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Abstract. We introduce a localized version of the nudging data assimilation

algorithm for the periodic 2D Navier-Stokes equations in which observations

are confined (i.e., localized) to a window that moves across the entire domain
along a predetermined path at a given speed. We prove that, if the move-

ment is fast enough, then the algorithm perfectly synchronizes with a reference

solution. The analysis suggests an informed scheme in which the subdomain
moves according to a region where the error is dominant is optimal. Numerical

simulations are presented that compare the efficacy of movement that follows
a regular pattern, one guided by the dominant error, and one that is random.

1. Introduction. Data assimilation is concerned with recovering the fine scale
activity of a dynamical system via coarse measurements of that system [11, 21].
In applications, exact knowledge of an initial state is often unavailable. However,
sensors often continuously monitor activity at a coarse scale. This, for instance,
is the case in atmospheric sciences where, since the launch of the first weather
satellites in the 1960s, weather data has been collected nearly continuously in time.
These measurements provide us with partial knowledge of the state of the system,
e.g., the velocity vector field or temperature, on a coarse spatial grid of points. In
data assimilation, forecasting is achieved by supplementing a model with coarse
measurements as opposed to a complete initial state. Many other applications exist
including, but not limited to, environmental sciences, systems biology and medicine
[22], imaging science, traffic control and urban planning, economics and finance and
oil exploration [2].

In [3, 4], Azouni, Olson and Titi introduced a nudging based data assimilation
algorithm which is mathematically rooted in earlier work on determining functionals
[14, 15, 19, 20]. The concept of nudging is, however, much older and was developed
to address geophysical and control problems. An upside of the approach of [3] is
its ease of implementation and amenability to rigorous analysis. In contrast, for
more traditional approaches to data assimilation, e.g., the Bayesian and variational
frameworks, issues of stability, accuracy and catastrophic filter divergence persist
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[18, 30, 31]. Since [3], the nudging scheme has received a great deal of attention
from the fluids community. A partial list of references are [1, 5, 7, 8, 9, 12, 13, 24].

In the Azouni, Olson and Titi setup, the coarse grid on which data is collected
must span the entire domain. This may be costly or unrealistic in real world set-
tings. Therefore, it is desirable to develop a data assimilation algorithm which
either does not require data to be continuously collected across the full domain or
requires observations across the full domain only at a very coarse scale (in time and
space). In [6] we demonstrated that, within an error, a localized, stationary collec-
tion of observations taken from an observability region can approximate a reference
flow—i.e., synchronization occurs up to a non-zero error in contrast to [3] where
synchronization is exact. A numerically visible defect of the method is that the
convergence rate of global synchronization, while exponential, is slower than that of
local synchronization on the observability region. The rapid local synchronization
slows down global synchronization because the feedback operator is itself local (to
the observability region). This means that, when the reference and approximating
solutions are locally almost synchronized, the nudging becomes ineffective. If the
observability window is moved to a region where the reference and approximating
solutions are not locally almost synchronized, then the nudging is strengthened, at
least until local synchronization occurs in the new region. This intuitive discussion
suggests that building mobility into the localized nudging operator will result in
improved synchronization compared to the immobile localized setup of [6]. These
insights are supported by numerical work on the Navier-Stokes equations [6, 17]—
see also [23]. In particular, Franz, Larios and Victor provide a detailed examination
of a number of mobile paradigms, the so called “bleeps, sweeps and creeps” [17],
which outperform the static observer case (with the same number of measurements)
in simulations.

In the present paper, we rigorously show that a certain mobile data assimila-
tion scheme exactly synchronizes with a reference solution provided the observers
are moving fast enough. We additionally study features of mobile data assimila-
tion numerically. Our numerical findings are: 1. increasing the frequency at which
an observability window moves across the domain leads to faster convergence and
2. choosing the observability window based on an even coarser decision protocol
improves convergence compared to a pre-determined movement pattern. We shall
refer to this as the informed scheme. The main motivations for local data assimi-
lation are that fine-scale measurements may be more expensive to obtain and that
collecting fine-scale data may be infeasible in parts of the domain (e.g., in the upper
atmosphere or deep in the ocean). In our numerical implementation, the dominant
region is identified by coarse-scale measurements only. Thus, the dominant scheme
provides the possibility that one may not have to collect fine-scale data from such
regions if they remain inactive until global synchronization has occurred at a high
level of accuracy.

In our simulations, we found that the dominant scheme synchronizes faster than
schemes where the subdomain moves in a regular pattern or moves randomly. In
some cases the motion of the observability window is discontinuous. Physically,
this discontinuous movement is consistent with the deployment of different sets of
observers consecutively in different regions as chosen by a decision protocol. A
contrived example where discontinuous motion makes sense in weather forecasting
is as follows: If the protocol says observations should first be taken over California
and, later, over New York, then drones stationed in California could first be deployed
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and, later, drones from New York could be used. To be realistic, we also simulate
the effect of delay in moving the observation domain.

1.1. Notation and preliminaries. We consider the two-dimensional Navier-
Stokes equations (henceforth, 2D NSE) on Ω = [−L/2, L/2]2 with periodic bound-
ary conditions. For U ⊂ Ω, we use Lp(U) and Hs(U) to denote the Lebesgue
spaces and L2 based Sobolev spaces respectively. If U is omitted it is understood
that U = Ω. We use 〈·, ·〉 to denote the L2 inner product. The Leray projection of
L2 onto mean zero divergence free functions in L2 is denoted by P. Note that for
periodic boundary conditions, P∆ = ∆P and we therefore do not need to introduce
the Stokes operator, cf. [3, p. 284]. We use | · | to denote the absolute value of
a vector or scalar and the 1D or 2D Lebesgue measure of a measurable set—the
meaning will always be clear based on context. The characteristic function for the
set S is denoted χS .

We make frequent use of the Poincaré and Ladyzhenskaya inequalities which
respectively say: For u ∈ H1(Ω),

‖u‖L2 ≤ λ−1/2
1 ‖∇u‖L2 and ‖u‖L4 ≤ CL‖u‖1/2L2 ‖∇u‖1/2L2 . (1)

The prefactors can be viewed as the optimal constants for which these estimates
hold (λ1 is the first eigenvalue of the Laplace operator).

Data assimilation in the spirit of [3] uses an interpolant operator to nudge an
assimilating solution toward a reference flow. In the present paper, this will be
based on a “type 1” interpolant Ih defined using volume elements:

Ihf(x) =

M2∑

i=1

(
χSi(x)− h2

L2

)
1

h2

∫

Si

f dy,

where the periodic domain Ω has been split intoM2 identical squares Si with disjoint
boundaries and side lengths h. The second term in the difference ensures this
operator is mean zero. It is bounded in L2 and satisfies a Poincaré-type inequality
[3]

‖u− Ih(u)‖L2 ≤ Ch‖∇u‖L2 . (2)

These considerations are independent of periodicity and apply in any square do-
main. Project onto low Fourier modes is another example of a type 1 interpolant.
However, it requires global knowledge of a flow and therefore is inappropriate for
out application.

1.2. The mobile framework. We now adapt the operator Ih to our mobile set-
ting. Fix N ∈ N \ {1}. We split Ω into a grid of N2 squares where N is chosen to

equal 2Ñ for some Ñ—in other words the side length of our partition is taken from
a dyadic scale. Each square will correspond to an observability region. We label

these sub-regions Ωi, i = 1, . . . , N2. Note that |Ωi| = L2

N2 . Let ` =
√
|Ωi| = L/N .

Let xi = (xi1, x
i
2) be the center of Ωi. Each Ωi represents an “observability region,”

i.e. the domain from which data will be collected at a given time. Note that this
partition does not correspond to the fine grid on which we will make observations,
namely that corresponding to the length scale h in the definition of Ih above.

We work with a partition of unity {φi}N
2

i=1 of Ω so that each φi localizes to Ωi.
The functions φi are chosen to satisfy the following properties (which are illustrated
in Figure 1 below):



4 ANIMIKH BISWAS, ZACHARY BRADSHAW AND MICHAEL JOLLY4 ANIMIKH BISWAS AND ZACHARY BRADSHAW AND MICHAEL JOLLY

−ℓ/2 ℓ/2

−ℓ/2− r

ℓ/2 + r

ℓ/2− r

−ℓ/2 + r

Figure 1. An illustration of Ωi, which is represented by the solid
black square, and adjacent cells. Ωi is taken to be centered at
the origin. The larger dashed square represents Ω̃i. The cut-off
function φi is identically 1 inside the smaller dashed square and is
supported inside Ω̃i. When ι(t) = i, the interpolant Ih,t is using
observations taken on the fine-scale gray grid; note that observa-
tions spill over into a small region outside of Ωi. The lengths of all
squares in view are taken along a dyadic scale.

• There exists r < ℓ/2 so that φ1 ≡ 1 on [x11− ℓ/2+ r, x11+ ℓ/2− r]× [x12− ℓ/2+
r, x12 + ℓ/2− r].

• suppφ1 ⊂ Ω̃i := [x11 − ℓ/2− r, x11 + ℓ/2 + r]× [x12 − ℓ/2− r, x12 + ℓ/2 + r].
• 0 ≤ φ1 ≤ 1.
• ∑

i φi = 1.
• We have

|∇φ1| .φ1 r
−1 and |∆φ1| .φ1 r

−2,

where the suppressed constants only depend on the function φ1.

Note the definition of Ω̃i above as this plays an important role. We fix r = ℓ/4 to

ensure the boundaries of Ω̃i line up with dyadic partitions at finer scales.
We quickly construct a partition of unity of this form. Let η be a smooth, radial

function with compact support and
∫
η dx = 1. Let ηα(x) = α−2η(x/α), which

is an approximate identity. Let χ̄i be the characteristic function for Ωi. Then∑N2

i=1 χ̄i = 1 except on a set of measure zero. Let φi = ηα ∗ Ωi. Then
N2∑

i=1

φi(x) =

∫
ηα(x− y)

N2∑

i=1

χ̄i(y) dy = 1.

The support conditions are satisfied by taking α small enough.
We define a function ι(t) to be a τC -periodic function on [0, τC) which is defined

by ι(t) = i if t ∈ [t ∈ (i− 1)/N2τC , i/N
2τC), i = 1, . . . , N2.

We partition each Ωi into identical squares of side-length h chosen so that 2mh =
ℓ/4 for some m ∈ N. Taking the union of these partitions gives a partition of Ω into

Figure 1. An illustration of Ωi, which is represented by the solid
black square, and adjacent cells. Ωi is taken to be centered at
the origin. The larger dashed square represents Ω̃i. The cut-off
function φi is identically 1 inside the smaller dashed square and is
supported inside Ω̃i. When ι(t) = i, the interpolant Ih,t is using
observations taken on the fine-scale gray grid; note that observa-
tions spill over into a small region outside of Ωi. The lengths of all
squares in view are taken along a dyadic scale.

• Each φi is generated by translating φ1.
• There exists r < `/2 so that φ1 ≡ 1 on [x1

1− `/2 + r, x1
1 + `/2− r]× [x1

2− `/2 +
r, x1

2 + `/2− r].
• suppφ1 ⊂ Ω̃i := [x1

1 − `/2− r, x1
1 + `/2 + r]× [x1

2 − `/2− r, x1
2 + `/2 + r].

• 0 ≤ φ1 ≤ 1.
• ∑i φi = 1.
• We have

|∇φ1| .φ1 r
−1 and |∆φ1| .φ1 r

−2,

where the suppressed constants only depend on the function φ1.

Note the definition of Ω̃i above as this plays an important role. We fix r = `/4 to

ensure the boundaries of Ω̃i line up with dyadic partitions at finer scales.
We quickly construct a partition of unity of this form. Let η be a smooth, radial

function with compact support and
∫
η dx = 1. Let ηα(x) = α−2η(x/α), which

is an approximate identity. Let χ̄i be the characteristic function for Ωi. Then∑N2

i=1 χ̄i = 1 except on a set of measure zero. Let φi = ηα ∗ Ωi. Then

N2∑

i=1

φi(x) =

∫
ηα(x− y)

N2∑

i=1

χ̄i(y) dy = 1.

The support conditions are satisfied by taking α small enough.
We define a function ι(t) to be a τC-periodic function on [0, τC) which is defined

by ι(t) = i if t ∈ [t ∈ (i− 1)/N2τC , i/N
2τC), i = 1, . . . , N2.
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We partition each Ωi into identical squares of side-length h chosen so that 2mh =
`/4 for some m ∈ N. Taking the union of these partitions gives a partition of Ω into
a grid with sidelength h. Note the dyadic relationship between scales ensures that
Ω̃i is also a union of h-length squares which we label Sj . For convenience let

χi := χΩ̃i

We define a time-dependent, local interpolant operator based on volume elements
as follows:

Ih,tf := χΩ̃ι(t)
(x)
∑

j

(
χSj (x)− h2

√
|Ω̃ι(t)|

)
1

h2

∫

Sj

f(y) dy.

Note that Ih,t is supported on Ω̃ι(t). Additionally,

‖Ih,tf‖L2 ≤ CI‖fχΩ̃ι(t)
‖L2 , (3)

and

‖uχΩ̃ι(t)
− Ih,t(u)‖L2 ≤ CIh‖(∇u)χΩ̃ι(t)

‖L2 . (4)

The proofs of these estimates are identical to those for the interpolant Ih. Note that
the optimal constants in the above estimates are not the same but it is convenient
to lump them together under the label CI .

Note that the observation window spends τC/N
2 units of time in each of the

regions Ωi. Movement from one region to another is discontinuous. It should
not be hard to adjust the analytic results in this paper to the case of continuous
movement, although the conditions for data assimilation would change. The order
that Ωi are cycled through does not matter.

For each φi we denote a complimentary cut-off function by

ψi =
∑

i 6=j
φj , (5)

so that ψi + φi ≡ 1 on Ω. We say Ωi is dominant if∫
|w|2φi dx ≥

1

N2

∫
|w|2 dx

and active if ∫
|w|2φi dx ≥

1

c0N2

∫
|w|2 dx,

for some c0 > 1. This parameter appears in the statement of Theorem 1.1 below—
larger values of c0 make the conditions in the theorem more stringent. Clearly, sine
χi ≥ φi, if Ωi is active, then we also have∫

|w|2χi dx ≥
1

c0N2

∫
|w|2 dx.

Alternatively we say Ωci is codominant if
∫
|w|2ψi dx <

(
1− 1

N2

)∫
|w|2 dx

and coactive if ∫
|w|2ψi dx <

(
1− 1

c0N2

)∫
|w|2 dx.

Plainly, Ωi is dominant if and only if Ωci is codominant and Ωi is active if and only
if Ωci is coactive.



6 ANIMIKH BISWAS, ZACHARY BRADSHAW AND MICHAEL JOLLY

1.3. Data assimilation. Suppose that u solves the 2D Navier-Stokes equations,
written in projected form,

ut − ν∆u+ P(u · ∇u) = f ; ∇ · u = 0, (6)

where P is the Leray projection operator. It is classical—see, e.g., [10]—that for
large enough times any solution u becomes bounded solely by quantities determined
by ν and f . In particular, the estimates (11) stated below hold. Throughout this
paper we take this to be true starting from time t = 0. Note that since we are on
a periodic domain ∆P = P∆. The nudged equation for u is

vt − ν∆v + P(v · ∇v) = f − µPIh,t(v − u); ∇ · v = 0. (7)

For reasonable choices of u0 and f , and certain conditions on h and µ, this system
admits a unique global smooth solution—see Remark 2.1. The difference w = u− v
satisfies

wt − ν∆w − P(w · ∇w − w · ∇u− u · ∇w) = −µPIh,t(w); ∇ · v = 0. (8)

In the above we will take f to be sufficiently regular. Any solution u is eventually
controlled by the Grashof number. We assume that this control holds at all positive
times, which can be achieved by initiating our problem at a sufficiently large time
for u.

Theorem 1.1. Let f ∈ L∞(0,∞;L2) be divergence free and mean zero. Let u be a
solution to (6) with forcing f . Let the Grashoff number be defined by

G := lim sup
t→∞

2

ν2λ1
‖f(t)‖L2 .

Under these assumptions, (7) is well-posed with a unique strong solution. Let v be
the solution to (7) for u and f with initial data identically zero. Let c∗ > 0 and
c0 > 1 be given. If

µ ≥ max

{
νλ1G

2, c0N
2(4λ1C

4
LνG

2 + c∗)

}
,

h ≤ min

{
νλ

1/2
1

4CIµ
,

√
ν

2C2
Iµ

}
,

τC . 1

µ
e−2C4

L(G2+2),

where the suppressed constant only depends on c∗, c0, λ1, ν, CL, CI , N , L and φ1,
then,

‖(u− v)(t)‖2L2 ≤ eC
4
Lν2G2e−c∗t/2. (9)

The suppressed constant in the constraint on τC can be extracted from (C5),
(C6) and (C7) below.

Remark 1.2. As is well-known, data assimilation results resembling [3] imply the
classical determining parameter theorems of [15, 16, 19, 20]. These state that if
two solutions to (6) agree at a course resolution, then they converge to each other
exponentially. In our case, Theorem 1.1 implies a local version of such results. More
precisely, if u and ũ are two solutions to (6) with the same forcing satisfying the
assumptions for u and f in Theorem 1.1, then, provided

Ih,t(u− ũ)(t) = 0,
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for all t > 0, we have that ‖(u− ũ)(t)‖L2 → 0 exponentially as t→∞. The precise
statement of such a corollary can be improved—e.g., by assuming Ih,t(u− ũ)(t)→ 0
as t→∞—but this would require additional work which is redundant to the existing
literature.

1.4. Organization and discussion of the proof. Global a priori estimates are
worked out in Section 2. In Section 3, local estimates are obtained which show
that, if a region is dominant at time t1, then it remains active for a short period of
time assuming the Dirichlet quotient is suitably bounded. In Section 4, we prove
Theorem 1.1. The proof involves two cases. The first case holds when the Dirichlet
quotient is suitably bounded, and so, due to the work in Section 3, at least one
region is active for a short period of time. This becomes our cycling time. If the
interpolant cycles through all regions fast enough, then it must be in an active region
for a short time. For these times, nudging is strong enough to drive synchronization
across the full cycle time. In the second scenario, the Dirichlet quotient is bounded
below which ensure dissipation is strong enough to drive synchronization without
using the data assimilation term. Numerical tests are included in Section 5.

2. Global a priori estimates. In this section we establish a priori bounds for
solutions to (7) and (8). For a solution u to (6), it is well known that, if u0 is
divergence free, mean zero and belongs to H1, and f is divergence free, mean zero
and belongs to L∞(0,∞;L2), then there exists a unique solution u to (6) which
has zero mean. This solution satisfies a number of properties. We make use of
the following which are taken directly from [3]—proofs can be found in [10, 29, 27]
among other references. For any time T we have

u ∈ C([0, T ];H1) ∩ L2(0, T ;H2);
du

dt
∈ L2(0, T ;L2). (10)

Additionally,

‖u‖2L2 ≤ ν2G2; ‖∇u‖2L2 ≤ ν2λ1G
2;

∫ t+T

t

‖∆u‖2L2 ds ≤ (1 + Tνλ1)νλ1G
2.

(11)

We take these properties to hold from time t = 0.
Following the classical literature, a priori estimates are obtained from the

Grönwall inequality (see, e.g., [27]) which states that

x(t) ≤ x(0)eG(t) +

∫ t

0

eG(t)−G(s)h(s) ds; G(t) =

∫ t

0

g(r) dr,

provided
dx

dt
≤ g(t)x+ h(t).

If g = a and h = b are constant, then we have

x(t) ≤
(
x0 +

b

a

)
eat − b

a
.

2.1. Energy estimate for v. For the solution v to (7), we have

1

2

d

dt
‖v‖2L2 + ν‖∇v‖2L2 = 〈f + µIh,t(u), v〉 − µ〈Ih,t(v), v〉. (12)
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Using Young’s inequalities and (3), we have

〈f + µIh,t(u), v〉 ≤ 1

νλ1
‖f + µIh,t(u)‖2L2 +

νλ1

4
‖v‖2L2

≤ 2CI
2

νλ1
(‖f‖2L2 + µ2‖u‖2L2) +

νλ1

4
‖v‖2L2 .

(13)

On the other hand

µ〈Ih,t(v), v〉 = µ〈Ih,t(v)− vχι(t), v〉+ µ

∫
|v|2χι(t) dx.

The second term above has a good sign. By (4), the remaining part satisfies

µ〈Ih,t(v)− vχι(t), v〉 ≤ CIµh‖∇v‖L2‖v‖L2 ≤ CIµhλ−1/2
1 ‖∇v‖2L2 .

Provided,

CIµhλ
−1/2
1 ≤ ν

4
, (C1)

it follows that

d

dt
‖v‖2L2 +

νλ1

2
‖v‖2L2 +

ν

8
‖∇v‖2L2 ≤ 4C2

I

νλ1
(‖f‖2L2 + µ2‖u‖2L2), (14)

and, by Grönwall, we conclude

‖v(t)‖2L2 ≤ e−νλ1t‖v(0)‖2L2 +
4C2

I

νλ1
(‖f‖2L2 + µ2‖u‖2L2)(1− e−νλ1t).

If v(0) = 0 then, using the uniform bound on ‖u‖L2 in (11), we get

‖v(t)‖2L2 ≤ 4C2
I [ν2 + (µ/λ1)2]G2.

Integrating (14) we also obtain the bound

ν

8

∫ T

0

‖∇v‖2L2 ds ≤ ‖v0‖2L2 +
4C2

IT

νλ1
(‖f‖2L2 + µ2‖u‖2L2).

Remark 2.1. Note that the above estimates are strong enough to prove estimates,
existence and uniqueness as in [3, Theorem 5]. For mean zero data and forcing, v
will be mean zero. Since the proofs are identical to the existing literature, we omit
the details.

2.2. Energy estimate for w. For the solution w = u − v to (8), we have by
Ladyzhenskaya’s inequality (1) that

∫
(w · ∇u) · w dx ≤ C2

L‖w‖L2‖∇w‖L2‖∇u‖L2 .

Hence,

1

2

d

dt
‖w‖2L2 + ν‖∇w‖2L2

= −
∫

(w · ∇u) · w dx− µ(Ih,t(w)− wχι(t), w)− µ
∫
|w|2χι(t) dx

≤ C4
L

2ν
‖∇u‖2L2‖w‖2L2 +

ν

2
‖∇w‖2L2 + C2

Iµh
2‖(∇w)χι(t)‖2L2

+ µ

∫
|w|2χι(t) dx− µ

∫
|w|2χι(t) dx,
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where we used the property (4). Choosing

C2
Iµh

2 ≤ ν

2
, (C2)

and using (11), we have

d

dt
‖w‖2L2 ≤ C4

L

ν
‖∇u‖2L2‖w‖2L2 ≤ C4

Lνλ1G
2‖w‖2L2

It follows that for t ≥ t0
‖w(t)‖2L2 ≤ ‖w(t0)‖2L2eC

4
Lνλ1G

2(t−t0). (15)

2.3. Enstrophy estimate. For the enstrophy, by a standard cancellation in the
nonlinearity in the periodic setting, see [3, (14)-(15)] as well as [3, p. 294],

1

2

d

dt
‖∇w‖2L2 + ν‖∆w‖2L2 = −

∫
(w · ∇w) ·∆u dx− µ(Ih,t(w),∆w).

We have by (1) and Poincaré’s inequality that
∣∣∣∣
∫

(w · ∇w) ·∆u dx
∣∣∣∣ ≤ ‖w‖L4‖∇w‖L4‖∆u‖L2

≤ C2
L‖w‖1/2L2 ‖∇w‖L2‖∆w‖1/2L2 ‖∆u‖L2

≤ C2
Lλ
−1/2
1 ‖∇w‖L2‖∆w‖L2‖∆u‖L2

≤ ν

2
‖∆w‖2L2 +

C4
L

2νλ1
‖∇w‖2L2‖∆u‖2L2 .

Hence,

1

2

d

dt
‖∇w‖2L2 + ν‖∆w‖2L2 ≤ ν

2
‖∆w‖2L2 +

C4
L

2νλ1
‖∇w‖2L2‖∆u‖2L2 − µ(Ih,t(w),∆w)

≤ ν‖∆w‖2L2 +
C4
L

2νλ1
‖∇w‖2L2‖∆u‖2L2 +

µ2CI
2

2ν
‖w‖2L2 ,

where we used (3) and Young’s inequality. We then have by Grönwall that, for
t > t0,

‖∇w(t)‖2L2 ≤ ‖∇w(t0)‖2L2e
C4
L

νλ1

∫ t
t0
‖∆u(s)‖2

L2 ds

+
µ2C2

I

ν

∫ t

t0

eC
4
L(νλ1)−1

∫ t
s
‖∆u(r)‖2

L2 dr‖w(s)‖2L2 ds

≤ ‖∇w(t0)‖2L2eC
4
LG

2(1+νλ1(t−t0))

+
µ2C2

I

ν
(t− t0) sup

t0<s<t
‖w(s)‖2L2eC

4
LG

2(1+νλ1(t−t0)),

where we used (11). Using (15) and assuming that

t− t0 ≤ µ−1, (C3)

we obtain

‖∇w‖2L2(t) ≤ ‖∇w(t0)‖2L2eC
4
LG

2(1+νλ1µ
−1)

+
µC2

I

ν
‖w(t0)‖2L2eC

4
Lνλ1G

2µ−1

eC
4
LG

2(1+νλ1µ
−1).

(16)

If
νλ1G

2 ≤ µ, (C4)
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then this simplifies to

‖∇w‖2L2(t) ≤ ‖∇w(t0)‖2L2eC
4
L(G2+1) +

µC2
I

ν
‖w(t0)‖2L2eC

4
L(G2+2). (17)

2.4. Lower bound for d
dt‖w‖2L2 . We also require a lower bound for d

dt‖w‖2L2 . To
obtain this note that

1

2

d

dt
‖w‖2L2 ≥ −ν‖∇w‖2L2 −

∣∣∣∣
∫

(w · ∇u) · w dx
∣∣∣∣−
∣∣µ〈Ih,t(w), w〉

∣∣

≥ −ν‖∇w‖2L2 − C2
L‖w‖L2‖∇w‖L2‖∇u‖L2 − µCI‖w‖2L2

≥ −ν‖∇w‖2L2 − C4
L

ν
‖w‖2L2‖∇u‖2L2 − ν‖∇w‖2L2 − µCI‖w‖2L2

≥ −2ν‖∇w‖2L2 − C4
L

ν
‖w‖2L2‖∇u‖2L2 − µCI‖w‖2L2 .

Then, by (C4),

d

dt
‖w‖2L2 ≥ −4ν‖∇w‖2L2 − 2C4

Lνλ1G
2‖w‖2L2 − 2µCI‖w‖2L2

≥ −4ν‖∇w‖2L2 − µ(2C4
L + 2CI)‖w‖2L2 .

(18)

2.5. Bound for the Dirichlet quotient. The Dirichlet quotient Q is defined to
be

Q(t) :=
‖∇w‖2L2

‖w‖2L2

.

We introduce two scenarios:

• Scenario 1: all t such that Q(t) ≤ µ/ν and,
• Scenario 2: all t such that Q(t) > µ/ν.

Lemma 2.2. Let µ satisfy (C4) and h satisfy (C2). Assume that t1 is a scenario
1 time. Let

τQ =
1

2µ

(
(8C2

I + 2C4
L + 2CI)e

C4
L(G2+1)

)−1
.

Then, for all t ∈ [t1, t1 + τQ],

Q(t) ≤ 4C2
I

µ

ν
eC

4
L(G2+2).

Proof. We have from (17) that, for t2 − t1 ≤ µ−1, which is exactly (C3), and
assuming t1 is a Scenario 1 time,

‖∇w‖2L2(t2) ≤ 2
µC2

I

ν
‖w(t1)‖2L2eC

4
L(G2+2). (19)

From the mean value theorem, (18), (C3) and (C4), we have

‖w(t2)‖2L2 − ‖w(t1)‖2L2

≥ (t2 − t1) inf
t1<t<t2

d

dt
‖w‖2L2(t)

≥ (t2 − t1) inf
t1<t<t2

(−4ν‖∇w‖2L2 − (2C4
L + 2CI)µ‖w‖2L2).

≥ −(t2 − t1)µ‖w(t1)‖2L2

(
8C2

I e
C4
L(G2+1) + (2C4

L + 2CI)e
C4
Lνλ1G

2(t2−t1)
)

≥ −(t2 − t1)µ‖w(t1)‖2L2

(
(8C2

I + 2C4
L + 2CI)e

C4
L(G2+1)

)
,

(20)
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where we used (19) and (15). It follows that

‖w(t2)‖2L2 ≥
(

1− (t2 − t1)µ
(
(8C2

I + 2C4
L + 2CI)e

C4
L(G2+1)

))
‖w(t1)‖2L2 . (21)

If

t2 − t1 ≤
1

2µ

(
(8C2

I + 2C4
L + 2CI)e

C4
L(G2+1)

)−1
, (22)

then

‖w(t2)‖2L2 ≥ 1

2
‖w(t1)‖2L2 . (23)

Note that (22) implies (C3). So, using (19) in the numerator and (23) in the
denominator, the Dirichlet quotient Q(t2) is bounded by

Q(t2) ≤ 4
µC2

I

ν
eC

4
L(G2+2),

provided t2 − t1 ≤ τC .

3. Local estimates and active regions. We make use of the following local
energy equality,

1

2

d

dt
‖wψ1/2‖2L2 = 〈ν∆w + P(w · ∇w − u · ∇w − w · ∇u)− µ〈PIh,t(w), wψ〉 (24)

where ψ is a smooth non-negative function with compact support. This is obtained
from (7) by testing against wψ. In this section we establish an upper bound for the
left-hand side of (24). By taking ψ = ψi as defined in (5), this will imply that if a
region is dominant at a given time t1, then it remains active at least for a period of
time depending on the parameters of the problem and ‖w(t1)‖L2 .

Lemma 3.1. Assuming u,w ∈ H1 and ψ ∈ {ψi}ni=1 where ψi are defined in (5),
we have

〈P(w · ∇w − u · ∇w − w · ∇u), wψ〉 ≤ C2
L(‖w‖L2 + 4νG)‖∇w‖2L2 .

Proof. By the boundedness of P in Lp for 1 < p <∞, the term in question satisfies

‖w · ∇w + u · ∇w + w · ∇u‖L4/3‖w‖L4

≤
(
‖∇w‖L2‖w‖L4 + ‖∇w‖L2‖u‖L4 + ‖∇u‖L2‖w‖L4

)
CL‖w‖1/2L2 ‖∇w‖1/2L2

≤ C2
L‖w‖L2‖∇w‖2L2 + C2

L‖w‖1/2L2 ‖∇w‖3/2L2 ‖u‖1/2L2 ‖∇u‖1/2L2

+ C2
L‖∇u‖L2‖w‖L2‖∇w‖L2

≤ C2
L‖w‖L2‖∇w‖2L2 + C2

Lλ
−1/4
1 ‖∇w‖2L2‖u‖1/2L2 ‖∇u‖1/2L2 + C2

Lλ
−1/2
1 ‖∇u‖L2‖∇w‖2L2

≤ C2
L‖w‖L2‖∇w‖2L2 + C2

L2νG‖∇w‖2L2 + C2
L2νG‖∇w‖2L2

≤ C2
L(‖w‖L2 + 4νG)‖∇w‖2L2 .

We now obtain an estimate on the local rate of change of the energy.
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Lemma 3.2. Assume u solves (6), v solves (7) and ψ ∈ {ψi}ni=1 as defined in (5).
Also assume that t1 is a scenario 1 time. Then, for all times t in (t1, t1 + τQ), and
letting M > 0 satisfy supt1<t<t1+τQ ‖w(t)‖2L2 ≤M , we have

d

dt
‖wψ1/2‖2L2

≤
[
cψ

ν

2r2
+ µCI + C2

LM
1/24

µ

ν
C2
I e
C4
L(G2+2) + 16GµC2

I e
C4
L(G2+2)

]
‖w‖2L2 .

Proof. We seek an upper bound for d
dt‖wψ1/2‖2L2 where ψ ∈ {ψi}Ni=1 is fixed. Our

starting point is the local energy equality (24). We have, after integrating by parts,
∫

∆wwψ dx = −
∫
|∇w|2ψ dx+

1

2

∫
w2∆ψ dx.

The first term on the right-hand side has a good sign and is dropped. Plainly

ν

∫
w2∆ψ dx ≤ cψνr−2‖w‖2L2 .

We also have

µ|〈PIh,tw,wψ〉| ≤ µCI‖w‖2L2 .

From these estimates and Lemma 3.1 we obtain

d

dt
‖wψ1/2‖2L2

≤
(
cψ

ν

2r2
+ µCI

)
‖w‖2L2 + C2

L(‖w‖L2 + 4νG)‖∇w‖2L2

≤
[
cψ

ν

2r2
+ µCI + C2

L(M1/2 + 4νG)Q
]
‖w‖2L2

≤
[
cψ

ν

2r2
+ µCI + 4C2

LM
1/2µ

ν
C2
I e
C4
L(G2+2) + 16GµC2

I e
C4
L(G2+2)

]
‖w‖2L2 ,

where we used Lemma 2.2.

We are now ready to state our main observation about dominant and active
regions, namely that, starting at a scenario 1 time, a dominant region remains
active for a short period of time τC which can be quantified.

Lemma 3.3. Fix c0 > 1. Let µ ≥ 1 satisfy (C4) and h satisfy (C2) and (C7)
below. Assume that t1 is a scenario 1 time. Assume also that, for some M > 1 we
have

‖w(t1)‖2L2 ≤M.

Take τC > 0 to be the minimum of the upper bounds in (C5), (C6) and(C7) below
(note that τC ∼ µ−1). If a region Ωi is dominant at time t1 then Ωi is active for
all times in [t1, t1 + τC ]. It follows that

∫
|w(t2)|2χi dx ≥

1

c0N2
‖w‖2L2(t2).

Remark 3.4. Above τC depends on M = M(t1). In principle τC could collapse as
time passes since (15) allows for the growth of the energy of w. In our application,
we will iteratively show that the energy is decaying exponentially as t1 grows. So,
this dependence on the energy will not lead to τC → 0 when we iterate to extend
our result to all times.
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Proof. Assume t1 is a scenario 1 time and without loss of generality take Ωi = Ω1

to be dominant at time t1. From Lemma 2.2, we have that Q(t) ≤ 4C2
I
µ
ν e
C4
L(G2+2)

on [t1, t1 + τQ]. Then, by the mean value theorem, (15) and Lemma 3.2, we have

‖wψ1/2
1 ‖2

L2 (t2)− ‖wψ1/2
1 ‖2

L2 (t1) ≤ (t2 − t1) sup
t1<t<t2

d

dt
‖wψ1/2

1 ‖2
L2

≤ (t2 − t1)

[
cψ

ν

2r2
+ µCI + 4C2

LM
1/2 µ

ν
C2
I e
C4
L(G2+2) + 16GµC2

I e
C4
L(G2+2)

]
sup

t1<t<t2

‖w(t)‖2
L2

≤ (t2 − t1)

[
cψ

ν

2r2
+ µCI + 4C2

LM
1/2 µ

ν
C2
I e
C4
L(G2+2) + 16GµC2

I e
C4
L(G2+2)

]
eC

4
Lνλ1G

2(t2−t1)

· ‖w(t1)‖2
L2

≤ (t2 − t1)

[
cψ

ν

2r2
+ µCI + 4C2

LM
1/2 µ

ν
C2
I e
C4
L(G2+2) + 16GµC2

I e
C4
L(G2+2)

]
eC

4
L︸ ︷︷ ︸

=:µK

· ‖w(t1)‖2
L2 ,

(25)

where we assumed t2 − t1 < τC where

τC ≤ τQ, (C5)

as this implies τC ≤ µ−1. We additionally require

τC ≤
γ

µK

(
1− 1

N2

)
, (C6)

where

γ = γ(N, c0) :=
1

2

(
1− (

√
c0N)−2

1−N−2
− 1

)
> 0. (26)

Then, since Ωc1 is codominant at time t1, we get from (25) that

‖wψ1/2
1 ‖2L2(t2) ≤ ‖wψ1/2

1 ‖2L2(t1) + γ

(
1− 1

N2

)
‖w(t1)‖2L2

≤ (1 + γ)

(
1− 1

N2

)
‖w(t1)‖2L2 .

Note that γ is chosen so that the above prefactor is the midpoint between 1−N−2

and 1− (
√
c0N)−2. We next guarantee

(1 + γ)

(
1− 1

N2

)
‖w(t1)‖2L2 ≤

(
1− 1

c0N2

)
‖w(t2)‖2L2 , (27)

again by controlling τC . If ‖w(t1)‖2L2 ≤ ‖w(t2)‖2L2 , then we are done by our choice of
γ and τC does not need to be updated. Otherwise, noting that (21) and t2−t1 < τC
imply

‖w(t1)‖2L2 <

(
1− τCµ(8C2

I + 2C4
L + 2CI)e

C4
L(G2+1)

)
‖w(t2)‖2L2 ,

we see that (27) is met provided

(1 + γ)

(
1− 1

N2

)(
1− τCµ(8C2

I + 2C4
L + 2CI)e

C4
L(G2+1)

))−1

≤
(

1− 1

c0N2

)
,



14 ANIMIKH BISWAS, ZACHARY BRADSHAW AND MICHAEL JOLLY

which, in turn, holds if

τC ≤
1

µ(8C2
I + 2C4

L + 2CI)eC
4
L(G2+1)

)
(

1− (1 + γ)(1−N−2)

1− (
√
c0N)−2

)
. (C7)

We therefore take τC to be the minimum of the quantities listed above.
We have thus shown

‖wψ1/2
1 (t2)‖2L2 <

(
1− 1

c0N2

)
‖w(t2)‖2L2 ,

that is, Ωc1 is coactive at time t2. Using the fact that φ1 + ψ1 = 1, we have

‖wφ1/2
1 (t2)‖2L2 ≥ 1

c0N2
‖w(t2)‖2L2 ,

and therefore Ω1 is active at time t2.

4. Mobile data assimilation.

4.1. Short time synchronization. We now show that the data assimilation equa-
tion synchronizes regardless of whether we are in scenario 1 or scenario 2.

Lemma 4.1. Assume that t1 is a scenario 1 time. Let c∗ > 0 and c0 > 1 be given.
Then, choosing µ to satisfy (C4), (C8) and (C9), and h to satisfy (C1) and (C2),
and letting τC be as in Lemma 3.3, it follows that

‖w(t1 + τC)‖2L2 ≤ ‖w(t1)‖2L2e−c∗τC .

The idea behind this lemma is that, as the observability window cycles through
all regions over the interval [t1, t1 + τC ], it remains in an active interval for τC/N

2

units of time. When this is the case, synchronization is driven by the nudging
term at an exponential rate. Over the remaining times, ‖w‖2L2 might grow, but not
enough to overcome the convergence during synchronization.

Proof. Suppose that Ωi is the dominant region at time t1. Then, by Lemma 3.3,
which requires µ satisfy (C2) and (C4) and h satisfies (C2), it is active on [t1, t1+τC ]
and, therefore, ∫

|w|2χi dx ≥
1

c0N2

∫
|w|2 dx.

There exists a strict and maximal subinterval I of [t1, t1 + τC ] on which the in-
terpolant operator localizes to Ωi. We may decompose [t1, t1 + τC ] into the three
intervals [t1, t2], I = [t2, t3], and [t3, t1 + τC ], where t1 ≤ t2 ≤ t3. The first or last
interval can be degenerate. Note that t3 − t2 = τCN

−2. On I, since Ωi is active,
by the Poincaré inequality we have

1

2

d

dt
‖w‖2L2 + ν‖∇w‖2L2

= −
∫

(w · ∇u) · w dx− µ(Ih,t(w)− wχι(t), w)− µ
∫
|w|2χι(t) dx

≤ C2
L‖∇u‖L2‖w‖L2‖∇w‖L2 + µCIh‖w‖L2‖∇w‖L2 − µ

c0N2

∫
|w|2 dx

≤ 1

ν
C4
L‖∇u‖2L2‖w‖2L2 +

ν

2
‖∇w‖2L2 − µ

c0N2

∫
|w|2 dx,

(28)
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where we are using (C1). Then

d

dt
‖w‖2L2 ≤ 2(4C4

Lνλ1G
2 − µ

c0N2
)‖w‖2L2

≤ −µ
c0N2

‖w‖2L2 ,

provided

4C4
Lνλ1G

2 ≤ µ

c0N2
. (C8)

Hence for t ∈ [t2, t3] we have

‖w(t)‖2L2 ≤ ‖w(t2)‖2L2e
− µ

c0N
2 (t−t2)

.

In particular,

‖w(t3)‖2L2 ≤ ‖w(t2)‖2L2e
− µ

c0N
2
τC
N2 .

On the other hand, using (15), for t ∈ [ti, ti+1] where i = 1, 3 we have

‖w(t)‖2L2 ≤ ‖w(ti)‖2L2e4C4
Lνλ1G

2(t−ti).

Hence,

‖w(t1 + τC)‖2L2 ≤ ‖w(t3)‖2L2e4C4
Lνλ1G

2(t1+τC−t3)

≤ ‖w(t2)‖2L2e
4C4

Lνλ1G
2(t1+tC−ti)− µ

c0N
2
τC
N2

≤ ‖w(t1)‖2L2e
4C4

Lνλ1G
2(t1+τC−t3+t2−t1)− µ

c0N
2
τC
N2

≤ ‖w(t1)‖2L2e
τC(4C4

Lνλ1G
2− µ

c0N
4

)

Provided

4C4
Lνλ1G

2 − µ

c0N4
≤ −c∗, (C9)

we have

‖w(t1 + τC)‖2L2 ≤ e−c∗τC‖w(t1)‖2L2 .

Lemma 4.2. Suppose that scenario 2 holds on [t1, t2]. Let c∗ > 0 and c0 > 1 be
given. Then for all t ∈ [t1, t2], assuming µ satisfies (C9), and h satisfies (C1) we
have

‖w(t)‖2L2 ≤ ‖w(t1)‖2L2e−c∗(t−t1).

Proof. From (28) and dropping the term with the good sign, we have

1

2

d

dt
‖w‖2L2 + ν‖∇w‖2L2 ≤ 1

ν
C4
L‖∇u‖2L2‖w‖2L2 +

ν

2
‖∇w‖2L2 . (29)

It follows that
d

dt
‖w‖2L2 + µ‖w‖2L2 ≤ 4C4

Lνλ1G
2‖w‖2L2 .

The desired result follows if

4C4
Lνλ1G

2 − µ ≤ −c∗,
which is implied by (C9).

Note that in (29) we drop the nudging term. Thus, in this lemma we are using
diffusion to drive synchronization.
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Use Lemma 4.1 Use Lemma 4.2

Scenario 1 times Scenario 2 times τC

t

Figure 2. The partition scheme for the time axis in the proof of
Theorem 1.1. The dark gray lower intervals represent scenario 1
times while scenario 2 times are unfilled. The gray upper intervals,
which have length τC and are initiated at scenario 1 times, represent
times across which at least one region stays active—see Lemma 3.3.
On these intervals, nudging drives synchronization—see Lemma
4.1. In the hatched upper intervals, which can have any length,
dissipation drives synchronization—see Lemma 4.2.

4.2. Proof of Theorem 1.1.

Proof. Let w be a solution to (7) on Ω × (0,∞) where v0 = 0 so that w0 = u0.
Suppose t = t0 = 0 is a scenario 1 time—if it is not then, by Lemma 4.2, there is an
interval originating at zero on which ‖w(t)‖2L2 is decreasing exponentially and we
re-start this argument at the first scenario 1 time (if no time exists then Lemma 4.2
applies for all times and we are done). Let I = [0,mτC ] where m ≥ 1 is the largest
integer such that, for all i = 0, . . . ,m − 1 we have t = iτC is a scenario 1 time.
Note that ‖w(iτC)‖L2 is a decreasing sequence hence the parameters in Lemma 4.1,
in particular τC , can be chosen uniformly depending on M = ‖u0‖2L2 ≤ ν2G2 (see
Remark 3.4). Then

‖w(mτC)‖2L2 ≤ e−c∗mτCν2G2.

Additionally mτC is a scenario 2 time. Let t1 be the first scenario 1 time after mτC .
So, by Lemma 4.2 we have for all t ∈ [mτC , t1],

‖w(t)‖2L2 ≤ e−c∗(t−mτC)‖w(mτC)‖2L2 ≤ e−c∗(t−mτC)−c∗mτCν2G2 = e−c∗tν2G2.

We can repeat this argument to generate a sequence of times ti which grows without
bound so that

‖w(ti)‖2L2 ≤ e−c∗tiν2G2.

This decay only holds on a sequence of times. We now extend this to decay
for all times t ≥ τC . We can define a second sequence si so that |si+1 − si| ≤ τC
and {ti} ⊂ {si}, see Figure 4.2. This sequence also clearly satisfies ‖w(si)‖2L2 .
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t0 t1 t1 t2

s0 s1 s2 s3 s4 s5 s6 s7 s8 s9 s10 s11 t

Figure 3. Refining the partition as in Figure 4.2. The new
partition is segmented using the points labelled si. Note that
|si+1 − si| ≤ τC .

e−c∗siν2G2. Then for t ∈ (si, si+1) we have by (15),

‖w(t)‖2L2 ≤ eC
4
Lνλ1G

2(t−si)‖w(si)‖2L2

≤ eC4
Lνλ1G

2τC‖w(si)‖2L2

≤ eC4
Lνλ1G

2τC−c∗siν2G2.

Note that for τC ≤ si we have t/2 ≤ si. So,

‖w(t)‖2L2 ≤ eC
4
Lνλ1G

2τC−c∗t/2ν2G2 ≤ eC4
Lν2G2e−c∗t/2,

where we used the fact that τC ≤ µ−1 ≤ (νλ1G
2) (which is (C4)).

The condition for µ in the theorem’s statement is obtained from (C4) and (C9)
while that for h is from (C1) and (C2). Presently, τC has been defined to be the
smallest quantity in the right hand sides of (C5), (C6) and (C7). In the theorem’s
statement, however, we reduce this value for the sake of readability (it is still based
on (C5), (C6) and (C7)).

5. Numerical tests. Our tests are carried out on the NSE in vorticity form

d

dt
ω − ν∆ω + u · ∇ω = g , u = ∇⊥ψ, −∆ψ = ω (30)

where g = ∇ × f , the same time independent force concentrated on the annulus
with wave numbers 10 ≤ |k| < 12, as used in [25, 26, 6]. While our analysis has
been done in terms of velocity, we expect the nudging algorithm to work as well
for vorticity. For the numerical results to follow, we simultaneously solve both (30)
and the nudged equation as a coupled system

d

dt
ω̃ − ν∆ω̃ + ũ · ∇ω̃ = g − Jh(ω̃ − ω); , ũ = ∇⊥ψ̃, −∆ψ̃ = ω̃ (31)

using a fully dealiased pseudospectral code with N=512 modes in each direction
over the full physical domain [0, 2π]2.

As in [6], for all mobile local nudging we use a spectrally filtered interpolating
operator Jh. We first move from Fourier coefficients to nodal values via an FFT−1

applied to ω̃−ω. After restricting to the subdomain, we use data at only every 2p-th
node in each direction, so that p = 1, 2, 3, 4, corresponds to h = π/128, π/64, π/32
and π/16, respectively. A recursively averaged operator Kp depicted in Figure 4 is
used the smoothen the result over the subdomain D. We then transform back so
that

Jh(ω̃ − ω) = FFT ◦ Kp ◦ χD ◦ FFT−1(ω̃ − ω) .
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The viscosity is fixed at ν = 10−4, and the force is scaled so that the (traditional)
Grashof number is

‖f‖L2

ν2λ1
= 106 .

This results in a chaotic reference solution, which after 25,000 time units starting
from zero initial vorticity, is presumed to essentially be on the global attractor. The
time stepper is the third-order Adams-Bashforth method in [25, 26] in which the
linear term is handled exactly through an integrating factor. The step size is taken
to be ∆t = 0.001. The larger step ∆t = 0.01 was found in [26] to be sufficient for
computing the reference solution, but the new nudging schemes synchronize quickly
if the flow is sampled on a finer time scale. The relaxation parameter is fixed at
µ = 50 and nudging takes place over a moving subdomain of size π/2× π/2.
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Figure 4. First recursive step of Kp. Values of ω̃N − ωN are a, b,
c, d at the corners.

5.1. Periodic movement of nudging subdomain. We consider two cases in
which the subdomain where the nudging takes place follows a regular pattern. The
lower left corner of the subdomain is determined by functions nx(t), ny(t), that are
periodic with period τC . In one scheme, these functions are similar to those in [6],
and depicted for the case τC = 16 in Figure 5 (Top). The second scheme simulates
the situation covered by Theorem 1.1; the functions nx, ny are piecewise constant
so that the subdomain moves in the same pattern as in Figure 5 (Bottom), but
is held fixed for τC/16 time units. In fact, due to the spatial discretization, both
schemes use piecewise constant functions nx, ny. The difference is that the scheme
using the functions in Figure 5 (Top) does so over a 512× 512 grid in space, while
the latter does so over a 4×4 spatial grid. Based on the functions in Figure 5 (Top),
however, we will refer to the former as the continuous scheme and the latter as the
piecewise constant scheme.

The results for the two regular pattern schemes are shown in Figure 6 for various
cycling times. The relative L2 errors are plotted top to bottom in the order corre-
sponding to the legends. Both schemes eventually synchronize to within machine
precision. In the case of continuous functions nx(t), ny(t), the rate of convergence
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Figure 5. Movement of lower left corner of subdomain for pat-
terned schemes.

improves as the cycling time increases over the range considered. In contrast, piece-
wise constant movement of the subdomain, the rates improve with faster cycling
times, as suggested by the definition of τC .

The dependence on data resolution for both patterned movement schemes is
shown in Figure 7. The continuous movement scheme appears to be somewhat more
robust in that doubling the resolution of data did not slow the convergence as much
as for the piecewise constant scheme. Finally, for both patterned schemes, we vary
the relaxation parameter µ in Figure 8. For both schemes, the rate of convergence
continues to improve with increasing µ through µ = 400. If µ is too large (e.g.
µ = 800), the schemes are found to be unstable with time step ∆t = 0.001.

5.2. Nudging over the dominant subregion. Motivated by the analysis in this
paper, we also test an informed scheme which finds among the 16 subdomains in
Figure 5 (Bottom) the most dominant one, nudges for a fixed period T over that
subdomain, and repeats. The nudging on the subdomain is done using every other
node in each direction, i.e., p = 1. The most dominant subdomain is determined
by computing the trapezoidal rule approximation of the integral

∫
Ωj

|ω|2 for j =

1, . . . , 16 on a coarse grid: using every 16th node in each direction, i.e., p = 4.
The (global) relative L2 errors for this scheme are shown in Figure 9 (Top) for
several values of T , done with µ = 50. Comparing with Figure 8, we see that
the best performance, achieved for T = .02, reaches machine precision just a bit
faster than the two regular pattern schemes do using optimal values of µ. A zoom
over the initial time range is shown in Figure 9 (Bottom), together with the ratios
of RT =

∫
Ωj

|ω|2/
∫
Ω
|ω|2 for T = .04, .08 and the line for the constant function

1/16. As expected, the error drops the fastest when when this ratio is largest. As
shown in Figure 10 (Top), unlike the two regular pattern schemes, the informed
scheme seems to have a sweet spot for µ around 50. We note that the number of
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Figure 6. Dependence on cycling time. Top: continuous nx, ny.
Bottom: piecewise constant nx, ny. For both, µ = 50, p = 1.

observations, when using the nudging period T = .02, p = 1, and δt = .001, comes
to 642 + 322/20 = 4147.2 per step.

One can imagine a scenario where some time would be needed to move observa-
tional equipment from one subdomain to the next. We simulate this by introducing
a delay at the moment the new dominant subdomain is determined. The delay is
taken to be a significant fraction ϕi of the nudging period: in one case, one-fourth
and in another, one-half. With the delay being at the beginning of that period,
it is natural to expect a slowdown in synchronization, since the dominance of the
subdomain fades. The results for these delays are shown in Figure 10 (Bottom)
for the period T = .02. Also shown in Figure 10 (Bottom) is a plot for a scheme
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Figure 7. Dependence on data resolution. Top: continuous nx,
ny, τC = 3.2. Bottom: piecewise constant nx, ny, τC = 0.32. For
both µ = 50.

where the next subdomain is chosen randomly, with no delay as well as with delay
fractions ϕr = .25, .5 of the nudging period. Such random movement is somewhat
akin to the “bleeps” scheme in [23], except here the observers remain fixed and
uniformly distributed over a subdomain for the nudging period, rather than moving
freely throughout the full domain.

In our final test, we compare to purely spectral nudging. Recall that the data
we have used to determine the dominating subregion corresponds, through an FFT,
to the 322 lowest Fourier modes. Nudging at this global resolution can be simply
affected by taking the interpolating operator to be projection onto those modes.

Figure 7. Dependence on data resolution. Top: continuous nx,
ny, τC = 3.2. Bottom: piecewise constant nx, ny, τC = 0.32. For
both µ = 50.

where the next subdomain is chosen randomly, with no delay as well as with delay
fractions ϕr = .25, .5 of the nudging period. Such random movement is somewhat
akin to the “bleeps” scheme in [17], except here the observers remain fixed and
uniformly distributed over a subdomain for the nudging period, rather than moving
freely throughout the full domain.

In our final test, we compare to purely spectral nudging. Recall that the data
we have used to determine the dominating subregion corresponds, through an FFT,
to the 322 lowest Fourier modes. Nudging at this global resolution can be simply
affected by taking the interpolating operator to be projection onto those modes.
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Figure 8. Dependence on µ. Top: continuous nx, ny, τC = 3.2.
Bottom: piecewise constant nx, ny, τC = 0.32. For both p = 1.

We plot the result in Figure 11, together with that for the informed scheme for
period T = .02 (no delay) and that for spectral nudging with 642 = 4096 modes
(nearly the amount of data, per time step, used for the informed scheme). We note
that, initially, the error decreases faster for spectral nudging. To take advantage
of this, we consider a hybrid scheme which uses spectral nudging with 322 modes
until time t = .1 and then switches to the informed scheme. This results in faster
synchronization to machine precision, though it used knowledge of an optimal time
to switch. Such a hybrid scheme could be made practical by monitoring the error
as Fourier projection is used and switching when a significant slowdown is detected.
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period T = .02 (no delay) and that for spectral nudging with 642 = 4096 modes
(nearly the amount of data, per time step, used for the informed scheme). We note
that, initially, the error decreases faster for spectral nudging. To take advantage
of this, we consider a hybrid scheme which uses spectral nudging with 322 modes
until time t = .1 and then switches to the informed scheme. This results in faster
synchronization to machine precision, though it used knowledge of an optimal time
to switch. Such a hybrid scheme could be made practical by monitoring the error
as Fourier projection is used and switching when a significant slowdown is detected.
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Figure 9. Top: effect of update period on informed scheme. Bot-
tom: zoom of errors over initial time range along with their ratios
RT for T = .04, .08. For all, p = 1, µ = 50.

5.3. Summary of numerical results. We have demonstrated that when the
nudging subdomain moves in a regular pattern to cover the full domain, vary-
ing the speed of movement has a different effect depending on how smooth the
movement is. For a scheme that faithfully simulates the assumptions in Theorem
1.1 faster movement results in faster synchronization. In contrast, for movement
that is relatively smooth, the longer cycling times, over a certain range, gives faster
synchronization. Smoother movement appears to be somewhat more robust with
respect to coarsening the data resolution. After fine tuning the relaxation parameter
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1.1 faster movement results in faster synchronization. In contrast, for movement
that is relatively smooth, the longer cycling times, over a certain range, gives faster
synchronization. Smoother movement appears to be somewhat more robust with
respect to coarsening the data resolution. After fine tuning the relaxation parameter
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Figure 10. Top: dependence of informed scheme on µ, with T =
.02, p = 1. Bottom: effect of delay in nudging, ϕi = delay fraction
informed scheme, ϕr = delay fraction random scheme, T = .02,
µ = 50, p = 1 for both.

µ, synchronization to within machine precision is achieved after about 15 time units
for the continuous scheme and about 16 units for the piecewise constant scheme.
Nudging at that same resolution over the subdomain with the greatest L2 error does
so after about 13 time units. To be fair, this informed scheme requires an additional
coarse mesh of observed data in order to determine the subdomain. This, however,
is done only at the start of each nudging period. We have found a near optimal
time period, over which to do the nudging before the determination of the next
most dominant subdomain. This informed scheme synchronizes somewhat faster
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µ, synchronization to within machine precision is achieved after about 15 time units
for the continuous scheme and about 16 units for the piecewise constant scheme.
Nudging at that same resolution over the subdomain with the greatest L2 error does
so after about 13 time units. To be fair, this informed scheme requires an additional
coarse mesh of observed data in order to determine the subdomain. This, however,
is done only at the start of each nudging period. We have found a near optimal
time period, over which to do the nudging before the determination of the next
most dominant subdomain. This informed scheme synchronizes somewhat faster
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Figure 11. Comparing spectral nudging with informed scheme
and a hybrid scheme, T = .02, switch at t = .1, both with µ = 50.

than nudging for the same period with a subdomain that is randomly selected. In
the case of the random scheme, over certain time intervals the error is nearly con-
stant, punctuated by sharp drops when, presumably, the subdomain is dominant,
or nearly so. These sharp declines are also to be expected since over the prior in-
terval the error has held roughly steady, making the beneficial feedback stronger.
Both the informed and random scheme appear to be robust against a significant
delay before starting to nudge after each new subdomain is determined. Finally, we
have found that while the informed scheme achieves much faster synchronization
with a comparable number of data observations (per time step) than using global
spectral nudging, the latter produces a sharper initial drop. We have demonstrated
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terval the error has held roughly steady, making the beneficial feedback stronger.
Both the informed and random scheme appear to be robust against a significant
delay before starting to nudge after each new subdomain is determined. Finally, we
have found that while the informed scheme achieves much faster synchronization
with a comparable number of data observations (per time step) than using global
spectral nudging, the latter produces a sharper initial drop. We have demonstrated
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the effectiveness of a simple hybrid scheme that switches from the spectral scheme
to informed scheme, after this initial drop.
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