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Abstract—To promote independent living for elderly popula-
tion activity recognition based approaches have been investigated
deeply to infer the activities of daily living (ADLs) and instru-
mental activities of daily living (I-ADLs). Deriving and integrating
the gestural activities (such as talking, coughing, and deglutition
etc.) along with activity recognition approaches can not only
help identify the daily activities or social interaction of the older
adults but also provide unique insights into their long-term health
care, wellness management and ambulatory conditions. Gestural
activities (GAs), in general, help identify fine-grained physio-
logical symptoms and chronic psychological conditions which
are not directly observable from traditional activities of daily
living. In this paper, we propose GeSmart, an energy efficient
wearable smart earring based GA recognition model for detecting
a combination of speech and non-speech events. To capture the
GAs we propose to use only the accelerometer sensor inside our
smart earring due to its energy efficient operations and ubiquitous
presence in everyday wearable devices. We present initial results
and insights based on a C4.5 classification algorithm to infer
the infrequent GAs. Subsequently, we propose a novel change-
point detection based hybrid classification method exploiting
the emerging patterns in a variety of GAs to detect and infer
infrequent GAs. Experimental results based on real data traces
collected from 10 users demonstrate that this approach improves
the accuracy of GAs classification by over 23%, compared to
previously proposed pure classification-based solutions. We also
note that the accelerometer sensor based earrings are surprisingly
informative and energy efficient (by 2.3 times) for identifying
different types of GAs.

Keywords—smart jewelry, behavioral health, change-point de-
tection, energy efficiency, cognitive computing.

I. INTRODUCTION

Modeling and analyzing the physiological symptoms and
psychological behaviors of older adults have a profound impact
on future smart and connected elder care. The fine grained
insights about the human health, wellness and independence
obtained from the physiological and psychological data analy-
sis if coupled with activities of daily living can help improve
the mental health, stress disorders, ambulatory conditions,
and social interactions of older adults. The wide availability
of commodity smart healthcare appliances, stand-alone and
integrated sensing devices make it increasingly easy to ubiqui-
tously and continuously monitor an individual’s health-related
vital signals, activities, and behavior and to integrate such data
into healthcare systems. We are witnessing early commercial
activity, where a combination of body-worn medical and non-
medical sensors (e.g., sensors to monitor blood oxygenation or

accelerometers to monitor movement) and in situ sensors (e.g.,
thermal and motion detectors) continuously monitor and auto-
matically determine an individual’s context. Broadly speaking,
context in smart health refers to a variety of dynamically
changing states, related to either an individual’s activities
(e.g., ambulatory vs. sleeping), biomedical conditions (e.g.,
fatigue vs. anxiety), or behavioral conditions (e.g., shouting
vs. agitation). In many health and wellness applications, such
context enables critical capabilities, such as alerting a first
responder if the individual is shouting for an abnormal period
of time or flagging a health risk by analyzing wellness data
related to continuous burping or hiccup after every day eating.
In this paper, we particularly investigate the recognition and
discovery of gestural activities (henceforth defined as GAs)
which are observable and detected; provide significant insights
about the long-term wellbeing of the elderly people. Our
approach enables efficient abstraction and finer correlation
of the activities of daily living with the acute physiological
symptoms and chronic psychological conditions.

Providing both behavioral and physical health status in an
unified setting is of utmost need for proactive healthcare. Men-
tal disorders and cognitive impairments oftentimes evolve from
chronic physiological symptoms and abnormal psychological
behaviors. Suffering from different sort of mood disorders
inhibit different patterns of infrequent gestures such as depres-
sion, sadness, crying, shouting etc. Likewise for different kinds
of physiological health issues, the patient shows irregular ges-
tures such as frequent coughing, burping, breathing problem
etc. Therefore mental and physical health of elderly people are
correlated and if harnessed appropriately may provide mean-
ingful microscopic physiological and psychological contexts.
For example, a person feeling a headache from anxiety or
anger might shout loudly or show irregular interpersonal traits.
Thus the mental hygiene or physical wellness of a particular
person can be inferred by monitoring the GAs which reflect
the emotional or behavioral state of the individual. On the
other hand when a person shows infrequent gestures while
being engaged in other activities, his or her body produces
different kind of movements. The differences between these
subtle movements, if captured and detected naturally could
help infer the infrequent gestural activities.

A variety of activities of daily living (ADLs) recognition
techniques have been studied extensively over the last few
decades in different dimensions of smart healthcare [1], [5],
[6], [7], [16], but very few of the work have addressed



gestural activity recognition [16], [24]. Traditionally, activity
recognition approaches can be classified into the following
three categories based on the specific device usage and data
source accessibility.
• Wearable sensor: Multiple body worn sensors or sen-

sors embedded with everyday devices, such as, earbud,
necklace, ring etc. have been used for recognizing
ADLs [16], [19], [20].

• Smartphone sensor: Smartphone’s microphone sensor
has been used to capture acoustic signals of human
surroundings to recognize non-speech human sounds
in ambient living environment [5], [6], [7].

• Hybrid: Multiple or single body worn sensors along
with smartphone’s microphone sensor have been used
to recognize ADLs [1]. To accommodate energy hun-
gry microphone sensor intelligent on-chip and off-
chip acoustic signal processing algorithms have been
developed [3].

Previous works have focused on human speech processing
extracting features from acoustic signal to detect human voice
and non-speech human sounds. While acoustic sensor can
certainly help determine the sound gesture of human but
undermine significantly the operational cost and life longevity
of wearable devices due to its energy hungry operations.
Acoustic signal recording, pre-processing, ambient noise re-
duction, features extraction and classification process cause
huge computational overhead which rapidly drains out the
battery power of source devices. Sound signals generating from
other individuals, surrounding the target user may cause severe
misclassification problem creating unavoidable false positive
results. Moreover, continuous sensing of sound signals may
cause serious privacy violations. On the other hand embedding
sensors on myriad objects of daily living, such as microwaves
and kitchen cabinets [4] or mounting them on the ceiling has
challenging operational costs and battery-life issues. Individu-
als, particularly, elderly patients appear reluctant to continually
wear multiple sensors on the body [2]. Motivated by these
shortcomings we propose to use an energy and computationally
inexpensive accelerometer sensor in the form of a smart earring
for detecting fine-grained gestural activities of the user.
Research Questions: Our investigations in this paper pursue
the following research questions:
• Given the adaptation of activity recognition algorithms

to help older adults in healthy independent living what
sort of gestural activities may shed light on long-
term physiological health and psychological behavior
of older adults?

• What sort of models and algorithms are needed to
detect such fine grained gestural activities along with
traditional classification approach?

• How much quantitative improvement do we observe
in our ability to recognize the correct GAs?

In this paper we first use real life data traces from 10
subjects with a variety of different gestural activities (max 5)
and develop an adaptive C4.5 classification algorithm based on
dynamic feature selection for recognizing potential gestural
activities. While this approach helps to successfully identify
different gestural activities but fails to identify when the
gestural events are either instantaneous or continuous in nature.
Realizing this we propose a novel change-point detection based

hybrid classification model for gestural activity recognition
that exploits the abrupt changes in gestural signals along with
its inherent pattern to obtain divergence estimation between
the time-series samples. We validate the proposed approach
using real life data traces. Our work thus affirms how a
microscopic gestural activity recognition model augmented
with activities of daily living can provide practical insights
that (a) helps capture the finer correlation of the activities
of daily living with the acute physiological symptoms and
psychological conditions, and (b) provide additional contexts
which help devise novel interventions that can be effectively
used in managing functional and cognitive health decline of
older adults.
Key Contributions:

• Our key contribution lies in the proposed change
point detection based gestural activity recognition ap-
proach (GeSmart) which represents the instantaneous
perturbation of gestural signals as an abrupt change
and continuous perturbation as a specific pattern and
help detect the microscopic gestures. This provides a
practical way to determine fine-grained discrimination
of physiological and psychological health markers,
without incurring the expensive and laborious in-situ
laboratory testing.

• As a secondary contribution, we posit that low power,
cheap accelerometer sensor is a potential option if
integrated inside the smart jewelries (e.g., earrings,
necklace etc) and provide better detection accuracy
and substantial energy savings compared to the acous-
tic sensors.

• We evaluate the accuracy of GeSmart using real life
activity traces from 10 domestic users, collected over
several weeks. Our results show that, given normal
everyday patterns of domestic living, GeSmart can
provide very high accuracy in identifying microscopic
gestural activities (≈ 95%), and significantly decrease
the energy consumption (by approx. 30%). These
results demonstrate the viability of the GeSmart ap-
proach, for both finer-grained gestural activity recog-
nition and long-term healthy independent living.

The rest of the paper is organized as follows. We first discuss
the related work and then present the high-level overview of the
proposed GeSmart framework. We highlight our initial findings
on gestural activity recognition based on C4.5 classification
algorithm. We then describe how change point detection based
gestural activity detection method can be integrated with the
regular classification approach. We develop an earring system
using off-the-shelf commercially available accelerometer sen-
sor and present our detailed experimental results. Finally, we
identify future research directions and conclude our work.

II. RELATED WORKS

Most of the approaches in monitoring human gestures
involve image or video feed analysis for tracking facial expres-
sions or body postures. Early works for tracking gestures were
unimodal which were based on only one criterion like vocal
features, facial expressions, body postures or physiological
changes [11], [12], [13], [14], [15], [17], [18]. After gathering
data from different modalities, most of the work have focused



on a supervised pattern classification algorithms to detect the
gestures. But this approach fails to address the problem when
a person has any overlapped gestures. The vocal features
has also been used in gesture analysis based on the speech
analysis techniques using signal processing. To differentiate
between different variants of vocal sound Mel-Frequency Cep-
stral Coefficient (MFCC) has been applied and 66% average
accuracy for detecting 6 emotions has been reported [21].
[22] added acceleration of pitch and MFCCs to form feature
streams. It has applied different machine learning techniques
for stressed/neutral style classification and Gaussian SVM for
4-class speaking style classification. Physiological signals like
heart rate, skin conductivity, muscle activity etc have also been
considered for inferring gestures achieving overall accuracy
of 81% [15]. Recently researchers have proposed multimodal
approaches where multiple sensor modalities have been con-
sidered simultaneously. [8] [9] proposed the bi-modal approach
to capture human gestures by using both facial expression
and body postures whereas [10] used multi-modal approach
where facial expressions, vocal features, body movements and
gestures have been fused altogether. [23] proposed a rule
based approach by applying classification of audio-visual data.
The multimodal approaches indicate that the performance of
gesture or emotion recognition can be improved by multi-
modal sensor data fusion. A mobile sensing system leveraging
the microphone sensor has been proposed to detect non-speech
body sounds or gestural activities in [24].

In our work, we propose to use an accelerometer sensor
based earring to detect the subtle movements users made
during the course of a gestural activity occurrence. Our work
is closest to [16] which used wearable accelerometer sensor to
identify social actions. The main difference between [16] and
GeSmart is that former uses HMM model to analyze face-to-
face interactive conversing behaviors (e.g., speaking, laughing,
gesturing, drinking, or stepping) in a densely crowded social
gatherings to find out the correlation between movement
acceleration and a person’s social activity, ability of talking in a
group with known/unknown persons or power of dominating in
a group conversation. While [16] focused on building a model
for only conversing behaviors using wearable accelerometer
sensor incorporated with a badge (which is not ubiquitous),
we focus in this paper to identify infrequent gestural activities
which are independent of any specific posture (i.e., standing,
sitting, running etc.) or predefined environment (i.e., alone or
crowded) using ubiquitous device (i.e., earring). In general
it is easier to detect fine-grained movements when the user
posture and context are known a-priori such as conversing in a
standing position [16]. But in this paper we focus on building
a generic gestural activity recognition model independent of
any specific location or postural position of a user. Indeed
we particularly focus on specific gestural activities rather than
social interactions which have long-term correlation with the
physiological and psychological health of a person.

III. AN OVERVIEW OF GESMART FRAMEWORK

Fig. 1 shows a schematic representation of our proposed
GeSmart model. It consists of the following logical steps. 1)
Data Collection: gathering the accelerometer readings from
Chronos through the bluetooth access point. 2) Device Position
setup: Calculating average change-point score for each gestural
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Fig. 1. An overview of our model

activities from four different body positions. 3) Data Segmen-
tation: Derive data segments corresponding to movement com-
ponents (i.e., framing, windowing etc.); 4) Feature Extraction:
Estimate accelerometer data features from each data segment
incorporating change-point score; 5) Feature Selection: Rank
features according to the contributions of achieving separation
among classes associated with different change-point scores;
and select feature sets that minimize the overlap among classes
as associated with different change-point scores; 6) Robust
Classification: Use 10-fold cross validation to estimate the
quality of change-point score based classification for individual
GAs; finally, 7) Gestural Activity Detection: Apply the hybrid
classification model on real data traces to detect the fine-
grained GAs.

IV. GESTURAL ACTIVITY DETECTION: INITIAL STUDY
AND FINDINGS

Given our focus on detecting gestural activities, we first
present the challenges of capturing and recognizing gestural
activity’s acceleration patterns in perspective of human body
movement and motion. The goal here is to establish that with
only an accelerometer based system we can leverage the non-
speech body sound associated with a variety of GAs.

A. Anatomy of Gestural Patterns

The instantaneous or continuous periodicity of gestural
events and their impact on human motion pose significant
challenge on detecting them successfully. Different gestural
activities has different intensity and motion characteristics,
which may posit diagnostically valuable movement informa-
tion to distinguish them. These underpinning characteristics
are correlated with physical constraints of a person generating
unique capturable human motion patterns at occurrences. Ev-
ery spontaneous gestural activity (e.g., coughing, yawning etc.)
occurs when a sequence of events is stimulated by the presence
of sputum or foreign particles in the main, central airways of
a person [28]. For example, in case of normal coughing the
sequence of events are referred to as the sequence of irritation,
inspiration, compression and expulsion [28]. Irritation is an
abnormal stimulus (inflammatory, mechanical, chemical or
thermal) which provokes sensory fibers to send impulses to
the brain’s medullary cough center. In the inspiration phase the
glottis becomes wide open due to reflex muscle contraction.
Movement of glottis, respiratory muscles and the branches
of the bronchus are closely tied during the course of cough
phase. Thus these four phases describe the major effects
of the cough reflex. Each phases causes unique pattern of
movement associated with the human body as shown in Fig. 2.
In Fig. 2, we see a sudden downward acceleration change
due to the movement of head from irritation to inspiration
state. Then inspiration to compression state causes almost no



Irritation Inspiration Compression Expulsion

Fig. 2. Normal Coughing Consists of four events

Fig. 3. (1) Chronos. Wrist Watch, CC1111 USB RF access point, eZ430
USB programming and debugging interface (b) Coughing data from Chronos
used as earring

acceleration downward of head. Again, we see sudden upward
acceleration change of head from compression to expulsion
state. To capture these slightest movements and acceleration
changes of the user, we place an accelerometer based system,
Chronos (Fig. 3) corresponding to different body position as
a smart jewelry such as earring and necklace.

B. Recognizing Gestural Events

Although we are able to define different micro events
that construct human gestures, those micro events’ duration,
occurrence sequence and acceleration features (i.e., x, y and
z axis data features) in terms of body movements vary from
one gesture to another. For example, normal cough consists of
four events: irritation, inspiration, compression and expulsion
but normal yawning consists of only irritation, inspiration and
expulsion with different duration ratio [28]. Even in case of dry

Fig. 4. Acceleration (magnitude =
√

x2 + y2 + z2) and corresponding
Change-Point Score of talking, coughing, yawning and deglutition

coughing caused by tuberculosis, consecutive coughing may
cause intense pain in the throat creating several extra compres-
sion events. Thus it is challenging to recognize gestural activi-
ties using an unified model. While using Chronos as an earring
to capture these coughing events’ acceleration due to its impact
on head, we note that the x and z axis accelerometer sensor
data are always steady, but y axis acceleration increases when
the transition from irritation to inspiration occurs and decreases
when the transition from compression to expulsion occurs (see
Fig. 3). Fig. 4 depicts that different gestural activities has
almost similar movement (i.e., acceleration) patterns making
the classification problem more challenging. To distinguish
these similar statistical features we propose to use change-point
scoring method on each statistical feature which helps capture
the fine-grained changes between the gestural activities. Fig. 4
shows the change-point scores of magnitudes applied on each
statistical feature which enlightens the unique pattern for each
of the gestural activity measures. Next we focus on developing
the smart earring prototype, finding out its most informative
position on the body, and designing robust classification and
change point detection based hybrid classification model.

C. Device Setup and Customization

The goal for selecting a device for our earring prototype
development was mainly cost, form factor, rapid customization
and ease of deployment and data collection. The Texas Instru-
ments Chronos development [37] was found to fit our needs
and used for the development. The Chronos is a development
platform built around an MSP430-compatible system-on-chip
with an integrated wireless modem. Communications between
a computer and the Chronos modem was done by a USB-
interfaced “access poin” that comes with the kit. Data between
the host system and the access point is communicated through
a virtual COM port abstracted by the access point driver
distributed by Texas Instruments. The accelerometer included
with the Chronos platform is a Bosch BMA250 [39]. The
BMA250 exposes an SPI and I2C interface for communication,
and internally utilizes a 10-bit analog-to-digital converter.
Serial communications are the limiting factor in sampling rates,
offering a bandwidth of up to 1000 Hz. The BMA250 has a
programmable range of 2g to 16g. The Chronos ships pre-
programmed device with an evaluation firmware that demon-
strates the features of the device, including the reading of raw
accelerometer data, but the software from Texas Instruments
does not provide an option to save the data received to
disk. The simple binary serial protocol used is not described
in Texas Instruments documents, and collecting information
about the protocol by reading the publicly available source
code for the firmware was found to be impractical. In an effort
to develop interfacing software, communications between the
Texas Instruments host-side software and the virtual COM port
were monitored, and the protocol was elucidated by analyzing
those communications. The protocol was re-implemented, and
software was developed in C# to attach to the virtual COM
port provided by the Chronos access point and poll for
accelerometer data. Data was saved to disk in a CSV format.

D. Device Position Setup

We conducted various experiments to find out the most
informative device position to capture the most significant
acceleration of human body movements for different gestural
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Fig. 5. Comparing different body positions (pant pocket, chest pocket, neck,
ear) to capture different types of gestural motion

level activities. We performed extensive study on real data
traces collected from 10 users using our prototype system
to confirm the most informative position on the body. This
test consisted of two parameters: the first being body position
(pant pocket, chest pocket, neck and ear) and the second being
gestural activities (silence, talking, coughing, yawning and
deglutition). We recorded the five types of gestural activities’
accelerometer data from the device and took the average
accelerometer magnitudes and average change point scores
of accelerometer magnitude (magnitude =

√
x2 + y2 + z2)

to compute the average acceleration changes in each gestural
activity. Fig. 5 presents the change point score with respect to
different body positions and gestural activities. The change-
point score we used is an abrupt signal changes measure
based on subsequence pattern matching [29]. We describe
details and significant impact of this algorithm on gestural
activity recognition in later part of our paper. We compared
the average change-point scores and average magnitudes of
the captured accelerometer data with respect to different body
positions for different gestures. Fig. 5 shows that considering
average magnitudes, it is impossible to detect the best position
on the body for gestural activity recognition. But considering
average change-point scores, it is noted that among the four
locations, the ear gives us greater average change-point scores
for all types of gestural activity, except silence. Intuitively,
the breathing motion only affects chest and neck creating
abrupt changes in acceleration than at pant pocket or ear.
This continuous changes in acceleration due to the inherent
breathing activity poses challenges to detect our finer GAs. In
fact, through our device position experimentation as shown
in Fig. 5 in presence of a variety of GAs along with the
continuum regular ADLs, we establish that the position ear
is always less affected by any external noise sources. To
reduce this breathing noise, prior researchers [3], [5], [6],
[7], [16], [19], [20] proposed to use multiple levels of noise
reduction methods. In our case, intelligent determination of
this position a-priori help reduce the unwanted noise created
from the breathing gestural activity. Fig. 5 showed that the
position ear is more informative and noise free than other three
positions; pant pocket, chest pocket or necklace. Therefore,
we postulate that given our goal of capturing a wide range
of gestural activity events in presence of normal ADLs, the
position ear is the most informative and noise free location for
the GeSmart jewelry device design and real deployment.

Fig. 6. Chronos in different position

V. CHANGE POINT DETECTION ALGORITHM

Change point detection refers to identify the instances
when the probability distribution of a stochastic process or
time series changes. As we note previously that the standard
statistical features fail to exploit the abrupt changes in gestural
signals we propose to use change-point detection to capture
the signal divergence. We design a hybrid classification model
and use the relative Pearson divergence as a divergence mea-
sure estimated by a method of direct density-ratio estimation
method [29]. We first mathematically describe the evolution of
change point scoring for one dimensional time series sample
of single valued sensor, and then consider multi-dimensional
abrupt change-point detection estimation associated with the
combination of three axis-accelerometer observational values
and their standard statistical features.

To explain the method, let consider y(t) as a 1-dimensional
time series with single subsequence sample at time t where
y(t) =[x-axis reading, t]. Then, the subsequence of time series
at time t with length k be,

Y (t) = [y(t)T , y(t+ 1)T , ..., y(t+ k − 1)T ]T ∈ Rk (1)
where y(t)T represents the transpose of y(t). Now, let consider
Y(t) be a set of n retrospective subsequence samples starting
at time t. Then,

Y(t) = Y (t), Y (t+ 1), ..., Y (t+ n− 1) ∈ Rk×n (2)
Now, let consider y(t) be a d-dimensional time series with n

subsequence sample where y(t)=

(
x− axis t
y − axis t
z − axis t

)
Then, the

subsequence of time series at time t be:
Y(t) = Y (t), Y (t+ 1), ..., Y (t+ n− 1) ∈ Rdk×n (3)

Y(t) forms a Hankel matrix and plays a key role in change-
point detection based on subspace learning [33]. In our model,
we considered k = 10, n = 50 and d = 3. We compute the
dissimilarity measure between two consecutive segments Y(t)
and Y(t+ n), and use it as the plausibility of change points
i.e., the higher the dissimilarity measure is, the more likely the
point is a change point as depicted in Fig 7. Mathematically,
we represent the dissimilarity measure as follows,

D(Pt|Pt+n) +D(Pt+n|Pt) (4)
where Pt and Pt+n are probability distributions of samples
in Y(t) and Y(t+ n), respectively. D(P |P ′) denotes the f-
divergence [34]. We use Pearson Divergence Estimation(PE)
[35] which is a modified version of f-divergence and represent
PE divergence as follows,

PE(P |P ′) = 1

2

∫
p′(Y )(

p(Y )

p′(Y )
− 1)2 × dY. (5)

Where p(Y ) and p′(Y ) are probability densities. The formula-
tion of Pearson divergence from f-divergence is omitted due to
the space constraints. Since the probability densities p(Y ) and



Fig. 7. One-dimensional time-series data.

p′(Y ) are unknown in practice, we cannot directly compute
the f − divergence.

To estimate PE divergence, we use relative density-ratio es-
timator (RuLSIF) [36]. Considering α-relative PE-divergence
for 0 < α < 1, we have,

PEα(P |P ′) =
∫
p′α(Y )(

p(Y )

p′(Y )
− 1)2 × dY. (6)

where p′α(Y ) = αp(Y ) + (1 − α)p′(Y ) is α-mixture density.
So the final dissimilarity measure is

PEα(P |P ′) + PEα(P
′|P ) (7)

Given α − relativedensity − ratio estimator ĝ(Y), an ap-
proximation of the PE divergence is constructed as:

ˆPEα = − α

2n

n∑
i=1

ĝ(Yi)
2 −

1− α
2n

n∑
j=1

ĝ(Y′j)
2 +

1

n

n∑
i=1

ĝ(Yi)−
1

2
(8)

We include the estimated change-point score (i.e., dissimilarity
measure PEα(P |P ′) + PEα(P

′|P )) of the most popular
statistical features in our model. We use the change-point
algorithm implementation [38] to estimate the change-point
score of a variety of gestural activities as shown in Fig 4.

VI. HYBRID CLASSIFICATION MODEL

We propose a hybrid classification technique based on
change point detection method combining traditional feature
based technique with additional change point score based
filtering. Detecting abrupt changes in time-series data, relying
on change-point detection methods, can be classified into two
categories:

• Real-time detection, targets applications that require
immediate responses such as robot control, intrusion
detection etc..

• Retrospective detection, useful for more robust and
abrupt signal change detection although detection may
require longer reaction periods.

In this work we propose to incorporate retrospective change
point detection based method along with the traditional clar-
ification technique to capture the finer movement changes in
GAs.

A. Data Collection
We recruited 10 volunteers (including 1 female) with

different heights and weights to collect five different gestural
activities (i.e., silence, talking, coughing, yawning and deg-
lutition) in two postural positions (i.e., standing and sitting).

TABLE I. LIST OF GESTURAL ACTIVITIES

Index Gesture Description
1 Silence Without any gestural activities

2 Coughing Natural two coughing

3 Yawning Yawning as natural as possible

4 Deglutition Natural water deglutition

5 Talking Normal talking

The participants were asked to wear the “Chronos” on their
ear and to adjust the position of the hook behind their ear
such a way that it seems like he or she is wearing an earring.
They were asked to perform 5 different gestural activities in
two different postural states. The types of gestural activities
and a short description of each task are listed in Table I.
Most of the previous works considered talking and silence
activities as noise in their classification methods [24] [16].
For example, [24] focuses on non-body sounds where talking
and silence created some noises in their classification methods
creating the need of filtering them out. In our system, the
choice of device position (i.e., use of device as earring)
and change-point detection algorithm conform fine grained
classification for both silence and talking. In total, each of
our participants contributed at least 15 minutes of continuous
recordings consisting of a controlled sequence of five gestural
activities. Table I shows the detail description of our captured
gestural activities.

To examine the acceleration characteristics of the collected
accelerometer data in different gestural activities, we plot their
corresponding spectrograms in Fig. 4. Spectrogram illustrates
a visual representation of the x, y and z axis spectrum of a
gestural event as it varies with time. Silence is not shown
separately because it is always present in between two consec-
utive gestural events. The distinct spectral pattern is not clearly
visible in the original graph of x, y and z axis spectrum, while
change-point scoring for all of the gestural activities generates
a distinct spectral pattern.
B. Feature Extraction

The raw accelerometer data sampled from “Chronos” was
first segmented into frames of uniform length. We considered
the frame length of 48 ms and window size of 2 seconds. To
characterize gestural events’ body acceleration characteristics,
we employed a two-step feature extraction procedure. In the
first step, we extract a number of statistical accelerometer
features (i.e., mean, variance, standard deviation, maximum
and minimum of each axis readings, magnitudes of each
reading, Goertzel coefficients of 1-5 Hz, MFCCs etc.) from
each frame to construct frame-level features. In the second
step, we calculated the change-point score of each feature.

C. Feature Selection
We follow a two-step feature extraction technique which

generates a total of 33 features. As we implement the overall
feature extraction and classification method on limited resource
device (i.e., small computational memory and low battery
powered devices) and wearable platform (i.e., earring), we
aim to build our system more computationally efficient ex-
cluding the consideration of unnecessary features. Therefore,
the goal is to select a minimum number of features that
achieve reasonably good classification performance. We use
the correlation feature selection (CFS) algorithm to select
the subset of features [30]. The CFS algorithm evaluates the
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worth of a subset of attributes by considering the individual
predictive ability of each feature along with the degree of
redundancy between them. Subsets of features that are highly
correlated with the class while having low intercorrelation are
preferred. To identify locally predictive attributes we apply
forward Best First Search (BFS). It iteratively adds attributes
with the highest correlation in the class as long as there is no
other combinations of the attributes which generate a better
correlation. Finally we identify six features based on change-
point score of (variance of x, variance of y, variance of z,
standard deviation of Y, maximum x and minimum x) as the
most optimized feature set for the target classifier.

D. Classification Results
We use C4.5 as the classification algorithm. We choose

C4.5 over other classification algorithms because it is both
computationally efficient and lightweight to be implemented
in resource-constrained devices. We use six statistical features
and change-point score as frame level features with a frame
size of 21 samples and window size of 2 seconds on our
classifier. To validate our classifier’s performance, we used
k-fold cross validation [31] using k-value as 10. Table II
shows the class level true positive rate (TP rate), false positive
rate (FP rate), recall, precision and F-measure from the 10-
fold cross validation experiment of our classifier. Silence and
talking have been detected with a 95% and 96% accuracy
respectively as shown in Table II which is significantly higher
than the prior proposed classification methods [16], [24] ( [16]
could not detect silence, but reported 82% accuracy for talking.
[24] reported 74.38% and 81.06% accuracy respectively). From
Table III we see that our model outperforms other existing so-
lutions in detecting and recognizing different types of gestural
activities achieving an average of 94.8% accuracy.

VII. DISCUSSION

The correlation between the body motion and social be-
havior of the people has been well-established by the social
psychologists [25], [26], [27]. Existing research in social
psychology also highlights a strong correlation between the

TABLE II. THE TP RATE, FP RATE, PRECISION, RECALL AND
F-MEASURE FOR EACH CLASS FROM THE LOPO EXPERIMENT USING C4.5
AS CLASSIFIER AND CHANGE-POINT SCORE AS FRAME-LEVEL FEATURES

Accuracy TP Rate FP Rate Precision Recall F-Measure
Silence 95.7% 5.8% 96.4% 95.7% 96.0%

Coughing 86.0% 00.3% 84.0% 86.0% 85.0%

Yawning 90.5% 0.1% 93.8% 90.5% 92.1%

Deglutition 88.5% 1.9% 85.8% 88.5% 87.1%

Talking 96.5% 1.2% 95.9% 96.5% 96.2%

Weighted Avg. 94.8% 4.1% 94.8% 94.8% 94.8%

TABLE III. COMPARISON WITH PRIOR WORKS’ CLASSIFICATION
RECALL MEASURE

Methods Hayley Hung [16] 2013 BodyBeat [24] 2014 Our Model

Silence N/A 74.38% 95.7%

Coughing N/A 80.0% 86.0%

Yawning 24% 75.0% 90.5%

Deglutition 21% 72.09% 88.5%

Talking 82.0% 81.06% 96.5%

Weighted Avg. N/A 71.2 % 94.8%

speech and body gestures among the speaker and listener [26],
[27]. In this work, we propose a novel approach for gestural
activity recognition using only a single energy efficient sensor,
accelerometer embedded in an ubiquitous earring. GeSmart
attest significant energy savings and higher detection accuracy
compared to the existing methods (Fig. 9).
Privacy and energy efficiency: The larger group deployment
reinforced the importance of considering privacy aspects of
data logging, collection and analysis. Collecting sensor data,
particularly from microphone or camera, involves recording
people in unconstrained and unpredictable situations, both
in public and private space. It may include the recoding of
unnecessary audio or video information without proper consent
of the users which is unethical and often illegal. Hence, most
of the people are reluctant of wearing some devices which
capture audio or video of ADLs. Our system conforms user’s
privacy by avoiding audio or video recording. Meanwhile, only
using accelerometer can reduce significant amount of energy
drainage which is always a bottleneck. Fig. 9 (b) shows a sim-
ple measure of battery power drainage of different sensors in
Google Nexus 4 smartphone. It shows that that accelerometer
sensor help improve the battery life of smartphone 2.3 and
3.3 times respectively compared to an audio and audio cum
accelerometer sensor based activity recognition approach.
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VIII. CONCLUSION AND FUTURE WORK

Older adults’ health safety assurance has become increas-
ingly important as the number of elderly people living world-
wide and average life expectancy of them increases. In this
paper, we have exploited the significance of GAs on elderly
health-care and presented GeSmart, an energy efficient infre-
quent GAR model to predict the chronic behavioral conditions.
We advocate that microscopic gestural activity recognition
can provide useful insights for long-term care and behavioral
health. We propose a hybrid classification approach based on
change-point detection method which outperforms the previous
GA detection method’s accuracy by over 23.6% [24]. We have
also shown through extensive experimentations with a variety
of GAs that the position ear is a viable option to consider for
capturing slightest perturbation of gestural signal in presence
of regular ADLs.

We plan to explore the possible less energy consuming
classifiers (such as Dynamic Bayesian Network) for designing
energy-efficient smart devices in the form of jewelries. We also
plan to test our model on real target age group such as older
adults in an uncontrolled environment. Finally, based on the
early potential results reported in this work, we plan to bring
GeSmart to life by using it for several healthcare applications
such as agitation detection for Alzheimer’s patients or tremor
detection for Parkinson’s patients. The ability to recognize
GAs using just the motion sensor opens up the potential for
recognizing and analyzing people’s activities of daily living
(ADL) without explicitly capturing other costly sensor data
and paying for computational overhead. For minimizing the
ground truth collection and large scale deployment, we plan
to apply active learning and transfer learning techniques along
with our proposed approaches.
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