PLEDS: A Personalized Entity
Detection System Based on Web Log
Mining Techniques

Kathleen Tsoukalas! Bin Zhou! Jian Pei' Davor Cubranic?
! Simon Fraser University, Canada 2 Business Objects, Canada
{kjtsouka, bzhou, jpei}@cs.sfu.ca, dcubranic@businessobjects.com

Abstract

With the expansion of the internet, many specialized, high-profile sites
have become available that bring very technical subject matter to readers
with non-technical backgrounds. While the theme of these sites may be
of interest to these readers, the posts themselves may contain terms that
non-experts in that field may be unfamiliar with and may wish to know
more about. We developed PLEDS; a personalized entity detection system
which identifies interesting entities and provides related information for
individual users by mining web logs and query logs. The experimental
results of a systemic user study shows that with PLEDS’s aid, users can
experience the benefits of an enriched internet surfing experience. PLEDS
outperforms some other related systems proposed in the literature with
special regard to usefulness.

1 Introduction

With the rapid expansion of the internet, many specialized, high-profile sites
have become available that bring highly technical subject matter to readers with
non-technical backgrounds. For example, Gizmodo!, Engadget?, and Boing Bo-
ing® are all popular user-driven sites that present posts about new technologies
that may contain terms a non-technical reader might not be familiar with. As
such, although readers are interested in the themes of such sites, they may get
lost in such overly technical terminology, which may result in decreased reader-
ship for the site and a negative experience for the reader. For example, one post
on digital cameras? discusses white balance, but the style of the camera is such
that it is likely to be used by more amateur users who may be unfamiliar with
the term. They may spend more time researching white balance on other sites,

Thttp://gizmodo.com

2http://www.engadget . com

3http://www.boingboing.net

dnttp://www.engadget . com/2008/02/06/fujifilms- z10fd-and-z100fd-cameras-get-totally-rockin-firmware/

or may feel frustrated by the article and be less likely to return in future. In
either case, the user is drawn away from the website and is left with a negative
experience overall.

It is important to provide services to readers so that they can not only find
additional information about more technical terms, but find it quickly as well.
In fact, usability studies have shown that this is one of the chief concerns users
express when reading articles online [17]. A naive solution is to create hyper-
links for terms that contain more detailed information on a separate page, and
thus allow users to navigate to those pages via the hyperlinks. This idea is
exhibited by Wikipedia® in particular, but is problematic for several reasons. It
is common for less experienced users to be hesitant to navigate through hyper-
links as they may worry about “getting lost” [17] and not being able to return
to their original task. This navigation away from the article also presents an in-
terruption in the flow of reading [19], which may result in a negative experience
for the reader. This problem could be addressed by showing users additional
information about terms in the same pane as the article, but user studies have
also shown that readers typically look at the main body of the text prior to
navigational elements or headers [17]. In addition, displaying information in
this manner still requires the reader to move their focus of attention away from
the main article, which presents the problems addressed above. Finally, using
hyperlinks in this way presents the same information to all users. Some users
may find that too many terms are tagged, while others find that not enough
are tagged. In the former case, the extra information is not only unnecessary
but, depending on the manner of display, excessive tagging may be distracting.
In the latter case, frustration may arise from not being able to quickly find the
information required. As such, it is necessary to develop a tool that is not only
inline, but also personalized for each of its users.

To address the above challenges, we developed PLEDS, a personalized entity
detection system which identifies interesting entities and provides related infor-
mation inline. Here, an entity is a keyword or a meaningful short sequence of
keywords. PLEDS mines individual and global query logs to find popular con-
cepts, and tags entities related to those concepts, thus finding different entities
for each user that they are likely to be interesting to the user. Information is
presented in a small pop-up window only when a user clicks on a tagged entity,
which solves the problem of numerous pop-up windows appearing as the user
unintentionally moves their mouse across the screen, obscuring the text and
causing frustration.

The paper is organized as follows. We review the background research re-
lated to PLEDS (Section 2) before providing an overview of the major technical
strengths in PLEDS (Section 3). We then describe the experiments and user
studies we performed on PLEDS and the results of those studies (Section 4),
and conclude with a discussion of the implications and future directions of this
work (Section 5).

Shttp://www.wikipedia.com

2 Related Work

Our work is related to entity detection systems and various web log mining
techniques. We briefly review some representative work here.

2.1 Entity Detection Systems

Building on the approach provided by Wikipedia, several entity detection sys-
tems have been developed to address the challenges mentioned in Section 1, with
varying degrees of success. These systems and techniques can be categorized
into three types. The first group of systems, which includes Google’s Gmail® and
AdSense”, has some degree of personalization but does not present information
for entities inline. The second group, including Vibrant Media’s Intellitxt® and
Kontera®, does not include personalization, but does have inline entity tagging.
Finally, a recently proposed system Contextual Shortcuts in [25] attempts some
limited form of personalization as well as inline tagging capability.

An example of the first type of systems is Google’s Gmail. Gmail tries to
match a user’s interest with some predefined topics by extracting some keywords
from an email or a set of emails being viewed. It then presents advertisements
related to those topic keywords, but does not present this information inline.
As such, it requires an interruption in the flow of a user’s reading. That is,
a user has to leave the main paragraph of text to see the related information
in a separate pane. This may impact negatively on the reader’s experience, as
indicated in [19]. Also, it only presents information for a limited number of
terms and as such may not accurately reflect the complete interest of the user.
Google’s AdSense works in a similar manner.

The second group includes systems such as IntelliTxt, which mine the text
in the web page currently being viewed by a user. Such a system extracts some
keywords based only on the information found in the title of the page and the
main body of text, thus relying only on the text within the page being read,
and as such totally neglecting users’ interest. The system is not personalized;
this method results in the same entities being tagged regardless of which user
is currently reading the page. In addition, related information for each entity
is presented in the form of popups that appear when the links are hovered
over. This information is thus presented inline, but implementing the tags in
the form of popups has resulted in user dissatisfaction. Many users move their
mouse across the screen as they read, and inadvertently trigger many popups,
which can be very distracting and frustrating as the main text on the page is
obscured.

Most recently, a novel system called Contextual Shortcuts is presented in [25]
as the representative of the third group in our categorization. The system uses
global query logs to find topics that are frequently queried by a population of

Shttp://mail.google.com
Thttp://www.google.com/adsense
8http://www.vibrantmedia.com
9mttp://www.kontera.com/demo . aspx

users, and uses that information to achieve more interesting entity extraction. In
other words, it attempts to utilize user preferences. However, because it accesses
information about a population as a whole, it presents the same information to
all users, even though an individual’s interest, knowledge, and background may
lead them to find different entities in the text interesting.

2.2 Web Log Mining Techniques

Our work is also related to web log mining. Web log mining is categorized as web
usage mining [13], which focuses on techniques that can predict user behavior
using web logs which are the historical records of users interacting with the
web. Web log data may range very widely but generally can be classified into
the usage data that reside in the web clients, proxy servers and web servers [23].

There has been considerable work on mining web logs. The mining process
can be classified into two commonly used approaches [3]; the first approach
maps the log data of the web server into relational tables before an adapted
data mining technique is performed, and the second approach uses the log data
directly by utilizing special pre-processing techniques.

Traditional data mining approaches can also be applied to the web log data.
For example, there have been many efforts made towards mining various pat-
terns from web logs. Essentially, a web log pattern can be regarded as a se-
quential pattern in a large set of web logs, which is pursued frequently by
users. A lot of work has also been done in using association rule mining on
web logs [20, 18, 23, 9, 28].

Recently, with the rapidly increasing popularity of web search engines, there
is a large and thriving body of work on search query log analysis. This has re-
sulted in highly valuable insights in many different areas, including broad query
characterization [21], broad behavioral analysis of searches [8], deeper analysis
of particular query formats [22], term caching [15], and query reformulation [12].

Finally, applications of web usage mining can be classified into two main
categories [13]: learning a user profile or user modeling in adaptive interfaces
(which refers to personalized mining [14]), and learning user navigation patterns
(which refers to impersonalized mining [4]). Web users may be interested in
systems that learn their information needs and preferences, an ability possibly
provided by a combination of user modeling and web content mining. On the
other hand, information providers may be interested in techniques that could
improve the effectiveness of the information on their web sites by adapting the
web design or by biasing the user’s behavior towards satisfying the goals of the
site. More details are available in [23, 4, 16].

2.3 Our System versus Previous Work

PLEDS builds on the work of previous entity detection systems by combining
their strengths and solving some of the technical and interaction challenges
they present. The largest improvement is due to the ability of PLEDS to adapt
to each user and thus present information that will be of unique interest to

them. We propose several effective heuristics to mine various useful information
for entities in the document. We also incorporate natural language processing
(NLP) techniques, such as using a taxonomy to measure similarity between not
only words and phrases, but their parent topics as well. Finally, we improve on
the presentation method of the information about each entity so as to reduce
user annoyance and frustration.

3 PLEDS: An Overview

The personalized entity detection task in PLEDS involves identifying a small
number of keywords (i.e., entities) from the page currently being read by a user
so that the user may likely want to know the meaning of those keywords. A
user’s interest in keywords depends on three factors: the topic trends (what
topics are currently trendy?), the user’s background knowledge (what might
the user already know?), and the content of the web page being read (what
keywords are explained well on this page?). Correspondingly, PLEDS exploits
four types of data to derive the information.

To find currently trendy topics, PLEDS uses the mining results from a global
query log in a search engine to identify the currently popular keywords. To un-
derstand the user’s background knowledge, PLEDS mines the individual user’s
web log to find the user’s personal interest as well as what the user may already
read and thus know. Moreover, PLEDS analyzes the individual user’s click his-
tory while they use PLEDS to learn that user’s preference and what keywords
they have recently learned more about. To capture the keywords that are likely
well explained in the web page being read, PLEDS scans the page. Integrating
the above four different types of data and enabled by mining those data, the
keywords identified by PLEDS are highly personalized.

Once the personalized entities are identified, PLEDS takes into account the
user’s interest and provides related information inline. The information is a
summary extracted from the top results of a search query using the entity and
user’s interest.

The conceptual system architecture of PLEDS is shown in Figure 1. In the
rest of this section, we will explain how the four kinds of data are mined and
used in PLEDS for personalized entity detection.

3.1 Mining Trends in Global Query Logs

As suggested in [25], a keyword that has been searched for by many people
recently is also very likely to be interesting to an individual user. PLEDS also
uses this heuristic to model currently popular topics. By mining a current
window W (e.g., the queries in the last 30 days) in a global web query log (e.g.,
one in a large search engine), PLEDS identifies candidate personalized entities
in the query log and computes the global frequency of each entity as a measure
of its popularity in the current time window.

qala%l/)?lo . 5 [Fashions: hot keywords

User'slocal web log ,
User' s PLEDS _ = User'sbackground knowledge

K ords
interests, and preference yw

clickthrough log (entities)

Well explained keywords
Web page - P W

Candidate keywords

Figure 1: The architecture of PLEDS.

3.1.1 Pre-computing Frequencies

A large query log may contain noisy information; there is some previous work
focusing on web log cleaning [26]. As a pre-processing step, we need to conduct
some procedures necessary for data cleaning. First, we remove unusual sym-
bols and characteristics from the log. We then use a co-occurrence frequency
calculation in the query log to identify a set of candidate entities.

In order to compute this co-occurrence frequency, it is first necessary to de-
termine the frequencies of individual words as well as the co-occurrence values
of two-word phrases in the query log. Since determining the frequency and co-
occurrence can be very expensive if the query logs are large, we pre-compute
those values and the results are stored in a background database server. This
pre-computation involves first scanning the whole query log once to find the
frequency of each valid word in the global web query log. Here a word is con-
sidered valid if it is not contained in the stop-list and does not consist solely of
punctuation. Those valid words and their corresponding frequencies are main-
tained in a table on the database server. We do the same thing for each pair
of adjacent words found in the global query log, as well as the three contiguous
words. For each record in the query log, we extract all the pairs of adjacent
two words, count the frequency for each pair of them, and add the two-word
phrase to the list as well as their corresponding frequencies. As the query log
is increasing, the frequency of phrases needs to be incrementally updated once
the log is updated.

Obviously, a pair of two adjacent words in a query log is not necessarily a
meaningful entity. A simple yet effective way to detect meaningful entities from
a query log is based on co-occurrence frequencies. If the co-occurrence frequency
of two adjacent words is approximately comparable to the frequency of each
single word within the pair, it is likely that the two words can be combined
together so as to form a more specific entity. As a result, in the third step of
pre-computation, for each two-word phrase (wy,ws) in the list, we calculate the

Cco-occurrence frequency

J (w1, w2))
flwr) f(ws)’

where f({wq,ws)) is the frequency of the two-word phrase (w1, ws) and f(w1)
and f(ws) are the frequencies of one-word phrase w; and wa, respectively, in
the current window W of the global query log.

We ensure that each normalized co-occurrence is above a certain thresh-
old value # in order to keep only those co-occurrences which are likely to be
meaningful entities.

CoFreq({wy,ws)) =

3.1.2 Extracting Entities from the Current Web Page

Entity extraction from a web page currently being read by a user relies on
mining sentences in the text of the document as well as the frequencies and
co-occurrence frequencies of those phrases extracted from the global query logs.
To determine whether keyword segment (wj,ws) in the current page is part
of an candidate entity, PLEDS analyzes words found in each sentence of the
document D being viewed by a user.

In our current PLEDS implementation, we determine entities of a maximum
of three words in length, where the three-word entity has a frequency compa-
rable to that of its individual words or two-word phrases. Basically, this idea
can be referred to “concept extension”, which has been used in some previous
studies [25]. For example, the phrase “Simon Fraser University”, has a total
frequency similar to those of length-2 subsequence, “Simon Fraser” and “Fraser
University”. As such, we extend the entity to contain all three words.

Algorithm 1 shows the entity extraction algorithm. We determine whether
a single word entity should be extended to a two- or even three-word entity
by checking the frequencies as shown in Line 9 to 17. Since longer and more
specific entities are preferred, we first determine if the three-word phrase is a
meaningful entity. The idea is to check if the co-occurrence frequencies of both
two-word phrases in the window around w; are approximately equal; if it is
true, it is very likely that these three words appear together. We combine them
together to form a three-word entity. If the three-word phrase is not likely to
be an entity, we also need to determine whether the two two-word phrases in
the current window W are meaningful entities. Intuitively, we compare the co-
occurrence of the two-word phrase and the frequency of one single word. If it
is comparable (e.g., 6 percent of the frequency of the single word), we assume
that the two-word phrase is likely to be an entity. If the co-occurrence is too
small, we just treat the single word as a candidate entity.

Since the likelihood of adding a fourth word on either side of a three word
phrase entity is quite low (that is, the likelihood of a four-word entity having a
comparable high frequency to the three-word entity is low), we stop at adding
the third word. This increases the efficiency of our entity extraction algorithm.

Once the initial candidate entities have been found, PLEDS fetches the pre-
computed frequency f(e) of each entity e in the current window W in the global

Algorithm 1 The entity extraction algorithm

Input: A document D, a stop-word list Ls¢op, the frequency list f, the co-occurrence
list CoF'req, a co-occurrence percentage threshold ¢;
Output: A candidate entity list £(D);
1: for each sentence S € D do

2: remove punctuation in S and any words in S that are in Lstop;
3: for each word w; € S do
4: if w; is the first or last word in S then
5: create a window for w; containing its one surrounding word;
6: else
7: create a window for w; containing its two surrounding words W =
{wi—1, wi, wit1};
8: end if
9: if CoFreq({(wi—1,ws)) ~ CoFreq({(w;,wi+1)) then
10: form entity (w;—1,w;, w;y1) and add it to £(D);
11: else if entity (w; — 1,w;) ¢ £(D) then
12: if CoFreq((wi,wit1)) > % AND CoFreq({(ws, wit1)) >
CoFreq({w;—1,w;)) then
13: form entity (wit1,w;) and add it to £(D);
14: else if CoFreq({wi—1,w;)) > ﬁ AND CoFreq({wi—1,ws)) >
CoFreq({w;,wi+1)) then
15: form entity (w;—1,w;) and add it to £(D);
16: else
17: form entity (w;) and add it to £(D);
18: end if
19: end if
20: end for
21: end for

query log. The global frequencies of entities reflect how popular and interesting
the entities are for the general population within this current window. If an
entity was popular over a long time ago but not recently, we can thus capture
this with a lower global frequency for that entity.

Several previous studies [25, 6] concluded that entity detection based on word
co-occurrence may not be very accurate. However, our method combines the
word co-occurrence in the document with the word co-occurrence in the query
log to identify meaningful entities. Only the terms (a set of continuous words)
in the document that frequently appear in the query log are considered to be
candidate entities. This strategy helps us avoid the case where two continuous
words in the query log are mistaken as a meaningful entity. Moreover, we adopt
the “concept extension” idea to favor longer and more specific entities. Thus
our method can obtain accurate and meaningful results.

Entity detection is an important but complicated problem. It has obtained
much attention in the areas of natural language processing and text mining.
[25] proposed a similar solution for user-centric entity detection; however, that
method may not be very efficient in detecting entities since they used more

complicated concepts and concept extension. In web browsing, the response
time is a critical issue. By pre-computing the frequencies of words and phrases
contained in the query log, our method can make the identification of candidate
entities in a document reasonably accurate without sacrificing efficiency. It is
true that by combining more resources, we could obtain much better accuracy,
but then the efficiency would be far lower. Interesting future work might involve
trying to improve the entity extraction algorithm in both efficiency and accuracy
by incorporating some previously proposed accurate entity detection methods.

3.2 Mining Users’ Background Knowledge from Local
Logs

If a user has already read something about an entity, or clicked the entity using
PLEDS before, then it is less likely that the user will click the entity again. In
other words, a user’s background knowledge is important in determining her /his
interest in entities.

However, it is very difficult to capture and model a user’s background knowl-
edge. PLEDS uses two data sources to tackle this challenge.

3.2.1 Mining Local Web Log Data

By mining the local web log data, PLEDS can identify whether an entity or some
highly related entities were queried recently. This information can be used in
the following two ways.

First, if an entity was queried recently by a user, then the user may not be
interested in the entity in the near future. We capture this by finding the query
freshness of entities. If an entity e was queried at time instants tq,...,t,,, the
query freshness of e is defined as

m

QueryFresh(e) =1 — Z a7t

i=1

where ¢ is the current time instant and « is a decaying factor between 0 and 1.
The larger the query freshness, the more interesting an entity is.

Second, if an entity e has a high freshness score and many entities in the
same category of e were queried before, the user may have a special interest
in the category of e, and thus e may have a good chance of being clicked by
that user. To model the entity ontology, we use the concept of sense. The term
sense arises from WordNet [5], and refers to the meaning of the word it belongs
to. Each word may have several senses. For example, the word “merit” has two
senses: the first being “any admirable quality or attribute”, as in the example
“work of great merit”; and the second being “the quality of being deserving (e.g.,
deserving assistance)”, as in the example “there were many children whose merit
he recognized and rewarded”. Each sense belongs to a different synset, which in
turn is a group of synonyms. The senses in WordNet have a taxonomy structure.
For simplicity, we only consider those most specific senses.

Algorithm 2 Calculating a user’s interest vector

Input: User’s local web log £, a stop word list Lstop, a user parameter k;
Output: User’s interest vector V;
1: for each query ¢ € £ do

2: remove punctuation in ¢ and any words in ¢ that are in Lstop;

3: disambiguate all words w; € g //get w;’s part of speech and most likely sense
sen(w;);

4: for each word w; € q do

5: if sen(w;) € V then

6: increment the frequency of sen(w;) in V by 1;

7: else

8: insert a new tuple (sen(w;),1) to V;

9: end if

10: end for

11: end for

12: find the top k senses in V and remove all others from V;
13: normalize the sense frequency by dividing the total number of senses in V;

We find and maintain an interest vector for each user, which contains the
most popular senses found in the user’s local log, as well as the frequencies of
the senses. For example, a possible interest vector for a user u; may look like
V(uw;) = ((seni, freqi),...,(senj, freg;),...), where sen; represents a sense
and freq; represent the frequency of sense sen;. We can then compare the
most likely senses for a given entity to those of the user’s interest vector, and
use the overlap to calculate an interest score for each entity.

Algorithm 2 calculates a user’s interest vector. The disambiguation in Line 3
of Algorithm 2 refers to that provided by the Adapted Lesk Algorithm [1], which
compares words surrounding our target word w; using a measure of semantic
similarity, thus finding the most appropriate sense and part of speech for w;.
We use the WordNet [5] semantic lexicon for the English language and its NET
library, WordNet.NET!?, as well as some useful code developed in The Code
Project!! for the implementation.

The user’s interest models the likelihood of the user being interested in a
specific topic (sense in our model). The user’s interest vector can be used
to measure the likelihood that an entity will be interesting to a user. The
measurement is based on an interest score for each entity.

Given a user u; and the corresponding interest vector V' (u;). For entity e;,
suppose its total number of senses is n and senses sen;, , ..., sen;, are appeared
in V(u;). The interest score of e; for user w; can be calculated as

t

ISu(e;) =3 !

= nx freqy,(sen(ix))’

If an entity e; has n different senses, we can assume that each sense has the

Ohttp://opensource.ebswift.com/
Mhttp://www.codeproject.com/KB/string/semanticsimilaritywordnet .aspx

10

probability % As a result, by multiplying the frequency for each common sense
between e; and the user’s interest vector, we can obtain the interest score to
estimate the likelihood the user will be interested in the entity.

3.2.2 Mining PLEDS Clickthrough History

Search engine clickthrough data has been widely accepted as a useful source
of implicit user feedback. Previous work [10, 11] analyzed search clickthrough
data to improve query ranking results. In contrast to explicit feedback (e.g.,
users’ servey), such implicit feedback has several advantages: the collection cost
is much lower, it exists in much larger quantities, and does not place the burden
on the user that search engines do. However, implicit feedback is more difficult
to interpret and has the potential to be noisy [10].

In PLEDS, entity clickthrough data also can be used as an implicit user
feedback. If a user has clicked an entity highlighted by PLEDS before, then
she/he is unlikely to click the entity again in the near future. Moreover, if
PLEDS presents an entity to a user a few times but the user never clicks it,
then the chance of the user clicking this entity in the near future is also slim.

Carrying this idea forward, PLEDS mines historical clickthrough data. We
keep a record of each time a user clicks on an entity, and compute the click
freshness by incorporating a decaying factor. In this way, the longer ago an
entity has been clicked, the lower the click freshness is. We assume that entities
with a higher click freshness score are less likely to be clicked again than entities
with a lower score. Click freshness is calculated as follows: if an entity e was

clicked at time instants t1, ..., %, the click freshness of e is defined as
ClickFresh(e) =1 — Z ol Tt
i=1

where ¢ is the current time instant and « is a decaying factor between 0 and 1.
The lower the click freshness, the more interesting an entity is assumed to be.

In comparison to query clickthrough data, the entity clickthrough data in
our system has very low noisy characteristics. The entity clickthrough data is
also quite personalized; it traces the specific user behavior accurately through
historical web browsing data. In query clickthrough data, implicit information
about the ranking results is determined as follows: if page p; is ranked higher
than ps in the search result but p; is not clicked by the user, the user feedback
implicitly shows that p; should not be ranked higher than p,. However, such
information is rather noisy in query clickthrough data, since the data is not
personalized. Moreover, users may unintentionally miss some higher-ranked
results. In our entity clickthrough data, the situation is quite different because
all of the personalized entities in the document are labeled. Thus, there are
no explicit entity ranking results among them, and there is no need to consider
that information as there is with query clickthrough data.

11

Algorithm 3 Semantic similarity measurement calculation.

Input: A pair of words (w1, w2), a path threshold §;
Output: The similarity scores of w; and we;

1: if w1 == w2 then

2: return 1;

3: else if wi.partO fSpeech! = wa.partO f Speech then

4: return O0;

5: else

6: find the least common ancestor of wy and w2, lcaDepth(wi, w2), in the taxonomy
graph and the total path length between w; and ws using method in [2];
if path length is greater than § then

8: return 0;

9: else if path length is 0 then

10: return 1;

11: else

12: return de;ii?jf;igz;’t:alg);

13: end if

14: end if

3.3 Mining the Current Web Page

On the web page currently being read by a user, if an entity is well explained,
then it is likely that the user will not click on that entity. Therefore, it is
necessary to mine the current web page to understand whether an entity is well
explained or not.

We propose an explanative score to address this issue. Given an entity e,
the explanative score of e is computed by checking all entities surrounding e
(i.e., in a small window centered at e) for their semantic relatedness to e. To
measure semantic relatedness, again we base our algorithm on the Adapted Lesk
Algorithm [2]. Let eq,...,e, be the set of entities surrounding e in a window.
Then, the explanative score of e is calculated as

BS(e) = 2im1 m
n
where dist(e, e;) is the semantic distance between e and e;, as that used in [27].
The larger the explanative score, the better explained the entity.

The semantic similarity calculation is borrowed from [27], although other
methods could be substituted if desired. To use this measurement, we treat
the WordNet taxonomy as an undirected graph, using the distance between two
nodes as a measure of their semantic relatedness. A larger distance results in
a score closer to 0, meaning the words are not highly semantically related. A
smaller distance results in a score closer to 1, meaning the words are highly
semantically related. Identical words (taking into consideration the part of
speech; this must also be identical) will have a distance of 0, resulting in a
score of 1. We also consider the depth of each node’s least common ancestor
(lcaDepth(wy,w2)). Algorithm 3 finds the semantic similarity of two words.

12

Algorithm 4 Explanative score calculation.

Input: A document D, a stop word list Lstop;
Output: The explanative score for each entity;

1: for each sentence S € D do
2 extract the initial entities e; from S using the method from Section 3.1.2;
3 remove punctuation in S and any words in S that are in Lstop;
4 for each word w; € S do
5: disambiguate w; //this gets the part of speech of the word;
6 end for
7: end for
8: for each entity e; € D do
9 Create a window which holds a maximum of 5 entities: e;_2,e;_1, €, €i+1, €i+2;
10: for each pair of entities (ej, e;) do
11: if (ej, e;) is in the word-pairs list and its corresponding similarity score is not
0 then
12: use that score as the similarity score;
13: else if (ej,e;) is in the word-pairs list and its corresponding similarity score
is 0 then
14: calculate the new score, store it in the table, and use it as the similarity
score;
15: else
16: assign a score of 0 and store in the word-pairs list;
17: end if
18: end for
19: calculate the average of similarity scores for all pairs, and let it be the explana-
tive score fore;;
20: end for

Calculating ezplanative score presents an efficiency challenge, as each entity
determined via the co-occurrence method must be compared to each of its sur-
rounding entities. Limiting the window size helps reduce computational time,
but also reduces the accuracy of the part-of-speech tagging. As such, some pre-
computation techniques have also been introduced to mitigate this problem.
The intuition is as follows: we keep a list of pairs of entities that have been
compared previously, as well as their corresponding similarity scores. Then, for
each pair of entities encountered in the text, we check if they are already in this
list. If so, we use the pre-computed score. If not, we assign the pair a score of 0.
Here we are assuming that if an entity pair has never before been encountered,
it is not very common and thus the entities it consists of are not highly related
to each other. If the entity pair is encountered a second time, the semantic
similarity is calculated and the previous score of 0 is replaced with this new
score. Here we assume that since the pair has been encountered previously, it is
now common enough to warrant performing the calculation. In subsequent en-
counters this pre-computed score is used, thus saving the cost of computing the
semantic similarity every time. This is illustrated in Algorithm 4 to calculate
explanative score ES(e;) for an entity e;.

It is worth noting that an entity may appear more than once in a web page.

13

For such an entity, we use the largest explanative score among the multiple
occurrences. Here we assume that if an entity is well-explained at least once
on the page, there is a decreased need of tagging and explaining this entity
elsewhere on the same page. This is also illustrated in the last step of the
algorithm above.

An interesting issue here is that the trustiness of the current document to
the user is still questionable. For example, if the current document is not well-
written, even though an entity is well explained in the document, the user may
still try to search the web for a trustful explanation. This scenario is likely to
happen while user is browsing the pages on the web. One idea to solve this
problem is to combine the trustiness score of each web page, such as HITS and
PageRank, into our explanative score calculation. Another idea is to trace the
user’s browsing history. If the current well-explained entity is queried again
in the future by the same user, it is possible that the user does not trust the
document’s authority. Later on, its authority needs to be penalized. We leave
this as a future improvement of PLEDS.

3.4 Fusing the Mining Results

By mining the global web query log, the local web log and PLEDS clickthrough
data, as well as the current web page, we obtain information about currently
trendy keywords, the user’s background knowledge about the entities on the
current web page, as well as how well-explained these entities are in the page.
Based on these factors, PLEDS uses logistic regression to recommend a list of
entities to be tagged for the user.

Technically, PLEDS estimates the probability that an entity e will be clicked
on by the user given five factors z1, x2, x3, x4 and x5, where 1 is the explanative
score (Section 3.3), x5 is the global frequency (Section 3.1.2), xz3 is the query
freshness (Section 3.2.1), x4 is the click freshness (Section 3.2.2), and x5 is
an interestingness score (Section 3.2.1), which is computed using the interest
vector.

PLEDS takes a training data set to learn the logistic regression model. If
a labeled entity is clicked, a training example is obtained with the probability
set to 1. If an entity is labeled by PLEDS but is not clicked by the user, a
training example is also obtained with probability set to 0. The form of the
logistic regression is

5
P

l = i - Ty,

91—, ﬁo+;:1ﬂ x

where ; can be estimated using the “Newton-Raphson” method [7].

Once the model is trained, for each new web page PLEDS will use the
model to retrieve entities which have probabilities above a certain threshold
value, which can be tuned by the user to adjust how aggressive PLEDS should
be in detecting and displaying entities. Those entities above the threshold will
be labeled by PLEDS. According to different recommendation confidence (the

14

score calculated using regression), the entities are labeling using different colors,
in which showing the confidence of the labeling results.

Once the entities within a web page have been identified, it is necessary to
provide the appropriate information regarding those entities, depending on the
user’s interest.

To achieve that, PLEDS submits a web search query for the entity associated
with the user’s interest and extracts a summary of those top ranked search
results. We also provide a short definition of the entity as found in WordNet,
if that definition exists, displaying the top three ranked search results below it.
To display this information, the user clicks on the entity they are interested in,
and the information will be displayed as a pop-up. Because the user is required
to click on an entity rather than simply hover with the mouse, we avoid the
problems of distraction exhibited by other systems, and ensure that the user is
actually motivated to see this information.

4 Experimental Results

In the following section, we first describe the methodology used to evaluate the
utility of our PLEDS platform, and then present the results of a systematic user
study.

The PLEDS prototype system was implemented in Microsoft .NET using
CH. Microsoft SQL Server 2000 was used as the background database manage-
ment system. All the experiments were conducted on a PC computer running
the Microsoft Windows XP SP2 Professional Edition operating system, with a
3.0 GHz Pentium 4 CPU, 1.0 GB main memory, and a 160 GB hard disk.

In our user studies, a large, real web search query log from AOL (http:
//www.aol.com/) was used, although reduced in size through data cleaning
and to increase performance. Data cleaning consisted of removing tuples that
consisted solely of punctuation symbols or single letters. At the start of user
testing, the size of the global query log used by PLEDS contained 97,471 tuples
(the size increases as the system is used). On average, each user had 140 tuples
in their local web query log, with 696 users initially in the system. This initial
global query log results in 43,014 distinct co-occurrence phrases and this is
reduced to 4,287 distinct co-occurrence phrases once they are normalized and
passed through a threshold filter as described above.

4.1 Evaluation Methodology

We devised our evaluation methodology in two stages. In the first stage, the
primary goal was to check the capability of entity recommendations to capture
the users’ tastes, and then analyze how the recommendation quality can be
influenced by adjusting the parameters involved in the personalization system
differently. The second stage was conducted once optimized settings for such
parameters had been fixed on the basis of a comparative analysis, after which the
system was tested under conditions of actual usage. The goal of the evaluation

15

was to measure the quality of entity recommendations provided by the system
for a specific navigational session. We mainly present the results in the second
stage of our user study.

The second stage of testing involved usability testing, which was conducted
on PLEDS using a set of volunteers with varying backgrounds, from non-
technical users to those who are highly skilled in browsing and navigating the
internet. In total we have 6 participants. Participants had a range of educa-
tional backgrounds, with 16.7% participants with a highschool diploma, 33.3%
participants with a Bachelor’s degree, and 50% participants with a Master’s de-
gree. Participants’ use of computers also ranged from 6 — 10 hours per week to
504 hours per week, indicating that some have more opportunities to become
familiar with the internet and other technical computer skills than others.

Two types of testing were conducted; the first type tested PLEDS’ global
query log mining only, without users logging into the system, while the second
tested PLEDS’ ability to personalize entity selection over a period of time.

16

"(9018y Buonig=y§ ‘9018y=y ‘worutd() oON=QN ‘0013esy(=(‘0e1desi JuoIjg=(S) SHMsoI uostredurod Woa)sAs o T, :g o[qeL,

17

%eee %0G 0 %L 9T 0 “1X0JU09 oY) Ul [njSuruesul olom eIpadiipy Aq popuswrtodal seselyd/spiom oy, | 8Y)
0 %EER | %L 9T 0 0 "1X0JU0d o1} Ul [njSuruesawr olom SAHTJ Aq popuswrmiodal seselrd/spiom oy J, 20
%LIT | %EECE | %LIT | %L IT | %L 9T ‘[[om syserejul Aur payorewt vIpadifIpy A popustuodal saseryd/spiom ot], 90)
9%2L°9T | %E€8 0 0 0 ‘[em syseIejul Awr paypyewt §IH T Aq popustwuiodsal soselyd/spiom ot], [eTe)
_ VS _ A _ ON _ a as _ uordLIosa(] uorysong) _ ar _
"(9018y Buong=yg ‘9a18y=y ‘uorurd() oON=QN ‘0013esi(q=(‘@213estq SuoIjG=(]S) SINSAI A9AINS oY J, :T S[qRT,
%Lot | %0 [%eee] o 0 “jouIelul oY} Sugans 10§ A[puenboyy SQHTJ oSN 0} A1 P[NOM T Jey) JUIY) | O
%L 91 7 ueee | yeee 7 %19T 0 PUOWNOOP oY) Ul poure[dxo-[om T ON oM SAHTJ Aq POPUSWIIOIDT So1Iuo o], | €0)
0 7 %88 0 7 %.L°9T 0 ‘ot Aq patrenb Ajueselr [ON o1em SAHTd A PepUSTIUIOdal SSIIjUs oY T, o)
%e'es | %0g 0 l%L91| 0 ow Aq payId A[juedal [ON 194 SAHT A9 PIPULUIUIOAT S1919UL AT, 10
_ VS 7 v 7 ON 7 a 7 as 7 uorpdIoso(] uorysany) 7 al _

Each user session was comprised of four stages. In the first, users were asked
to select three distinct pages from a pre-selected corpus. The system tagged the
top 30% of queries and users were asked to indicate if they found any of these
interesting or if there were any entities not tagged that they would be interested
in finding out more about. The users were then given a period of unstructured
time to explore and search for topics of their choice, and were encouraged to
click on any entities they found interesting, or indicate if there were entities they
were interested in that were not tagged; a “think aloud” method [24] was used,
where users were encouraged to think out loud as performing specific navigation
and search tasks. After this time, the users were returned to their original three
pages and any changes in tagged entities were recorded. Finally, the users were
shown five pre-selected pages without any tags and asked to indicate their top
ten most interesting entities. These were compared with those top ten entities
recommended by PLEDS and Wikipedia for a determination of precision and
recall.

4.2 User Satisfaction

Users involved in our user study were asked to complete a questionnaire following
the completion of the session. The questionnaire covered a range of topics from
general user background, to their experience with PLEDS in comparison to
Wikipedia, and finally users were asked to rate their level of satisfaction with
PLEDS alone. The survey results are shown in Table 1.

With regard to satisfaction with PLEDS, we asked participants to rate their
experience with PLEDS according to several factors, including if the entities
were recently clicked or queried by the user and whether the entities were well-
explained in the document. On average, participants reported that the entities
that PLEDS recommended to them were neither recently clicked nor queried by
them, which is highly desirable. However, it should be noted that although the
entities were still recommended, it may be that their recommendation level had
changed; for example, entities, once clicked on, are sometimes downgraded from
strongly recommended to weakly recommended as their scores change and are
updated. The color of tag used for these entities does change, but the entity
may still be recommended due to other factors.

Participants also reported that the entities recommended to them by PLEDS
were somewhat explained in the document. This may have been affected by the
short length of text.

Finally, participants reported that they were likely to use PLEDS frequently
for surfing the internet, with one participant reporting that “to use this method
would result in getting specific information more quickly than using broader
search methods. This is a good method for scanning rather than having to read
everything.”

18

’ System \ Precision Recall

Wikipedia | 0.16337014 0.33
PLEDS 0.34023569 | 0.841666667

Table 3: The precision and the recall for the system comparison.

4.3 System Comparison

As mentioned in Section 1 and Section 2, our PLEDS system is highly related
to several existing systems proposed in the literature such as IntelliTXT, Kon-
tera and Contextual Shortcuts. With no access to those systems, alternatively,
we conducted a user study to compare the results for PLEDS and Wikipedia.
The source for the text used in these studies originated in Wikipedia (English
version), but for the PLEDS trials the text was extracted from Wikipedia ar-
ticles, and all formatting, links, and tags are removed. The entities were then
“labeled”, and these labels are compared with the link entities in the original
Wikipedia articles.

We examine the entities labeled by PLEDS and Wikipedia, as well as the
entities the users are desired to know more about. The results of the PLEDS
versus Wikipedia test in Table 3 show that the entity recommendation per-
formed by PLEDS results in a low precision score (0.34), although the recall
score (0.84) is high. The comparison also showed that these scores were still
higher than those of Wikipedia, which received a precision score of 0.16 and a
recall score of 0.33. One reason for the disparity is that PLEDS results could
be adjusted to only show the top k results, which is what we used to score the
system. On the other hand, Wikipedia provides a set number of results, which
means that for some pages, 20% of entities may be returned, while for others
the number may be as high as 40%. Another important point to note is that the
low precision scores may be due to the short time PLEDS was given to adjust
to its users’ preferences. As users were only given about 15 minutes to surf the
internet with PLEDS, their local query logs are quite small (up to 10 tuples).
Historically, however, the global logs from the dataset show previous users with
between 30 and 120 tuples each. As the local query log becomes larger, PLEDS
becomes more accurate, so giving users more time with the system may lead to
better results.

In comparing PLEDS and Wikipedia via the results of the questionnaire
users filled out after their usability sessions. The results are shown in Table 2.
100% users reported that the entities recommended by PLEDS matched their
interests well, while users were more mixed in their reaction to those entities
recommended by Wikipedia; 33.3% did not feel the entities matched their inter-
ests well, 50% felt the entities did match their interests well, while 16.7% had no
opinion either way. On the other hand, in terms of meaningfulness, 83.3% users
felt that Wikipedia’s recommendations were meaningful in the context of the
text, while 83.3% users felt that the recommendations made by PLEDS were
meaningful. 16.7% users had no opinion on the meaningfulness of the entities
recommended by PLEDS.

19

4.4 Discussion

Our experimental results were affected by the length of time of each user session
and the limitation of only having one session per participant. As discussed
previously, allowing users to have longer and more varied access to PLEDS
may provide more accurate precision and recall scores; lengthier trials would
allow the system to record longer local query logs for each user, and allowing
the user to surf the internet whenever they like would ensure a more realistic
measurement of PLEDS’ capabilities.

Our results also showed that Wikipedia’s fixed number of tagged entities is
a disadvantage in terms of precision and recall; with its precision being roughly
half of PLEDS’ and its recall only roughly 40% that of PLEDS’. The problem is
that Wikipedia often shows too many results, may show results that are already
well-explained in the text, and may show results that have recently been clicked
or queried by the users. This resulted in general in less overlap between the
entities the users desired to click on and the entities labeled in the text. On the
other hand, Wikipedia tends to do a better job of displaying multi-word entities
and phrase entities than PLEDS; one contributor to this may be the reduced
size of the PLEDS global query logged used in this test for performance reasons.
If the global query log were to be expanded, it is expected that more multi-word
and phrase entities may be discovered in the text.

5 Conclusions

PLEDS builds on previous systems, such as IntelliTXT, Kontera and Contex-
tual Shortcuts, to provide personalized, meaningful entity recommendations in
text. We have shown how we can improve on these systems by introducing the
new measures of Interest Score, Fxplanative Score, Query Freshness, and Click
Freshness, as well as more traditional Frequency measures. Our results show
that PLEDS recommends and retrieves more relevant entities for specific users
than static systems such as Wikipedia.

There are several areas to explore with regard to the improvement of PLEDS.
We would like to expand our initial entity detection particularly with respect
to concept extension.

References

[1] S. Banerjee and T. Pedersen. An adapted lesk algorithm for word sense
disambiguation using wordnet. 2002.

[2] S. Banerjee and T. Pedersen. Extended gloss overlaps as a measure of se-
mantic relatedness. In Proceedings of the 18th International Joint Confer-
ence on Artificial Intelligence (IJCAI'03), pages 805-810, Acapulco, Mex-
ico, 2003. Morgan Kaufmann.

20

[3]

[10]

[12]

[13]

[14]

[15]

J. Borges and M. Levene. Data mining of user navigation patterns. In
Proceedings of the WebKDD’99 Workshop on web usage analysis and user
profiling (WebKDD’99), pages 92-111, 1999.

S. Chakrabarti. Mining the Web: Discovering Knowledge from Hypertext
Data. Morgan-Kauffman, 2002.

C. Fellbaum, editor. WordNet: an electronic lexical database. MIT Press,
1998.

R. Florian, H. Hassan, A. Ittycheriah, H. Jing, N. Kambhatla, X. Luo,
N. Nicolov, and S. Roukos. A statistical model for multilingual entity
detection and tracking. NAACL/HLT, 2004.

T. Hastie, R. Tibshirani, and J. Friedman. The Elements of Statistical
Learning: Data Mining, Inference, and Prediction. Springer, 2001.

B. J. Jansen, A. Spink, J. Bateman, and T. Saracevic. Real life information
retrieval: A study of user queries on the web. SIGIR Forum, 32(1):5-17,
1998.

X. Jin, Y. Zhou, and B. Mobasher. Web usage mining based on probabilistic
latent semantic analysis. In Proceedings of the tenth ACM SIGKDD inter-
national conference on Knowledge discovery and data mining (KDD’04),
pages 197-205, New York, NY, USA, 2004. ACM.

T. Joachims. Optimizing search engines using clickthrough data. In Pro-
ceedings of the eighth ACM SIGKDD international conference on Knowl-
edge discovery and data mining (KDD’02), pages 133142, New York, NY,
USA, 2002. ACM.

T. Joachims, L. Granka, B. Pan, H. Hembrooke, and G. Gay. Accurately
interpreting clickthrough data as implicit feedback. In Proceedings of the
28th annual international ACM SIGIR conference on Research and devel-
opment in information retrieval (SIGIR’05), pages 154-161, New York,
NY, USA, 2005. ACM.

R. Jones, B. Rey, O. Madani, and W. Greiner. Generating query substitu-
tions. In Proceedings of the 15th International Conference on World Wide
Web (WWW’06), pages 387-396, 2006.

R. Kosala and H. Blockeel. Web mining research: A survey. SIGKDD
Explorations: Newsletter of the Special Interest Group (SIG) on Knowledge
Discovery and Data Mining, 2, 2000.

P. Langley. User modelling in adaptive interfaces. In Proceedings of the 7th
international conference on user modeling, pages 357-370, 1999.

R. Lempel and S. Moran. Optimizing result prefetching in web search
engines with segmented indices. ACM Transactions on Internet Technology
(TOIT), 4(1):31-59, 2004.

21

[16]

[17]

[18]

[19]

[20]

[23]

[24]

[25]

B. Masand and M. Spiliopoulou. Workshop on web usage analysis and user
profiling (webkdd’99). SIGKDD Ezplorations, 1(2):1, 2000.

J. Morkes and J. Nielsen. Concise, scannable, and objective: How to write
for the web, 1997.

A. Nanopoulos and Y. Manolopoulos. Mining patterns from graph traver-
sals. Data Knowl. Eng., 37(3):243-266, 2001.

H. Obendorf and H. Weinreich. Comparing link marker visualization tech-
niques: changes in reading behavior. In Proceedings of the 12th interna-
tional conference on World Wide Web (WWW’03), pages 736-745, Bu-
dapest, Hungary, 2003. ACM.

J. Pei, J. Han, B. Mortazavi-Asl, and H. Zhu. Mining access patterns effi-
ciently from web logs. In Proceedings of the 2000 Pacific-Asia Conference
on Knowledge Discovery and Data Mining (PAKDD’00), Kyoto, Japan,
April 2000.

C. Silverstein, H. Marais, M. Henzinger, and M. Moricz. Analysis of a very
large web search engine query log. SIGIR Forum, 33(1):6-12, 1999.

A. Spink and H. C. Ozmultu. Characteristics of question format web
queries: An exploratory study. Information Processing and Management,
38(4):453-474, 2002.

J. Srivastava, R. Cooley, M. Deshpande, and P.-N. Tan. Web usage mining:
discovery and applications of usage patterns from web data. SIGKDD
Ezplor. Newsl., 1(2):12-23, 2000.

M. W. van Someren, Y. F. Barnard, and J. A. Sandberg. The Think Aloud
Method: A practical guide to modelling cognitive processes. Academic Press,
London, 1994.

V. von Brzeski, U. Irmak, and R. Kraft. Leveraging context in user-centric
entity detection systems. In Proceedings of the 2007 ACM International
Conference on Information and Knowledge Management (CIKM’07), Lis-
bon, Portugal, 2007. ACM.

H. Weinreich, H. Obendorf, and E. Herder. Data cleaning methods for
client and proxy logs. In Proceedings of WWW’06 Workshop on Logging
Traces of Web Activity: The Mechanics of Data Collection, 2006.

Z. Wu and M. Palmer. Verb semantics and lexical selection. In Proceedings
of the 32nd Annual Meeting of the Association for Computational Linguis-
tics (ACL’94), pages 133-138, Las Cruces, NM, 1994. ACL.

B. Zhou, S. C. Hui, and A. C. M. Fong. Efficient sequential access pattern
mining for web recommendations. Int. J. Know.-Based Intell. Eng. Syst.,
10(2):155-168, 2006.

22

