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Abstract
In biomedical studies, longitudinal processes are collected till time-to-event, some-
times on nested timescales (example, days within months). Most of the literature in 
joint modeling of longitudinal and time-to-event data has focused on modeling the 
mean or dispersion of the longitudinal process with the hazard for time-to-event. 
However, based on the motivating studies, it may be of interest to investigate how 
the cycle-level geometric features (such as the curvature, location and height of a 
peak), of a cyclical longitudinal process is associated with the time-to-event being 
studied. We propose a shared parameter joint model for a cyclical longitudinal pro-
cess and a discrete survival time, measured on nested timescales, where the cycle-
varying geometric feature is modeled through a linear mixed effects model and a 
proportional hazards model for the discrete survival time. The proposed approach 
allows for prediction of survival probabilities for future subjects based on their avail-
able longitudinal measurements. Our proposed model and approach is illustrated 
through simulation and analysis of Stress and Time-to-Pregnancy, a component of 
Oxford Conception Study. A joint modeling approach was used to assess whether 
the cycle-specific geometric features of the lutenizing hormone measurements, such 
as its peak or its curvature, are associated with time-to-pregnancy (TTP).
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1  Introduction

In biomedical studies, information is routinely collected longitudinally on vari-
ous biomarkers up to a time-to-event (usually censored), along with additional 
covariates. An often cited example of such data is from HIV clinical trial with 
the key longitudinal process of interest being CD4 counts. Many other examples 
from cancer studies, reproductive health etc. have been the motivation for the 
development of various methods in this area of research. In joint modeling, one is 
typically interested in (i) how to model the pattern of change of the longitudinal 
process, and (ii) to characterize the relationship between the survival event, the 
longitudinal process, and the covariates.

Most of the literature on joint modeling of longitudinal process and time-to-
event have focused on modeling the mean of the longitudinal process, where the 
dependence between the longitudinal process and time-to-event is through the 
mean process with subject-specific random effect(s) [1, 2]. Joint modeling in the 
context of longitudinal process and discrete time-to-events was first studied by 
Albert et  al. [3], and later by Qiu et  al. [4] in the context of shared parameter 
framework approach. Recently, some authors have also considered modeling the 
dispersions of the longitudinal process and time-to-event [5, 6]. In many situ-
ations (the motivating example discussed below), it may be more of interest to 
study the geometric features of a cyclical longitudinal process. Another common 
aspect of the existing joint modeling literature is that they focus on the situa-
tions where the longitudinal process and the time-to-event are on the same time 
scale, while there are examples where this assumption may not be true. For 
instance, in our motivating example, the longitudinal process is measured on a 
daily scale while the time-to-pregnancy is measured in menstrual cycles (approxi-
mately monthly). In this paper, our main objective is to jointly model cyclic lon-
gitudinal process with time-to-event, measured on nested timescales, where the 
dependence between the cyclic longitudinal process and time to event is captured 
through cycle-level geometric features of the longitudinal process with subject-
specific random effects.

We now present our motivating example from reproductive health studies. 
Reproductive hormones, like the luteinizing hormone (LH), estrogen and its 
metabolites (eg, estrone-3-gluconoride (e3g) etc) patterns play an important role 
in the study of conception, infertility and other chronic disease [7–12]. However, 
data on these endogenous hormones is difficult to quantify due to complex cycli-
cal patterns of hormones, the need for timed collection, and the cost required for 
multiple sample collections. So, much of research has focused on menstrual cycle 
characteristics such as cycle length as proxies for cumulative hormonal exposure 
and/or hormonal patterns as they can be easily assessed in population studies. 
Short and long or irregular cycles have been associated with increased risks for 
breast cancers, osteoporosis, type 2 diabetes mellitus, cardiovascular diseases etc. 
Consequently, it is important to be able to study the hormonal profiles directly. 
LH has important role in the luteinizing of the follicle and the functional matura-
tion of the nucleus of the oocyte [13]. Abnormalities in the LH surge may impair 
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the development of the oocyte and consequently it’s fertilization ability. Addi-
tionally, LH surge abnormalities, such as reduced peak values, have been associ-
ated with infertility [14, 15], indicating that shape of the hormonal curve plays 
an important biological role as well. Moreover, the pattern of the LH profile is 
highly variable in normal menstruating women. Motivated by these issues, we are 
interested in modeling the LH surge and its relationship with time-to-pregnancy. 
A source of such data arises in the prospective pregnancy studies, where cou-
ples are followed from the time they go off contraception (with the intention of 
becoming pregnant) until they get pregnant. In these studies, women use ovula-
tion kits which track the LH and e3g daily within a fixed window to precisely 
capture the impending day of ovulation in each menstrual cycle. This provides 
an opportunity to study the patterns of surge of these hormones, especially LH 
and its relationship with time-to-pregnancy. Motivated by scietific hypothesis, we 
focus on three geometric features, namely, the value of LH peak, the curvature at 
the LH peak and the average curvature of the LH profile within fertile window 
(the window of opportunity around ovulation for conception in a menstrual cycle) 
from the longitudinally measured LH values within each menstrual cycle.

Motivated by the example described above, we consider joint modeling of the 
cyclic longitudinal process ("hormonal profile") and a discrete survival time ("time-
to-pregnancy"), where one is interested in modeling various geometric features 
of the longitudinal process at the cycle-level (e.g., value at the peak, curvature at 
the peak, average curvature within fertile window of a cycle). In the next section, 
we introduce our data and the modeling framework. In Section 3, we provide the 
estimation approach for the parameters of interest and also discuss the prediction 
approach for the time-to-event distribution of a new subject given its longitudinal 
measurement history. We assess the performance of the proposed estimates through 
simulation studies in Section  4. In Section  5, we present detailed analysis of the 
Stress and Time-to-pregnancy, a sub-component of the Oxford Conception Study 
[16, 17].

2 � Model and Notation

For woman i, i = 1,… , n , let Ti denote the time-to-pregnancy, i.e., the number of 
menstrual cycles it took to get pregnant. As is typical in time-to-event studies, Ti 
is subject to right censoring and one observes Xi = min(Ti, �i) and �i = I(Ti ≤ �i) , 
where �i denotes the censoring time and I(⋅) denotes the indicator function. Through-
out this article, we assume that the censoring time �i is independent of Ti.

In prospective pregnancy studies, ovulation kits are used by each woman par-
ticipant to identify the day of ovulation. These kits typically require testing to be 
done on day 6 through day 25 of every menstrual cycle for measuring the hor-
mone levels to identify the day of ovulation within each cycle. So, essentially the 
test results in underlying hormonal data on LH from day 6 through day 25 in each 
cycle for every woman. We denote the hormonal data in a cycle as h(t), t ∈ [L,M] 
where L,  M are days from the start of cycle where hormone measurements are 
collected within each menstrual cycle and t̂ is the time point from the start of 
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the cycle where the hormonal profile reaches the highest level (peak). Also, we 
define the fertile window “the window of opportunity for conception around ovu-
lation" in a cycle as [t̂ − 5, t̂ + 1]. The three geometric features of hormonal pro-
file that are of interest here are: (1) cycle-specific curvature at the hormone peak, 
k(t̂) = |h��(t̂)|{1 + h�(t̂)}−3∕2 , which measures the sharpness of the hormonal pro-
file at the peak time; (2) cycle-specific hormone peak value, h(t̂) ; (3) the average 
curvature of the hormone profile within fertile window, 

∑t̂+1

t=t̂−5
k(t)∕6 ; within each 

cycle.
Let Ỹij be the true geometric feature of hormonal profile of interest for i-th 

woman in menstrual cycle j and let Zij be the vector of covariates for Ỹij . Denote 
by Yij the observed geometric feature of hormonal profile for i-th woman in men-
strual cycle j. The observed geometric features for each cycle are then calculated 
from the observed hormone data, first by using some smoothing technique, e.g. 
B-splines and then calculating the feature based on the formula mentioned in the 
previous paragraph.

We relate the true geometric feature Ỹij to the covariates Zij through a linear 
model with subject-specific random intercept bY ,i,

where � is the vector of regression coefficients corresponding to Zij . The observed 
hormonal geometric features Yij are then modeled by

where �ij are all independent and identically distributed and follow N(0, �2) 
distribution.

We use the discrete survival model by Sundaram et al. [18] for TTP where the 
hazard of discrete survival time is related linearly to the covariates when trans-
formed by a complementary log-log function. It also accounts for the fact that, 
the hazard for conception in a cycle is zero if the couple does not have any inter-
course in the fertile window of that cycle. The model is given by

where for subject i in cycle j, Uij is the vector of covariates for TTP (which could 
have overlap with Zij , the covariates for the geometric features), Aij is the indicator 
of intercourse within fertile window, �j is the baseline effect for cycle j, � represents 
the regression coefficients of Uij and bT ,i is a subject-specific random effect. Recall 
that the fertile window refers to the days in a menstrual cycle around the day of ovu-
lation when a couple having intercourse can potentially conceive; Aij = 0 means that 
couple i did not have intercourse during the fertile window of cycle j, which implies 
that there is no risk of pregnancy in that cycle.

To study the association between a woman’s hormonal profile and TTP, we 
take into account the cycle-level geometric feature of a woman’s hormonal pro-
file, Ỹij , in (2). Recalling that Ỹij = Z�

ij
� + bY ,i , we propose the following model

Ỹij = Z�
ij
� + bY ,i,

(1)Yij = Ỹij + 𝜖ij,

(2)�i(j ∣ bT ,i,Uij) = 1 − exp
[
− Aij exp{bT ,i + �j + U�

ij
�}

]
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where �� is the regression coefficient of Ỹij , and assume that bi ≡ (bY ,i, bT ,i) follows 
multivariate normal distribution with mean 0 and variance covariance matrix D, 
MVN(0,D) , with

and bi ’s are independent and identically distributed (iid) and independent of �ij . The 
association between the hormonal profile and TTP is taken into account not only 
through the fact that the cycle-level geometric feature is included in the model for 
TTP as a predictor, but also through the possible correlation between subject spe-
cific random effects bY ,i and bTi.

2.1 � Estimation and Prediction

Denote the observed data for subject i as Oi = (Xi, �i, Yij, Zij,Uij, 1 ≤ j ≤ Xi) . The 
observed data log likelihood can be written as

where � = (�, �,�,� , �2
1
, �2

2
, �)� , b = (bY , bT ),

and fYij (Yij|b) is the density function of normal distribution with mean (Z�
ij
� + bY ) 

and variance �2.
One natural way of finding estimates for � is to maximize the log likelihood func-

tion (4) with respect to � . However, the two-dimensional integration with respect to 
the random effects does not have a closed form. We propose to use Gaussian quad-
rature for approximation. Specifically, let b = Z̃R where R is the Choleskey square 
root of the covariance matrix D (e.g. D = R�R ) and Z̃ is a two-dimensional row-
vector of independent standard normal variables. Let {(Z̃k,wk), k = 1,… ,K} be the 
K Gaussian nodes and weights for a standard normal variable, then the K2 nodes of b 
may be constructed by

(3)
𝜆i(j|bT ,i, bY ,i,Uij) =1 − exp

[
− Aij exp{bT ,i + 𝜌j + U�

ij
� + 𝜓𝜇Ỹij}

]

=1 − exp
[
− Aij exp{bT ,i + 𝜌j + U�

ij
� + 𝜓𝜇(Z

�
ij
� + bY ,i)}

]
,

D =

(
�2
1

��1�2
��1�2 �2

2

)
,

(4)l(�) =

n∑

i=1

log

{

∫ fi(Xi|b)�i Si(Xi|b)1−�i
Xi∏

j=1

fYij (Yij|b)fb(b)db
}
,

Si(j|b) = exp

{
−

j∑

k=1

Aik exp(bT + �k + U�
ik
� + ��(Z

�
ik
� + bY ))

}
,

fi(j|b) =Si(j − 1|b) − Si(j|b),

bk,s = (Z̃k, Z̃s)R = (R11Z̃k + R21Z̃s,R12Z̃k + R22Z̃s), k, s = 1,… ,K,
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where Rks is the (k,  s)th element of R, and the associated weight is calculated by 
wkws . Then the likelihood contribution of the i-th subject could be approximated by

We then maximize the approximated log likelihood function to get estimate of � , 
denoted by �̂ . The covariance matrix Σ of � is estimated by using the observed infor-
mation matrix.

One nice feature of using the joint modeling approach is that we could use 
hormonal profile characteristics to predict TTP distribution. Based on a joint 
model fitted on a sample of size n, we are interested in predicting the time-to-
event distribution for a new subject i that has provided a set of longitudinal 
measurements up to cycle j0 . Denote Σ̂ = ̂var(�̂) as the estimated variance covari-
ance matrix for � . The partial information for the new subject i is denoted by 
Di(j0) = {Yi(j0),Ui(j0), Zi(j0)} , where Yi(j0) = {Yij, j ≤ j0} , Ui(j0) = {Uij, j ≤ j0} and 
Zi(j0) = {Zij, j ≤ j0} . Prediction of the conditional probability of surviving cycle 
j is of interest only if the couple have not achieved pregnancy at cycle j0 . Hence 
we focus on the conditional probability of surviving cycle j given survival up to 
cycle j0.

where Dn denotes the sample on which the joint model was fitted and on which the 
predictions will be based. The first part of the integrand can be written as

The second part is the posterior distribution of the parameters given the observed 
data. By using arguments of standard asymptotic Bayesian theory and assuming that 
the sample size n is sufficiently large, we approximate the distribution of {� ∣ Dn} by 
N(�̂, Σ̂).

Given Di(j0) and � , the posterior distribution of bi is

∫ fi(Xi|b)�i Si(Xi|b)1−�i
Xi∏

j=1

fYij (Yij|b)fb(b)db

≈

K∑

k=1

K∑

s=1

fi(Xi|bk,s)�i Si(Xi|bk,s)1−�i
Xi∏

j=1

fYij(Yij|bk,s)wkws.

(5)
𝜋i(j ∣ j0) ≡Pr(Ti ≥ j ∣ Ti > j0,Di(j0),Dn)

=� Pr(Ti ≥ j ∣ Ti > j0,Di(j0),Dn,�)p(� ∣ Dn)d�,

(6)

Pr(Ti ≥ j ∣ Ti > j0,Di(j0),Dn,�)

=� Pr(Ti ≥ j ∣ Ti > j0,Di(j0), bi,�)p(bi ∣ Ti > j0,Di(j0),�)dbi

=� Pr(Ti ≥ j ∣ Ti > j0, bi,�)p(bi ∣ Ti > j0,Di(j0),�)dbi

=�
Si(j ∣ bi,�)

Si(j0 ∣ bi,�)
p(bi ∣ Ti > j0,Di(j0),�)dbi.
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This posterior distribution of the random effects is of nonstandard form.
Analogous to arguments presented in Rizopoulos, Mclain et  al. [6, 19], we 

assume posterior conditional bi ∼ a multivariate t distribution centered at the empir-
ical Bayes estimates, b̂i = argmax

b
{log p(Ti > j0, b,Di(j0)|�̂)} , and scale matrix

with four degrees of freedom.
A Monte Carlo sample of �i(j ∣ j0) can be obtained using the following simulation 

scheme:

•	 Step 1. Draw �(l) ∼ N(�̂, Σ̂).
•	 Step 2. Draw b(l)

i
∼ t4{b̂i, ̂var(b̂i)}.

•	 Step 3. Compute �(l)

i
(j ∣ j0) = Si{j ∣ b

(l)

i
,�(l)}∕Si{j0 ∣ b

(l)

i
,�(l)}.

Repeat Steps 1–3 for l = 1,… , L times, where L denotes the Monte Carlo sample 
size. In our prediction analysis, we used L = 500 samples to estimate the mean and 
95% quantile based confidence intervals.

3 � Simulation Studies

In this section, we conducted simulation studies to investigate the performance of 
the proposed estimates using likelihood-based approach under various settings. 
For simplicity, we assumed covariates Uij = Ui and generated Ui from N(2, 1) . Let 
Zij = Zi = (1,Ui) . bi = (bY ,i, bT ,i) were generated from MVN(0,D),

The random error �ij were generated from N(0, 0.92) and Yij were generated using (1). 
Similarly, TTP for i-th subject is simulated using (3). True values of �, �,� , �1, �2 , 
and � are listed in Table 2. Subjects who had not experienced an event till j = 6 were 
censored.

We have considered 9 different simulation settings with varying sample sizes 
(n= 300, 400, and 500) as well as, with varying intercourse success probabilities 
( p(Aij) = 0.95,0.90 and 0.85). These choices are made in such a way that a particular 
case ( n = 400 , p(Aij) = 0.95 ) closely mimics the real data in terms of distribution 
of TTP while the other cases either overestimate or under-estimate the number of 
cycles and sample size in comparison to real data. For each simulation scenario, 
m =1000 replicates are generated. We split each replicate data into a training set 

(7)

f
bi
(bi ∣ Ti > j0,Di(j0),�) ∝ p(Ti > j0, bi,Di(j0) ∣ �)

=Si(j0 ∣ bi,�)

j0∏

t=1

fYit (Yit ∣ bi,�)fbi(bi)dbi.

̂var(b̂i) = {−𝜕2 log p(Ti > j0, b,Di(j0)|�̂)∕𝜕b�𝜕b|b=b̂i}
−1,

D =

(
�2
1

��1�2
��1�2 �2

2

)
.
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(randomly selected 2/3rd) and a test set, as is originally only done for real data. 
Table 1 provides a summary of TTP distribution (both overall as well as in the train-
ing set). The shaded row indicates the simulation scenario that mimics the real data 
in terms of sample size (337 in real data), # of cycles (1023 in real data), intercourse 
probability ( ≈ 94.7% in real data) and # of cycles in training data (686 in real data). 
In Table 1 we have provided avg. TTP, proportion of right censoring ( p̂(𝛿 = 0) ), # of 
cycles in overall as well as in training sets, each averaged (mean(Mn)/median(Med)) 
over 1000 replicates (provided with interquartile range (IQR)).

3.1 � Estimate Accuracy with the Training Sets

For each replicate data, training set is used to fit the model, while test set is used 
to estimate predictive accuracy. Based on training set, we have reported estimation 
bias (Bias), standard deviation (SD) and coverage probability (CP) based on 95% CI 
of the parameter estimate with varying samples sizes (n= 300, 400, and 500) for a 
given intercourse success probability, p(Aij )= 0.95, in Table 2. Same set of metrics 
are reported for p(Aij ) = 0.90 and 0.85 in Appendix 1, Tables 7, and 8 respectively. 
ntr represents the training set size, which is 2/3rd of the sampled data. Estimation 
used Gaussian quadrature with 50 nodes and the simulation was conducted in soft-
ware R/4.2.The simulation results show that the proposed estimation approach 
works well in all settings considered here with reasonably small bias and coverage 
probabilities close to the nominal level. For �3 , �1 , and � , CP falls slightly below 
95% relative to other parameters, which may be attributable to numerical approxi-
mation of marginal likelihood.

Table 1   Summary of TTP distribution across simulation settings: avg. TTP, # of cycles and prop. of right 
censoring ( ̂p(𝛿 = 0) ) averaged over 1000 replicates

The highlighted row mimics the oxford data

Settings TTP (full data) TTP (training set)

Avg. TTP # of cycles p̂(𝛿 = 0) # of cycles

n p(Aij) Mn (IQR) Med (IQR) Mn (IQR) Med (IQR)

300 0.95 2.83 (0.16) 0848 (47) 0.24 (0.03) 567 (38)
300 0.90 2.88 (0.16) 0862 (47) 0.24 (0.03) 576 (38)
300 0.85 2.93 (0.16) 0877 (47) 0.24 (0.03) 586 (39)
400 0.95 2.83 (0.14) 1133 (56) 0.24 (0.03) 755 (45)
400 0.90 2.87 (0.14) 1148 (57) 0.24 (0.03) 767 (43)
400 0.85 2.92 (0.14) 1170 (56) 0.24 (0.03) 781 (45)
500 0.95 2.83 (0.12) 1416 (62) 0.24 (0.03) 945 (51)
500 0.90 2.88 (0.12) 1438 (60) 0.24 (0.03) 960 (49)
500 0.85 2.92 (0.12) 1462 (62) 0.24 (0.03) 975 (49)
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3.1.1 � Prediction Accuracy with the Test Sets

We have implemented the prediction methodology analogous to Rizopoulos [19] 
as described in Sect.  2.1. In particular, we have estimated subfertility probability 
𝜋i(6 ∣ 1) = p(TTPi > 6 ∣ TTPi > 1) for the i-th test sample given that TTPi > 1 and 
used that to see how it performs as prediction rule to determine if this sample is 
right censored or not at sixth cycle. We have used standard ROC plot and area under 
the curve (auc) as used for real data by varying cutoff points, and computing empiri-
cal sensitivities and specificities (See Sect. 2.1 for more details). To determine how 
good the ROC plot and auc estimates are, we have calculated quantile-based 95% CI 
for auc and 95% CI band for ROC plots. The auc estimates are summarized in below 
table along with the effective test sample sizes used. The effective test sample size, 
ne , represents the subset for which TTPi > 1 . In the below table ntst indicates the test 
sample size initially considered, which is 1/3rd of n. Table 3 indicates the decision 
rule is extremely effective in predicting subfertility.

Table 2   Simulation results corresponding to varying sample sizes with p(Aij) = 0.95

Param. n = 300, ntr = 200 n = 400, ntr = 267 n = 500, ntr = 334

Symb. True Bias SD CP Bias SD CP Bias SD CP

�1 4 0.002 0.13 0.95 − 0.004 0.111 0.941 − 0.005 0.103 0.952
�2 − 0.5 − 0.004 0.049 0.957 0.001 0.043 0.947 0.001 0.04 0.951
�1 − 27 − 0.182 1.538 0.976 − 0.171 1.738 0.97 − 0.041 1.423 0.963
�1 − 6.5 0.349 2.239 0.961 0.503 2.257 0.958 0.521 1.852 0.964
�2 10 0.49 2.052 0.961 0.437 1.965 0.967 0.482 1.627 0.971
�3 17 0.462 1.855 0.929 0.457 1.904 0.937 0.474 1.64 0.919
�4 21 0.525 1.859 0.96 0.503 1.959 0.964 0.472 1.577 0.929
�5 24 0.525 1.837 0.968 0.621 1.986 0.969 0.516 1.643 0.949
�6 25 0.293 2.131 0.971 0.385 2.086 0.965 0.411 1.721 0.962
�� 18 0.044 1.48 0.972 0.01 1.645 0.973 − 0.091 1.353 0.974
�1 0.3 0.005 0.069 0.929 0.007 0.065 0.916 0.006 0.056 0.926
�2 3 0.587 2.109 0.956 0.53 2.003 0.942 0.464 1.813 0.949
� 0.9 − 0.004 0.03 0.947 − 0.003 0.028 0.933 − 0.002 0.025 0.944
� − 0.2 0.008 0.469 0.921 0 0.429 0.906 0.004 0.381 0.929

Table 3   Summary: auc and effective test sample size ( ne ) based on 1000 test data replicates

n = 300, ntst = 100 n = 400, ntst = 133 n = 500, ntst = 166

p(Aij) auc (95% CI) ne(IQR) auc (95% CI) ne(IQR) auc (95% CI) ne(IQR)

0.95 0.983 (0.95, 1) 59 (7) 0.983 (0.96, 1) 78 (8) 0.983 (0.96, 1) 98 (9)
0.90 0.984 (0.95, 1) 61 (6) 0.984 (0.96, 1) 80 (7) 0.984 (0.96, 1) 101 (8)
0.85 0.984 (0.95, 1) 63 (6) 0.984 (0.96, 1) 84 (7) 0.985 (0.96, 1) 105 (8)
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To get a sense of predictive performance we have overlayed 1000 ROC plots each 
from a replicate. While constructing quantile-based 95% CI may be straightforward, 
constructing a 95% confidence band for ROC function may not be so. Let sensitiv-
ity be f(c) for a given cutoff c. Similarly, let g(c) be the 1-specificity function. ROC 
function can now be defined as fog−1 assuming f and g are smooth one-one func-
tions. Since empirical sensitivity and specificity functions are step functions, thus 
neither smooth nor one-one we approximate g−1 by smooth quantile function just to 
guarantee all ROC functions from various replicates correspond to the same cutoff 
points while being overlayed. Note that the sensitivity function (therefore the ROC 
function) is not affected by the approximation on g−1 if sufficiently fine quantiles 
of specificity functions are used while plotting. The mean ROC curves and 95% CI 
bands are then computed point-wise. It is noteworthy that the area under the mean 
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Fig. 1   ROC plots with mean function and 95% CI band
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ROC curve and 95% upper and lower confidence curves may not be exactly the 
same as with the mean and 95% CI’s of auc’s as computed in Table 3 but they are 
expected to be close to each other as is the case. The mean ROC curve with 95% 
band is given below in Fig. 1 for each of the 9 cases. From these plots, it is evident 
that the prediction methodology maintains high accuracy in all simulation settings.

Remark 1  Simulating longitudinal data at cycles: We would like to bring reader’s 
attention to the fact that unlike the real data applications, the geometric features are 
directly generated from the linear model. This way of simulating geometric feature 
is equivalent to summarizing simulated longitudinal data under certain simulation 
schemes, and the same method can work for any geometric feature. This point is 
elaborated in Appendix 2.

4 � Analysis of the Oxford Conception Study

We illustrate our proposed method by analyzing the Oxford Conception Study, 
Stress and Time-to-Pregnancy component [20], which is a prospective cohort study 
with preconception enrollment of women aged 18-40 years who were attempting 
to become pregnant. The women in the Oxford Conception Study (hereafter OCS) 
provided daily level information on reproductive hormones, in particular, luteiniz-
ing hormone during mid-cycle, intercourse acts, and host of other lifestyle variables, 
along with couple level baseline covariates. The lutenizing hormone was observed 
through the ovulation kits used by the woman to track her daily fertility level to iden-
tify ovulation, the values provided by the monitor were monotonically transformed 
values of the lutenizing hormones (manufacturer only provides these transformed 
values for research purpose). These women were prospectively followed for the 
number of menstrual cycles it took them to become pregnant (i.e., human-chorionic 
gonadotropin confirmed pregnancy on the day of expected menses), i.e., TTP, or a 
maximum of 6 menstrual cycles. Other examples of prospective pregnancy cohort 
studies’ include the Longitudinal Investigation of Fertility and Environment [21], 
Fertili [22], and Billings [23].

The data consisted of 337 women with LH measurements, resulting in a total 
of 1023 menstrual cycles. We randomly selected 225 (about two-thirds) of the 
women with 686 cycles in the training set and the rest of the women were taken 
to be the prediction set. The hormonal measurements were taken daily within a 
fixed window in each menstrual cycle. For each cycle of every woman, we used 
B-spline functions to smooth the observed hormone data and then calculate the 
geometric features of interest. As mentioned in previous sections, we considered 
three geometric features of the hormone profiles: curvature at the LH peak which 
measures the sharpness of the LH profile at peak, LH peak value and the average 
LH profile curvature within fertile window. Figure 2 gives an example of the LH 
measurements for 4 randomly selected women in the data set. Note the number of 
varying cycles worth of information based on TTP for each woman in the figure. 
Motivated by the underlying biological hypothesis discussed in detail in the intro-
duction, we fit three different joint models corresponding to each of the geometric 
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feature. In each joint model, we model TTP with each one of the cycle-level geo-
metric features using the training dataset and evaluate their prediction abilities, 
respectively. In our analysis, we focus on the following covariates: female age (in 
model for hormonal data), couple average age and difference between female and 
male age (in model for TTP), and female’s body mass index (BMI) (categorized 
as underweight or normal weight if BMI< 25 ; overweight if 25 ≤BMI< 30 ; obese 
if 30 ≤BMI)), female’s smoking category (smoke.n if not smoking; smoke.m if 
smoking but average cigarette smoked per day ≤ 10 ; smoke.h if average cigarette 
smoked per day > 10 ), stress level measured by the salivary biomarker alpha 
amylase and parity (nulliparous or multiparous; nulliparous women are those who 
haven’t had live birth before) in both models. The three age related covariates as 
well as alpha amylase level were scaled by suitable constants in the analysis and 
were denoted as Age*, avg.age*, dif.age* and Alp*, respectively. The geometric 
features of hormonal profiles were also scaled by adequate constants in the anal-
ysis. Subjects with BMI smaller than 25 who are non-smokers and nulliparous 
were considered as the reference group.
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Fig. 2   LH measurements profile curves by days for 4 randomly selected subjects in the data set
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Table 4 presents the estimates and 95% confidence intervals for the covariate 
effects on the curvature at LH peak, covariate effects on TTP, cycle-specific base-
line effect on TTP, effect of curvature at LH peak on TTP as well as the variance 
covariance parameters for the random effects. Notice that all covariates seem 

Table 4   Joint model estimation results on curvature at LH peak

Parameter Estimate (95% CI) Parameter Estimate (95% CI)

� : Age* − 0.51 (− 2.73, 1.72) � : avg.age* − 27.89 (− 42.76, − 
13.02)

� : Age*2 0.09 (− 0.62, 0.80) � : dif.age* − 5.17 (− 8.30, − 2.03)
� : Overweight 0.04 (− 0.17, 0.25) � : Overweight − 2.99 (− 7.49, 1.51)
� : Obese − 0.19 (− 0.45, 0.07) � : Obese 5.66 (− 0.20, 11.51)
� : Smoke.m 0.02 (− 0.21, 0.25) � : Smoke.m −7.59 (−13.45, −1.72)
� : Smoke.h 0.05 (− 0.46, 0.55) � : Smoke.h − 5.23 (− 15.15, 4.69)
� : Alp* − 0.15 (− 0.47, 0.18) � : Alp* − 3.50 (− 9.82, 2.81)
� : Alp*2 0.02 (− 0.07, 0.12) � : Alp*2 1.80 (− 0.16, 3.76)
� : Parity − 0.08 (− 0.27, 0.10) � : Parity 9.11 (3.10, 15.13)
�1 − 6.49 (− 16.49, 3.50) �2 10.01 (1.77, 12.25)
�3 17.71 (14.96, 20.47) �4 21.03 (16.41, 25.65)
�5 24.36 (18.25, 30.47) �6 24.96 (18.06, 31.86)
�7 − 2.94 (− 2.94, − 2.94) �� 18.63 (3.93, 33.33)
�1 0.35 (0.25, 0.50) �2 30.44 (18.23, 50.83)
� 0.96 (0.90, 1.02) � − 0.20 (− 0.31, − 0.08)

Table 5   Joint model estimation results on LH peak value

Parameter Estimate (95% CI) Parameter Estimate (95% CI)

� : Age* − 0.03 (− 1.45, 1.38) � : avg.age* − 25.41 (− 39.73, − 
11.09)

� : Age*2 − 0.01 (− 0.47, 0.46) � : dif.age* − 5.31 (− 8.68, − 1.93)
� : Overweight − 0.05 (− 0.17, 0.06) � : Overweight 0.12 (− 2.81, 3.05)
� : Obese − 0.25 (− 0.39, − 0.12) � : Obese 7.89 (2.47, 13.31)
� : Smoke.m 0.06 (− 0.06, 0.18) � : Smoke.m −7.82 (−12.94, −2.69)
� : Smoke.h 0.21 (− 0.06, 0.48) � : Smoke.h − 8.86 (− 17.29, − 0.44)
� : Alp* − 0.18 (− 0.35, − 0.01) � : Alp* 2.50 (− 2.26, 7.27)
� : Alp*2 0.04 (− 0.01, 0.09) � : Alp*2 − 0.41 (− 1.75, 0.92)
� : Parity 0.02 (− 0.07, 0.12) � : Parity 6.07 (1.98, 10.16)
�1 − 11.50 (− 18.68, − 4.33) �2 1.34 (− 0.42, 3.10)
�3 7.97 (4.62, 11.32) �4 10.35 (5.73, 14.97)
�5 13.48 (7.06, 19.89) �6 13.81 (6.97, 20.65)
�7 − 5.05 (− 5.05, − 5.05) �� 24.63 (9.67, 39.59)
�1 0.24 (0.20, 0.29) �2 25.30 (15.01, 42.65)
� 0.43 (0.40, 0.45) � − 0.22 (− 0.29, − 0.14)
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non-significant for the curvature at LH peak. A couple’s average age and female-
male age difference seem to have significant negative effect on TTP. Women who 
smoke but smoke no more than 10 cigarettes per day have significantly longer 
TTP compared to non-smoking women while the difference between the heavy 
smoking women ( > 10 cigarettes per day) and non-smoking women was not sig-
nificant. Multiparous women seem to have significantly shorter TTP than nullipa-
rous women. We also found that the curvature at LH peak has significant positive 
effect on TTP. This implies that the sharper a woman’s LH peak is, the shorter her 
TTP tends to be.

We also present the estimation results for jointly modeling LH peak value and TTP 
in Table 5. The conclusions of covariate effects were generally consistent with that in 
Table 4, except that obesity seems to have protective effect on TTP and heavy smok-
ing women also seem to have significantly longer TTP than non-smoking women.

The estimation results for joint modeling of average curvature of LH profile 
within fertile window and TTP are shown in Table 6 The overall trend of covariate 
effects is consistent with that in Table 4 for curvature at LH peak, except that over-
weight women seem to have significant longer TTP than underweight/normal weight 
women, women with higher stress level (alpha amylase) seem to have longer TTP, 
while the effect of smoking on TTP does not seem to be significant.

Now that we have fitted the joint models using the training dataset, we are inter-
ested in predicting the probability of subfertility (i.e., TTP > 6 cycles) given sur-
vival past one cycle. That is, for all women in the prediction set with Ti > 1 , we wish 
to classify I(Ti > 6) by the conditional survival probability �i(6 ∣ 1) . To measure the 

Table 6   Joint model estimation results on average curvature of LH profile within fertile window

Parameter Estimate (95% CI) Parameter Estimate (95% CI)

� : Age* − 0.27 (− 2.32, 1.78) � : avg.age* − 23.27 (− 38.97, − 
7.58)

� : Age*2 0.10 (− 0.57, 0.77) � : dif.age* − 8.61 (− 14.08, − 
3.13)

� : Overweight − 0.07 (− 0.24, 0.09) � : Overweight − 8.04 (− 13.80, − 
2.28)

� : Obese − 0.08 (− 0.28, 0.12) � : Obese 2.76 (− 2.05, 7.57)
� : Smoke.m 0.06 (− 0.12, 0.24) � : Smoke.m −3.98 (− 8.49, 0.53)
� : Smoke.h 0.07 (− 0.34, 0.49) � : Smoke.h 2.93 (− 7.44, 13.30)
� : Alp* − 0.18 (− 0.44, 0.08) � : Alp* − 14.97 (− 25.34, 

−4.59)
� : Alp*2 0.04 (− 0.04, 0.12) � : Alp*2 5.45 (1.89, 9.01)
� : Parity 0.02 (− 0.12, 0.17) � : Parity 20.65 (9.02, 32.29)
�1 − 27.04 (− 44.87, −9.21) �2 − 5.70 (− 12.00, 0.60)
�3 8.28 (5.64, 10.92) �4 13.38 (8.07, 18.69)
�5 22.83 (12.21, 33.45) �6 23.56 (11.93, 35.19)
�7 − 0.02 (− 0.02, − 0.02) �� 18.53 (4.67, 32.38)
�1 0.36 (0.30, 0.44) �2 43.56 (24.77, 76.59)
� 0.60 (0.56, 0.64) � − 0.17 (− 0.24, −0.10)
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classification rate, we empirically estimated the sensitivity: P(𝜋̂i(6 ∣ 1) > c ∣ Ti > 6) , 
and specificity P(𝜋̂i(6 ∣ 1) ≤ c ∣ Ti ≤ 6) , where 𝜋̂i(6 ∣ 1) is the mean of the Monte 
Carlo sample {�(l)

i
, l = 1,… , L} obtained following the steps in Sect.  2.1. Of the 

79 women available for prediction, 20 were censored between 1 and 6 cycles and 
removed from the prediction analysis. The classification measures using ROC for the 
models with curvature at LH peak, LH peak value and average curvature of LH pro-
file within fertile window, are displayed in Fig. 3a–c, respectively, for all c ∈ [0, 1] . 

ROC curve: curvature at LH peak: n=59
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ROC curve: LH peak value after smoothing: n=59

AUC=0.646
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ROC curve: average LH curvature within fertile window: n=59

AUC=0.614
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Fig. 3   ROC curves for classifying I(Ti > 6) by 𝜋̂i(6 ∣ 1) , for models with: a curvature at LH peak; b LH 
peak value; c average LH curvature within fertile window
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The AUC is 0.650 for the model which includes the curvature at LH peak, 0.646 for 
the model which includes the LH peak value and 0.614 for the model which includes 
the average curvature of LH profile within fertile window. This indicates that the 
prediction ability of the three models are moderately good.

As mentioned in Sect. 2.1, one could use the fitted joint model and hormonal meas-
urement history up to cycle 1, to predict the conditional survival probability �i(j ∣ 1) , 
for any j > 1 if that is of interest. The data used in the above analysis are available from 
the corresponding author upon reasonable request.

5 � Discussion

We have proposed a joint modeling approach to assess the association between 
cycle-level geometric features of a woman’s hormonal profile and her fecundity 
measured by TTP. A likelihood based approach with the use of Gaussian quad-
rature approximation was proposed for estimation of the unknown parameters. 
Simulation studies have demonstrated that the proposed estimation approach 
works reasonable well in the situation similar to the Oxford data, with reason-
ably small bias and coverage probabilities close to the nominal level. With the 
estimates from the joint models, we also derived the approach to predict individ-
ual characteristics of TTP given a set of longitudinal measurements up to a cer-
tain cycle. The prediction of the probability that a woman was subinfertile given 
her past one menstrual cycle behavior without getting pregnant, was moderately 
accurate for model with any one of the three geometric features of LH profile, 
especially with curvature at hormonal profile peak (AUC around 0.65).

The analysis of Oxford data found that couple average age and difference 
between female and male age are signifcantly associated with TTP in the sense 
that older couples and couples with larger female minus male age difference 
have significantly longer TTP. The association between BMI and TTP seem to 
be marginal with moderate evidence that overweight women have a slower rate 
of pregnancy while obese women have a faster rate of pregnancy. Multiparous 
women were found to have significantly shorter TTP than nulliparous women. 
Furthermore, we found that women with sharper LH peaks, higher LH peaks and 
overall more curved LH profiles within fertile window tend to have significantly 
shorter TTP.

We focused on cycle-varying geometric features of the hormonal profile, 
motivated by biology as well as due to the availability of hormonal data only 
around ovulation. In the scenario where hormonal profile is available throughout 
the menstrual cycle, a more general approach of considerable interest is to look 
at the full hormonal profile and assess patterns in the framework of joint mode-
ling of functional data and time to event. Such approach have been studied by Li 
et al. [24–26] and may be extended in this context of cyclical hormonal profile 
and TTP to shed light on meaningful patterns on TTP, as well as its predictive 
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ability on infertility. Another interesting approach along this line is the recent 
development of the functional model proposed for the cyclical longitudinal pro-
cess [27], which can be extended in the context of joint modeling.

Finally, our approach though motivated by reproductive epidemiology may 
be applicable to examples arising in other disciplines. For example, one may be 
interested in understanding the association between the high blood pressure and 
risk for heart attack and not just on their average blood pressure measurements. 
In conclusion, this paper studies a novel model for joint models of longitudinal 
and survival data where one is interested in the longitudinally varying geometric 
features with survival data.

Appendix 1: Simulation Results: p(Aij ) = 0.90 and = 0.85

Appendix 2: Longitudinal Data at Each Cycle

In the real data applications, the geometric features were calculated from the 
(smoothed) hormonal profiles obtained from the data while in the simulation study, 
these were generated directly from a linear model. We show below that under cer-
tain specific simulation schemes, they are equivalent.

We first generate Yij , and Ŷij once Zij and bY ,i are simulated as given below (See (1) 
and Sect. 3).

Yij = Ỹij + 𝜖ij, Ỹij = Z�
ij
� + bY ,i,

Table 7   Simulation results corresponding to varying sample sizes with p(Aij) = 0.90

Param. n = 300, ntr = 200 n = 400, ntr = 267 n = 500, ntr = 334

Symb. True Bias SD CP Bias SD CP Bias SD CP

�1 4 0.006 0.125 0.953 − 0.003 0.114 0.946 − 0.006 0.11 0.938
�2 − 0.5 0.005 0.049 0.947 0 0.044 0.95 0.001 0.043 0.945
�1 −27 − 0.099 1.654 0.968 − 0.119 1.559 0.972 − 0.084 1.52 0.945
�1 − 6.5 0.538 2.313 0.965 0.503 2.15 0.963 0.493 2.009 0.952
�2 10 0.608 2.08 0.96 0.433 1.933 0.97 0.538 1.743 0.971
�3 17 0.589 2.044 0.941 0.431 1.78 0.925 0.478 1.708 0.935
�4 21 0.626 1.955 0.962 0.498 1.773 0.961 0.465 1.727 0.956
�5 24 0.701 2.05 0.96 0.599 1.814 0.97 0.546 1.77 0.954
�6 25 0.349 2.318 0.975 0.443 2.017 0.975 0.427 1.95 0.957
�� 18 − 0.058 1.557 0.971 − 0.014 1.503 0.966 − 0.055 1.418 0.944
�1 0.3 0.009 0.076 0.909 0.004 0.062 0.923 0.009 0.06 0.917
�2 3 0.771 3.053 0.955 0.562 2.669 0.962 0.5 1.759 0.953
� 0.9 − 0.004 0.029 0.946 − 0.003 0.028 0.944 − 0.002 0.025 0.941
� − 0.2 − 0.01 0.463 0.902 0.007 0.419 0.918 − 0.009 0.383 0.913
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where �ij ∼ N(0, �2) . To generate a true hormonal profile and the observed hormonal 
profile we consider a class of functions that are symmetric around 0 with a peak at 
0. We further assume they both belong in this class of functions. For illustration pur-
poses, let us consider the class G� , given by the scaled truncated centered Gaussian 
curves parametrized by the precision parameter.

Let F  be the functional of interest corresponding to a given geometric feature. 
Define the value of geometric feature, g(�) , as follows,

F ∶ value at t = 0 (at peak) ⇒ g(�) = F(h) = h(0) = � . Similarly, F ∶ curvature at 
peak g(�) = 2�2 . A similar formula for g(�) can be worked out for average curva-
ture. Thus, when the value of peak is modeled, one can generate a true hormonal 
profile curve and an observed hormonal curve, and compute them at a given time 
point t ∈ [−Tij, Tij] as follows,

Thus, for any general F  representing a geometric feature, h1 and h2 can be chosen 
with appropriate choices of � as follows,

G� = {h ∶ h(t;�) = � exp(−�t2), � ∈ ℝ
+, t ∈ [−Tij, Tij]}

(B1)g(�) = F(h(.;�)), h ∈ G�

H̃ij,t = h1(t) = h(t;Ỹij);Hij,t = h2(t) = h(t;Yij), h1, h2 ∈ G𝜆

(B2)H̃ij,t = h1(t) = h(t;g−1(Ỹij));Hij,t = h2(t) = h(t;g−1(Yij))

Table 8   Simulation results corresponding to varying sample sizes with p(Aij) = 0.85

Param. n = 300, ntr = 200 n = 400, ntr = 267 n = 500, ntr = 334

Symb. True Bias SD CP Bias SD CP Bias SD CP

�1 4 0.009 0.129 0.94 0.004 0.109 0.949 − 0.007 0.1 0.941
�2 − 0.5 − 0.006 0.051 0.947 − 0.003 0.043 0.953 0.001 0.039 0.938
�1 − 27 − 0.148 1.939 0.976 − 0.083 1.557 0.973 − 0.119 1.445 0.953
�1 − 6.5 0.437 2.485 0.977 0.558 2.089 0.969 0.433 2.087 0.959
�2 10 0.493 2.445 0.962 0.511 1.826 0.973 0.496 1.775 0.959
�3 17 0.52 2.254 0.94 0.575 1.736 0.947 0.493 1.685 0.942
�4 21 0.614 2.128 0.965 0.567 1.783 0.965 0.543 1.787 0.929
�5 24 0.693 2.205 0.976 0.678 1.983 0.958 0.566 1.833 0.953
�6 25 0.501 2.53 0.972 0.497 2.164 0.97 0.367 1.77 0.964
�� 18 − 0.021 1.87 0.97 − 0.053 1.485 0.975 − 0.009 1.403 0.96
�1 0.3 0.008 0.073 0.917 0.008 0.065 0.918 0.008 0.061 0.918
�2 3 0.67 2.32 0.949 0.713 3.117 0.962 0.512 2.313 0.949
� 0.9 − 0.003 0.031 0.941 − 0.002 0.028 0.931 − 0.002 0.024 0.946
� − 0.2 − 0.002 0.485 0.894 − 0.011 0.414 0.929 − 0.007 0.382 0.92
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In particular, for curvature at peak, h1(t) = h(t,
√

Ỹij∕2) , and h2(t) = h(t,
√

Yij∕2) . 

Let 𝜂ij,t = Hij,t − H̃ij,t be the nested random error observed at t. Note that �ij,t is simu-
lated implicitly where H̃ij,t ’s constitute unobserved but true hormonal curve for a 
given individual. Thus, if a sufficiently large number of t’s are observed or a good 
smoothing process is applied, the H function can be approximated well, leading to 
the recovery of observed Yij values upon the application of F  on H. Since the joint 
model summarizes data at the cycles, generating H becomes redundant.

Note that the simulation scheme mentioned above can be implemented to a 
much larger class of function than G� , which is chosen for illustration purposes 
only, to model hormonal profiles. Assuming that the hormonal curve is twice 
continuously differentiable with peak at t = 0 , we must have H̃�

ij
(t) = 0 . Thus, the 

value at the peak is H̃ij(0) and the curvature at the peak is 
|H̃��

ij
(0)|

(1+H̃
�2
ij
(0))3∕2

= |H̃��

ij
(0)| . 

Accordingly, let Cf  denote such a class of functions. Then, a larger two-parameter 
scale family of functions, G�1,�2

 , based on Cf  can be used to model hormonal pro-
file curves as given below.

Note G𝜆 ⊂ G𝜆1,𝜆2
 with �1 = � , �2 = �2 , f = e−s

2 . Similar to (B1) one can define 
g(�1, �2) [=c1�1, c1 = f (0) for peak; = c2�2, c2 = |f �� (0)| for curvature at peak]. Simi-
lar to (B2), one can simulate true and observed hormonal curves as an intermediate 
step by choosing h1, h2 with appropriate �1 and �2 values. These choices of h1 and h2 
often assume either Yij, Ỹij > 0 always, which in general would not be true, but can 
be made to practically hold true by controlling � ’s and choosing a small � relative to 
the mean. Alternatively, one can apply an appropriate monotonic function (such as 
logarithm to peak value) before applying the linear model during data preprocessing.
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