather

complicated ways.  In the remainder of this section, the effects of raising class sizes are assessed. 

Unlike the typical completely linear noninteracted models prevalent in the literature in which the

marginal effect of increasing class size is simply the regression coefficient, the marginal effects

from this analysis must be computed from the parameter estimates and the sample data.

The computations reveal something quite interesting.  If one looks at the derivative of the

test score equation with respect to class size, one obtains an equation like (3).  Calculating this

derivative, one obtains a negative number very near zero in each and every equation.  Indeed, the

size of this derivative is rather remarkably stable across models from Tables 7 through Table 12. 

However, if one examines the data for the later tables, 10 through 12, which the data supports

against the earlier simpler models, one finds an important nuance.  The effects of raising average

class size if all the variables with which class size is interacted were set to zero is substantial and

negative.  It is only because of the countervailing effects of well trained teachers that some

increases in average class size do not have disastrous consequences.   

Table 13 shows the marginal effects of raising average class size, calculated at the sample

means.  The effect if all the interaction variables are set equal to zero is in the first column.  Note
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that the fall in average scores is 25% for both reading and writing and 17% for math.  Once all the

countervailing measures of teacher quality, instructional times and student and school

characteristics are accounted for, the percentage declines from raising the average class size are

less than 1% for both reading and math and about 2% for writing.

Conclusion

This paper has criticized the existing education production function literature for not

paying enough attention to the complete set of insights that production theory affords. 

Specifically, the theory suggests that there should be a high degree of interaction between the

inputs into the production process.  Tests of this hypothesis indicate that in fact such interactions

are statistically significant.  Moreover, computation of marginal impacts of average class size and

of other inputs once interactions are included imply that schools can and do effectively use greater

quantities of resources presumed to have beneficial effects to counteract greater quantities of

those inputs thought to have harmful effects.

Additionally, the analysis has used panel data to allow for school specific fixed effects. 

The inclusion of these effects is found to be warranted and to have large impacts on the estimated

effects of other variables.  Introducing these effects into the standard model of an education

production function was sufficient to bring average class size into statistical significance, for

example.

Finally, the panel data enabled a test of the stability of test scores from year to year.  In

this regard, the analysis clearly indicates that it may be unwise to examine test score reports for

simple changes to draw conclusions about school performance.  Year specific dummy variables
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are routinely significant.  Consequently, one cannot assume that a school has performed better

based on the knowledge that its scores rose from one year to the next.  The effect could be either

better performance by the school in educating the children or simply that the test was easier. 

Policy makers would be wise therefore not to allot resources based on year to year differences in

these test scores.  
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Table 1: Variable Definitions

PCTWHTSC The percent of the students enrolled in the school that are white

ENROLLSC Number of students enrolled in the school

LEPSCHL The percent of the students eligible for bilingual education

LINCOMES The percent of the students in the school from families receiving public
assistance, living in institutions for neglected or abused children, being
supported in foster homes with public funds, or eligible for free or reduced
price lunches.

PARNVLVS The percent of the children in the school whose parents made at least one
contact with the student’s teachers during the school year

ATNDRTS The percent of the students who attended school every day.

MOBRATES The percent of the students who enroll in or leave a school during the school
year.

ACS3S Total enrollment for third grade divided by the number of third grade classes
on the first school day of May

WHTTCHRD The percent of the district’s teachers who are white

BACHD The percent of the district’s teachers with a Bachelor’s degree

MAPLUSD The percent of the district’s teachers with a Master’s degree or more

TCHEXPD Average years of teaching experience for teachers in the district

MPDENG3S Average minutes of English instruction during a 5-day school week in the
third grade classes in the school (includes all language arts)

MPDMTH3S Average minutes of math instruction during a 5-day school week in the third
grade classes in the school

MPDSC3S Average minutes of science instruction during a 5-day school week in the
third grade classes in the school

MPDSS3S Average minutes of social studies instruction during a 5-day school week in
the third grade classes in the school

ACMPDE Interaction between ACS3S and MPDENG3S

ACMPDM Interaction between ACS3S and MPDMTH3S

ACMPDSS Interaction between ACS3S and MPDSS3S
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ACMPDSC Interaction between ACS3S and MPDSC3S

YR95 Dummy variable taking on 1 if the observation is from 1995, zero otherwise

YR96 Dummy variable taking on 1 if the observation is from 1996, zero otherwise

READING The average score on the reading portion of the IGAP exam among third
graders in the school; possible scores range from 0 to 500

MATH The average score on the math portion of the IGAP exam among third
graders in the school; possible scores range from 0 to 500

WRITING The average score on the writing portion of the IGAP exam among third
graders in the school; possible scores range from 6 to 32
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Table 2: Variable Descriptive Statistics

Full Sample 1995 1996 1997

Mean Err. Mean Err. Mean Err. Mean Err.
Std. Std. Std. Std.

PCTWHTSC 66.24 36.77 67.04 36.51 66.14 36.85 65.55 36.93

ENROLLSC 443.75 237.28 437.82 230.25 444.83 237.57 448.62 243.83

LEPSCHL 5.59 12.11 5.33 11.62 5.60 12.10 5.82 12.60

LINCOMES 38.59 31.26 37.61 30.77 38.73 31.37 39.43 31.61

PARNVLVS 96.43 9.61 95.93 11.04 96.64 8.89 96.71 8.71

ATNDRTS 95.05 1.74 95.04 1.81 94.94 1.84 95.18 1.56

MOBRATES 20.36 13.92 20.89 14.44 20.23 13.47 19.95 13.83

ACS3S 23.06 4.66 23.25 4.76 22.71 4.54 23.21 4.65

WHTTCHRD 85.04 22.53 85.08 22.63 85.02 22.55 85.02 22.42

BACHD 60.05 15.06 60.89 14.64 60.37 14.95 58.88 15.50

MAPLUSD 39.77 15.04 38.96 14.63 39.44 14.93 40.93 15.47

TCHEXPD 14.27 2.03 13.98 1.97 14.23 2.01 14.59 2.07

MPDENG3S 146.95 24.55 147.11 24.02 147.01 23.96 146.72 25.63

MPDMTH3S 52.43 9.14 51.93 8.81 52.21 8.85 53.14 9.68

MPDSS3S 29.36 7.96 29.21 8.01 29.30 7.79 29.58 8.07

MPDSC3S 29.19 8.34 29.11 8.32 28.99 8.20 29.47 8.50

ACMPDE 3395.50 905.15 3425.80 908.27 3346.20 882.10 3414.50 922.97

ACMPDM 1206.90 314.83 1205.50 312.64 1186.10 313.76 1229.10 316.73

ACMPDSS 673.20 221.94 675.91 229.37 661.97 217.88 681.73 217.99

ACMPDSC 668.42 226.12 672.56 229.80 654.51 223.16 678.20 224.75

YR95 0.33 0.47

YR96 0.33 0.47

Reading 245.1 55.3 244.2 55.2 247.4 55.7 243.8 54.8

Math 281.3 60.3 272.5 61.3 285.3 60.2 286 58.5

Writing 18.1 2.11 18.3 2.05 17.7 2.17 18.4 2.03

Observations 2271 2270 2266
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Table 3: Standard Education Production Functions

Reading 95 Math 95 Writing 95

Coeff. t-statistic Coeff. t-statistic Coeff. t-statistic

Constant -910.560 -2.779 -952.500 -2.568 -4.739 -0.359

PCTWHTSC 0.459 9.137 0.391 6.250 0.005 2.153

ENROLLSC -0.008 -2.207 -0.011 -2.368 0.000 0.038

LEPSCHL 0.160 2.218 0.230 2.640 0.010 2.982

LINCOMES -0.699 -13.350 -0.786 -12.141 -0.026 -10.628

PARNVLVS 0.214 2.974 0.048 0.537 0.010 3.179

ATNDRTS 7.493 10.190 8.104 8.999 0.240 7.771

MOBRATES -0.222 -2.828 -0.235 -2.775 -0.004 -1.426

ACS3S -0.081 -0.518 -0.260 -1.286 0.000 0.007

WHTTCHRD -0.330 -4.229 -0.321 -3.166 -0.007 -2.110

BACHD 4.407 1.355 4.766 1.283 -0.001 -0.009

MAPLUSD 4.935 1.516 5.379 1.449 0.020 0.153

TCHEXPD -0.408 -1.055 -0.312 -0.621 -0.006 -0.306

Adj. R sqrd. 0.68 0.58 0.38
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Table 4: Standard Education Production Functions Pooled Sample

Reading Math Writing

Coeff. t-stat. Coeff. t-stat. Coeff. t-stat.

Constant -430.650 -2.537 -134.580 -0.607 1.253 0.162

PCTWHTSC 0.447 16.114 0.412 12.049 0.007 5.109

ENROLLSC -0.008 -3.928 -0.009 -3.678 0.000 0.130

LEPSCHL 0.131 3.235 0.200 3.998 0.008 4.238

LINCOMES -0.760 -25.128 -0.776 -20.657 -0.028 -19.068

PARNVLVS 0.154 3.278 0.143 2.516 0.006 2.619

ATNDRTS 7.029 17.569 7.627 15.158 0.232 12.251

MOBRATES -0.245 -5.812 -0.238 -4.526 -0.003 -1.520

ACS3S -0.141 -1.522 -0.242 -1.990 0.000 0.054

WHTTCHRD -0.299 -6.511 -0.318 -5.365 -0.009 -3.955

BACHD 0.101 0.060 -2.992 -1.356 -0.048 -0.630

MAPLUSD 0.584 0.347 -2.405 -1.090 -0.025 -0.328

TCHEXPD -0.150 -0.677 -0.033 -0.117 -0.017 -1.476

YR95 0.510 0.555 -12.940 -10.931 -0.121 -2.551

YR96 5.122 5.564 1.136 0.960 -0.690 -14.374

Adj. R sqrd. 0.69 0.57 0.42
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Table 5: Standard Education Production Function with School Specific
Intercepts

Reading Math Writing

Coef. t-stat. Coef. t-stat. Coef. t-stat.

PCTWHTSC 0.476 3.037 0.536 3.025 0.011 1.397

ENROLLSC -0.010 -1.176 -0.018 -1.851 0.000 0.758

LEPSCHL 0.106 0.625 0.058 0.303 0.013 1.492

LINCOMES -0.146 -2.141 -0.060 -0.776 -0.005 -1.408

PARNVLVS 0.067 1.448 0.054 1.024 0.000 0.093

ATNDRTS 1.738 3.223 2.143 3.515 0.040 1.448

MOBRATES -0.107 -2.119 -0.072 -1.264 0.003 0.972

ACS3S -0.349 -3.665 -0.527 -4.890 -0.017 -3.432

WHTTCHRD 0.603 1.188 0.958 1.670 0.022 0.859

BACHD -9.725 -2.172 -21.403 -4.229 0.125 0.548

MAPLUSD -9.559 -2.131 -21.108 -4.164 0.131 0.573

TCHEXPD -0.262 -0.368 -1.482 -1.841 0.001 0.021

YR95 0.519 0.618 -13.957 -14.722 -0.148 -3.455

YR96 3.726 5.357 -1.090 -1.386 -0.743 -20.994

Adj. R sqrd. 0.86 0.85 0.76
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Table 6: Standard Education Production Function with Nonlinear Class Size

Reading Math Writing

Coeff. t-stat. Coeff. t-stat. Coeff. t-stat.

PCTWHTSC 0.449 17.084 0.416 12.340 0.007 5.257

ENROLLSC -0.008 -4.202 -0.010 -3.924 -0.000 -0.278

LEPSCHL 0.136 3.534 0.207 4.201 0.009 4.269

LINCOMES -0.762 -27.915 -0.779 -22.280 -0.028 -20.081

PARNVLVS 0.154 3.613 0.142 2.616 0.006 2.802

ATNDRTS 7.049 19.251 7.660 16.334 0.234 12.293

MOBRATES -0.244 -6.375 -0.238 -4.836 -0.003 -1.452

ACS3S 0.827 1.759 1.338 2.221 0.094 3.854

ACSSQ -0.022 -2.095 -0.035 -2.670 -0.002 -3.911

WHTTCHRD -0.309 -7.375 -0.335 -6.244 -0.010 -4.400

BACHD 0.020 0.012 -3.124 -1.539 -0.056 -0.677

MAPLUSD 0.495 0.312 -2.551 -1.256 -0.034 -0.408

TCHEXPD -0.170 -0.802 -0.066 -0.243 -0.019 -1.697

YR95 0.502 0.539 -12.953 -10.869 -0.122 -2.525

YR96 5.070 5.485 1.051 0.888 -0.695 -14.475

C -433.183 -2.703 -138.725 -0.676 1.007 0.121

Adj. R sqrd. 0.69 0.57 0.42
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Table 7: Standard Education Production Function with Instruction Times and
Class Size Interactions

Reading Math Writing

Coeff. t-stat. Coeff. t-stat. Coeff. t-stat.

PCTWHTSC 0.447 17.024 0.410 12.216 0.007 5.332

ENROLLSC -0.008 -4.221 -0.010 -3.874 -0.000 -0.515

LEPSCHL 0.135 3.514 0.209 4.267 0.008 4.191

LINCOMES -0.764 -27.954 -0.788 -22.546 -0.028 -19.802

PARNVLVS 0.142 3.335 0.130 2.396 0.006 2.664

ATNDRTS 6.986 19.105 7.600 16.261 0.234 12.301

MOBRATES -0.255 -6.661 -0.256 -5.231 -0.004 -1.763

ACS3S 1.695 1.709 1.217 0.960 0.025 0.479

ACSSQ -0.020 -1.871 -0.028 -2.026 -0.002 -3.281

WHTTCHRD -0.335 -7.885 -0.391 -7.210 -0.010 -4.543

BACHD 0.541 0.337 -2.667 -1.299 -0.032 -0.378

MAPLUSD 1.004 0.625 -2.113 -1.029 -0.010 -0.122

TCHEXPD -0.204 -0.956 -0.082 -0.300 -0.023 -2.047

YR95 0.582 0.625 -12.665 -10.651 -0.133 -2.748

YR96 5.191 5.621 1.321 1.119 -0.703 -14.633

MPDENG3S 0.107 1.375 0.090 0.904 -0.001 -0.169

MPDMTH3S 0.595 2.842 0.763 2.852 -0.005 -0.445

MPDSS3S -1.037 -3.392 -1.242 -3.178 -0.056 -3.501

MPDSC3S 0.818 2.785 0.638 1.700 0.033 2.174

ACMPDE -0.001 -0.413 -0.000 -0.020 0.000 0.982

ACMPDM -0.020 -2.231 -0.018 -1.537 0.000 0.299

ACMPDSS 0.045 3.324 0.047 2.714 0.002 3.370

ACMPDSC -0.035 -2.754 -0.025 -1.502 -0.002 -2.333

C -513.038 -3.143 -200.642 -0.962 -0.071 -0.008

Adj. R sqrd. 0.69 0.58 0.43
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Table 8: Education Production Function with Nonlinear Class Size and School
Fixed Effects

Reading Math Writing

Coeff. t-stat. Coeff. t-stat. Coeff. t-stat.

PCTWHTSC 0.481 3.072 0.542 3.060 0.011 1.396

ENROLLSC -0.009 -1.111 -0.017 -1.786 0.000 0.757

LEPSCHL 0.106 0.628 0.059 0.306 0.013 1.492

LINCOMES -0.145 -2.131 -0.059 -0.764 -0.005 -1.408

PARNVLVS 0.069 1.484 0.055 1.061 0.000 0.092

ATNDRTS 1.798 3.334 2.211 3.626 0.040 1.444

MOBRATES -0.109 -2.158 -0.074 -1.303 0.003 0.973

ACS3S -1.824 -3.272 -2.206 -3.501 -0.015 -0.525

ACSSQ 0.032 2.685 0.036 2.704 -0.000 -0.063

WHTTCHRD 0.622 1.227 0.980 1.709 0.022 0.858

BACHD -10.270 -2.293 -22.023 -4.350 0.126 0.550

MAPLUSD -10.114 -2.254 -21.741 -4.287 0.131 0.575

TCHEXPD -0.256 -0.360 -1.475 -1.834 0.001 0.021

YR95 0.496 0.591 -13.983 -14.760 -0.147 -3.454

YR96 3.745 5.388 -1.068 -1.359 -0.743 -20.991

Adj. R sqrd. 0.86 0.85 0.76



38

Table 9: Education Production Function with Instructional Times and
Interactions with Class Size and School Fixed Effects

Reading Math Writing

Coeff. t-stat. Coeff. t-stat. Coeff. t-stat.

PCTWHTSC 0.478 3.046 0.548 3.090 0.011 1.406

ENROLLSC -0.009 -1.086 -0.017 -1.746 0.000 0.825

LEPSCHL 0.114 0.676 0.064 0.333 0.013 1.548

LINCOMES -0.146 -2.140 -0.054 -0.705 -0.005 -1.494

PARNVLVS 0.071 1.536 0.053 1.020 0.001 0.219

ATNDRTS 1.760 3.259 2.209 3.621 0.037 1.356

MOBRATES -0.108 -2.130 -0.073 -1.280 0.003 1.033

ACS3S -0.086 -0.083 -0.286 -0.242 -0.031 -0.583

ACSSQ 0.028 2.360 0.033 2.445 -0.000 -0.298

WHTTCHRD 0.672 1.317 1.014 1.760 0.023 0.890

BACHD -9.820 -2.187 -21.841 -4.304 0.164 0.715

MAPLUSD -9.677 -2.152 -21.567 -4.243 0.168 0.734

TCHEXPD -0.306 -0.430 -1.546 -1.922 0.002 0.045

YR95 0.550 0.654 -13.821 -14.542 -0.145 -3.382

YR96 3.800 5.440 -0.887 -1.123 -0.742 -20.856

MPDENG3S 0.111 1.276 0.093 0.946 -0.004 -0.890

MPDMTH3S 0.336 1.498 0.600 2.369 -0.009 -0.769

MPDSS3S 0.478 1.520 0.549 1.546 -0.003 -0.205

MPDSC3S -0.046 -0.148 -0.240 -0.684 0.036 2.286

ACMPDE -0.003 -0.898 -0.002 -0.524 0.000 1.075

ACMPDM -0.012 -1.244 -0.019 -1.786 0.001 1.142

ACMPDSS -0.012 -0.870 -0.026 -1.672 0.001 0.918

ACMPDSC -0.004 -0.329 0.011 0.720 -0.002 -2.753

Adj. R sqrd. 0.86 0.85 0.76
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Table 10: Teacher Characteristics Interacted with Average Class Size with
School Specific Effects

Reading Math Writing

Parameter t-stat Parameter t-stat Parameter t-stat

PCTWHTSC 0.459 2.925 0.516 2.914 0.010 1.275

ENROLLSC -0.009 -1.061 -0.017 -1.773 0.000 0.815

LEPSCHL 0.113 0.672 0.072 0.376 0.013 1.562

LINCOMES -0.147 -2.160 -0.064 -0.825 -0.005 -1.443

PARNVLVS 0.073 1.573 0.063 1.198 0.001 0.242

ATNDRTS 1.801 3.321 2.116 3.451 0.038 1.379

MOBRATES -0.108 -2.147 -0.075 -1.310 0.003 0.977

ACS3S -62.948 -1.615 -49.892 -1.133 -4.167 -2.099

ACSSQ 0.023 1.832 0.021 1.457 -0.001 -0.962

WHTTCHRD 0.963 1.814 1.418 2.365 0.047 1.746

BACHD -23.406 -2.474 -32.647 -3.053 -0.781 -1.620

MAPLUSD -23.694 -2.504 -32.843 -3.072 -0.793 -1.645

TCHEXPD 1.391 1.156 -0.266 -0.196 0.051 0.832

YR95 0.434 0.514 -13.886 -14.556 -0.148 -3.439

YR96 3.821 5.456 -0.831 -1.050 -0.736 -20.614

ACBACH 0.630 1.600 0.498 1.119 0.043 2.125

ACMA 0.651 1.650 0.520 1.166 0.043 2.164

ACEXP -0.081 -1.686 -0.055 -1.022 -0.002 -0.983

ACTCHRD -0.012 -2.049 -0.017 -2.497 -0.001 -3.063

Adj. R sqrd. 0.86 0.85 0.76
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Table 11: Instructional Times Interacted with Class Size and Teacher
Characteristics with School Specific Effects

Reading Math Writing

Parameter t-stat Parameter t-stat Parameter t-stat

PCTWHTSC 0.458 2.918 0.525 2.961 0.011 1.318

ENROLLSC -0.009 -1.052 -0.017 -1.758 0.000 0.893

LEPSCHL 0.121 0.715 0.077 0.404 0.014 1.625

LINCOMES -0.147 -2.152 -0.059 -0.762 -0.005 -1.514

PARNVLVS 0.075 1.611 0.061 1.163 0.001 0.391

ATNDRTS 1.793 3.306 2.140 3.491 0.038 1.370

MOBRATES -0.108 -2.128 -0.073 -1.284 0.003 1.046

ACS3S -59.443 -1.507 -36.416 -0.817 -4.960 -2.470

ACSSQ 0.022 1.756 0.020 1.403 -0.001 -0.932

WHTTCHRD 0.954 1.789 1.371 2.275 0.049 1.821

BACHD -22.424 -2.354 -29.898 -2.778 -0.907 -1.869

MAPLUSD -22.717 -2.385 -30.096 -2.796 -0.916 -1.889

TCHEXPD 1.223 1.015 -0.412 -0.303 0.056 0.909

YR95 0.448 0.529 -13.739 -14.348 -0.149 -3.448

YR96 3.815 5.423 -0.696 -0.876 -0.737 -20.576

ACBACH 0.606 1.522 0.373 0.828 0.050 2.476

ACMA 0.626 1.571 0.394 0.874 0.051 2.507

ACEXP -0.076 -1.581 -0.052 -0.958 -0.003 -1.083

ACTCHRD -0.010 -1.659 -0.015 -2.152 -0.001 -3.243

MPDENG3S 0.125 1.420 0.093 0.931 -0.004 -0.940

MPDMTH3S 0.244 1.057 0.423 1.623 -0.017 -1.446

MPDSS3S 0.440 1.391 0.576 1.608 -0.005 -0.298

MPDSC3S -0.139 -0.429 -0.495 -1.355 0.030 1.828

ACMPDE -0.004 -1.053 -0.002 -0.510 0.000 1.133

ACMPDM -0.008 -0.803 -0.012 -1.047 0.001 1.827

ACMPDSS -0.010 -0.740 -0.027 -1.736 0.001 1.013

ACMPDSC -0.001 -0.045 0.022 1.393 -0.002 -2.285

Adj. R sqrd. 0.86 0.85 0.76
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Table 12: Education Production Function with School Specific Effects and Class Size
Interactions with all Variables

Reading Math Writing

Parameter t-stat. Parameter t-stat. Parameter t-stat.

PCTWHTSC 0.642 3.057 0.753 3.177 0.027 2.523

ENROLLSC -0.006 -0.380 -0.010 -0.545 0.002 2.434

LEPSCHL 0.030 0.108 0.058 0.186 -0.003 -0.197

LINCOMES -0.127 -0.779 -0.062 -0.338 -0.008 -0.980

PARNVLVS 0.093 0.490 0.598 2.805 0.007 0.774

ATNDRTS -0.178 -0.096 -1.614 -0.770 -0.060 -0.630

MOBRATES -0.246 -1.299 0.006 0.030 0.020 2.116

ACS3S -61.941 -1.476 -25.365 -0.535 -4.527 -2.121

ACSSQ 0.023 1.717 0.023 1.572 -0.000 -0.324

WHTTCHRD 0.783 1.401 1.183 1.876 0.034 1.198

BACHD -20.823 -2.114 -24.207 -2.177 -0.718 -1.434

MAPLUSD -21.081 -2.139 -24.431 -2.196 -0.728 -1.452

TCHEXPD 1.025 0.822 -0.141 -0.100 0.060 0.953

YR95 0.473 0.557 -13.720 -14.313 -0.143 -3.303

YR96 3.825 5.429 -0.718 -0.902 -0.736 -20.540

ACBACH 0.548 1.325 0.135 0.288 0.042 2.009

ACMA 0.566 1.366 0.157 0.335 0.043 2.037

ACEXP -0.069 -1.363 -0.067 -1.177 -0.003 -1.123

ACTCHRD -0.003 -0.300 -0.007 -0.697 -0.000 -0.859

MPDENG3S 0.129 1.457 0.080 0.802 -0.005 -1.025

MPDMTH3S 0.243 1.049 0.384 1.468 -0.017 -1.414

MPDSS3S 0.430 1.355 0.592 1.652 -0.003 -0.175

MPDSC3S -0.148 -0.458 -0.541 -1.479 0.028 1.682

ACMPDE -0.004 -1.082 -0.002 -0.392 0.000 1.215

ACMPDM -0.008 -0.801 -0.010 -0.925 0.001 1.767

ACMPDSS -0.010 -0.712 -0.028 -1.785 0.001 0.907

ACMPDSC -0.000 -0.015 0.024 1.522 -0.002 -2.151

ACWHTSC -0.008 -1.331 -0.010 -1.474 -0.001 -2.277

ACENROLL -0.000 -0.224 -0.000 -0.480 -0.000 -2.321

ACLEP 0.003 0.365 0.000 0.044 0.001 1.465

ACINC -0.001 -0.118 -0.000 -0.002 0.000 0.354

ACPAR -0.001 -0.098 -0.023 -2.585 -0.000 -0.691

ACATND 0.085 1.121 0.158 1.832 0.004 1.084

ACMOB 0.006 0.749 -0.004 -0.405 -0.001 -1.917

Adj. R sqrd. 0.86 0.85 0.76
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Table 13: Marginal Effects of Average Class Size

W/O Interactions With Interactions

Reading (Coefficients from Table 10) -61.88738 -0.340839

Math (Coefficients from Table 10) -48.92361 -0.567975

Writing (Coefficients from Table 12) -4.480886 -0.408519


