
Supporting information

A convenient way to apply TRAMITE to predict the residual dipolar coupling between two coupled nuclei P and Q is by using the expression¹:

$$D^{PQ}(\theta,\phi) = -\frac{\gamma_P \gamma_Q \mu_0 h}{16\pi^3 r_{PQ}^3} A_a^{PQ} \left\{ \left(3\cos^2 \theta - 1 \right) + \frac{3}{2} R \sin^2 \theta \cos 2\phi \right\}, \quad [1]$$

where $A_a^{PQ} = \frac{1}{3} \left[A_{xx}^{PQ} - \left(A_{xx}^{PQ} + A_{yy}^{PQ} \right) / 2 \right]$ is the unitless axial component of the alignment tensor **D** (whose components are expressed in Hz), R is the rhombicity defined by A_r^{PQ} / A_a^{PQ} , with $A_r^{PQ} = \frac{1}{3} \left(A_{xx}^{PQ} - A_{yy}^{PQ} \right)$, and the remaining constants have their usual meanings. Because **D** is traceless, $A_a^{PQ} = 2A_{zz}^{PQ}$. θ is the angle formed between the P–Q interatomic vector with the z axis, and ϕ is the angle between the projection on the x-y plane of the vector P–Q with the x axis. TRAMITE lets one calculate all the variables within the brackets in equation [1] according with the two conditions explained in the communication, followed by scaling the axial component A_a^{PQ} by standard fitting procedures.

The figure shows the results obtained for another five biomolecules.

Figure 1. Correlations among experimental $^1D_{PQ}$ values and predicted with TRAMITE. (A) $^1D_{CH}$ and (B) $^1D_{NH}$, from the NMR models 1 and 9, respectively, of Ubiquitin deposited in the PDB.² (C) $^1D_{NH}$ from the NMR model 1 of Cyanovirin-N deposited in the PDB.³ (D) $^1D_{CH}$ from Lewis A trisaccharide.⁴ (D) $^1D_{CH}$ from LNF-3 pentasaccharide.⁵ The (\blacksquare) symbols correspond to the prediction for the individual structure from a MC simulation⁴ with the best χ value, while the (\circ) are obtained from averaging the first 9 structures with individual χ values lesser than 3.

References

- (1) Clore, G. M.; Gronenborn, A. M.; Tjandra, N. J. Magn. Reson. 1998, 131, 159-162.
- (2) Cornilescu, G.; Marquardt, J. L.; Ottiger, M.; Bax, A. J. Am. Chem. Soc. 1998, 120, 6836-6837.
- (3) Bewley, C. A.; Gustafson, K. R.; Boyd, M. R., Covell, D. G., Bax, A.; Clore, G. M.; Gronenborn, A. M. *Nat. Struct. Biol.* **1998**, *5*, 571-578.
- (4) Azurmendi, H. F.; Martín-Pastor, M.; Bush, C. A. Biopolymers 2002, 63, 89-98.
- (5) Martín-Pastor, M.; Bush, C. A. Biochemstry 2000, 39, 4674-4683.
- (6) Zweckstetter, M.; Bax, A. J. Am. Chem. Soc. 2000, 122, 3791-3792.