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Abstract
In this paper, we consider the analysis of a nudging based algorithm for data assimi-
lation for the three-dimensional Boussinesq system, which we call the AOT system.
A rigorous analysis of this algorithm for well-posed dissipative partial differential
equations was first provided by Azouani, Olson and Titi (J Nonlinear Sci 24:277–304,
2014); thus justifying our terminology for the associated nudging system.We provide a
sufficient condition, based solely on the observed velocity data obtained from a Leray-
Hopf weak solution, for the global well-posedness, regularity and most crucially, the
asymptotic tracking property of solutions of the associated (three-dimensional) nudg-
ing system. It is to be noted that neither regularity nor any knowledge of a uniform
H

1-norm bound is a priori assumed on the solution of the original three-dimensional
Boussinesq system from which the observations are obtained. As a corollary of our
result, we obtain a novel observable regularity criterion based on finitely many
observational data. Our condition also guarantees the construction of the Lipschitz
continuous determining map, which is known to play a crucial role in the construction
of the so-called determining form and in statistical data assimilation.
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1 Introduction

The task of forecasting using a physical or biological model is often hindered by a
lack of adequate knowledge of the initial state and/or model parameters describing
the system. In order to compensate for this, one may utilize available measurements
of the system, collected on a much coarser (spatial) scale than the desired resolution
of the forecast. An example of this occurs in weather prediction where one has almost
continuously collected data from sparsely located weather stations. The objective of
data assimilation and signal synchronization is to use this coarse scale observational
measurements to fine tune our knowledge of the state and/or model to improve the
accuracy of the forecasts [15].

Classically, data assimilation techniques are based on linear quadratic estimation,
also known as the Kalman Filter. The Kalman Filter has the drawback of assuming
that the underlying system and any corresponding observation models are linear. It
also assumes that probability distribution of the measurement noise is Gaussian. For
nonlinearmodels, this has beenmitigatedbypractitioners viamodifications, such as the
Ensemble Kalman Filter (EnKF), Extended Kalman Filter (EKF) and the Unscented
Kalman Filter [4, 13, 33, 45]. However, unlike the Kalman filter, these do not enjoy
the optimality property and has other drawbacks, particularly for infinite dimensional
chaotic dynamical systems governed by PDE’s [36].

An alternative approach to data assimilation called nudging, which is often cheaper
to implement, employs a feedback control paradigm via a Newtonian relaxation
scheme. This is motivated by the existence of finite determining functionals (modes,
nodes, volume elements) for dissipative systems [27, 29], and has recently been advo-
cated in the context of dissipative partial differential equations (PDE) by Azoiani,
Olson and Titi [6]. Although it has its antecedents, mainly in the context of finite-
dimensional dynamical systems governed by ordinary differential equations and early
work in meteorology [5, 12, 44], the rigorous analysis of this method in fluid dynam-
ics, clarifying the central role of the observation/interpolation operators as well as the
bounds on the system variables on the attractor, which in turn determines the requisite
spatial resolution of the observed data, was first carried out in [6]. Due to this, we will
henceforth refer to the system associated to the nudging algorithm as the AOT system.
We provide below a schematic description of the AOT system based on the work of
Azouani, Olson and Titi [6].

Assume that the observations are generated from a continuous dynamical system
given by

d

dt
u = F(u), u(0) = u0.

The associated AOT system, based on the work of Azouani, Olson and Titi [6], is
given by

d

dt
w = F(w) − μIh(w − u), w(0) = w0 (arbitrary), (1.1)
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where Ih is a finite rank linear operator acting on the phase space, called interpolant
operator, constructed solely from observations on u (e.g. low (Fourier) modes of u or
values (or local averages) of u measured in a coarse spatial grid). Here h refers to the
size of the spatial grid or, in case of themodal interpolant, the reciprocal of h stands for
the number of observed modes. Thus a smaller h corresponds to an observation space
with a larger dimension, i.e. it corresponds to a richer observation space. Moreover,
μ > 0 is the relaxation/nudging parameter an appropriate choice of which needs to
be made for the algorithm to work, i.e. the system to be globally (in time) well-posed
and for its solution to possess the asymptotic tracking property, namely, in a suitable
norm,

‖w − u‖ −→ 0 as t → ∞.

It turns out [6] that larger bounds on the system variables necessitates a smaller h, i.e.
more observations.

Although first analyzed for the two-dimensional Navier-Stokes equations (2D
NSE), the AOT system was later extended to include various other dissipative systems
[1, 2, 21, 34], and to more general settings such as discrete-in-time and error-
contaminated measurements and recovery of statistical solutions [8, 26]. This method
has been shown to perform remarkably well in numerical simulations [3, 32]and has
recently been successfully implemented for efficient dynamical downscaling of a
global atmospheric circulation model [16]. Moreover, it was observed in [37] that
a flexible variant of it implemented via deep learning neural networks is cheaper to
implement (online) and has a superior performance compared to the commonly used
EKF and EnKF in case of sparse observations. Recent applications also include its
implementation in reduced order modeling (ROM) of turbulent flows to mitigate inac-
curacies in ROM [46] and in estimating unknown flow parameters and turbulence
configurations [10, 35].

Here, we consider two main problems: (i) global (in time) well-posedness of the
three-dimensional AOT system corresponding to the three-dimensional Boussinesq
system where the (velocity) observations are obtained from a Leray-Hopf weak solu-
tion of the three-dimensional Boussinesq system (ii) the asymptotic tracking property
of the corresponding solution. The AOT system for the Boussinesq equations in the 2D
case was addressed in [20], while the 3D case with large, or infinite Prandtl number
or flow in porous media were addressed in [19, 21]. In all the cases mentioned before
(with the exception of our recent work in [11]) where rigorous analysis of the AOT
system is available [1, 2, 6, 19–21, 34], one crucially uses the fact that the associated
dissipative systems are well-posed and regular. Perhaps more importantly, in each of
these cases, uniform-in-time bound in a higher Sobolev norm (e.g. the H

1-norm) for
the state variable(s) is available. The knowledge of such higher order Sobolev norm
bounds (e.g. in terms of physical parameters such as the Grashoff for the NSE in [6]
and Prandtl and Rayleigh for the Boussinesq in [19]) plays a crucial role in the analysis
of theAOT system.More precisely, these bounds are used in providing an upper bound
on the spatial resolution h of the observations necessary for the AOT to be well-posed
and globally stable and to possess the asymptotic tracking property. Additionally, the
value of the nudging parameterμ guaranteeing these properties also explicitly depends
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on this uniform bound. However,Such higher order norm bounds are not available for
a Leray-Hopf weak solution of the 3D Boussinesq system which might even be non-
unique. In fact, the corresponding uniqueness problem for a Leray-Hopf weak solution
for the 3D NSE or the Boussinesq system is still open.

In this work, we identify a condition on the observed (velocity) data, u, which does
not depend on any a priori assumption of regularity of the velocity, or the knowledge of
a uniform H

1 norm bound M = sup[0,T ) ‖u‖H1 , T ≤ ∞, even if it is finite. A precise
description of this condition on the observations is given in (1.7) below. We show that
our condition on the observed data allows us to appropriately set the value of μ in
(1.1), based only on the quantities computed from the observed data, and: (i) prove
wellposedness of the AOT system (we note that unlike in the 2D case where one uses
the 2D embedding inequalities, the global wellposedness of the AOT system crucially
depends on our choice ofμwhich in turn depends on condition (1.7) that we identified
based solely on the observed data) (ii) establish appropriate uniform bound on the state
variables of (1.1) (iii) show that the solution of (1.1) tracks asymptotically the solution
of the three-dimensional Boussinesq system, without any a priori assumption on the
regularity of the solution of the Boussinesq system or any knowledge of a bound
M = sup ‖u‖H1 even if it is finite. Note that even if one knows that the Leray-Hopf
weak solution under consideration is regular on an interval [0, T ), unlike the 2D case,
no bound on it in terms of the system parameters, for instance the Raleigh and Prandtl
numbers, is available.We emphasize that our result applies quite generally to arbitrary
Prandtl and Rayleigh numbers. We also show that if M = sup[0,T ) ‖u‖H1 < ∞ for
some T ≤ ∞, then (1.7) holds. Thus, this can be viewed as a generalization to the 3D
case of the results in [20].

Quite remarkably, it turns out that condition (1.7), which guarantees the wellposed-
ness and asymptotic tracking property for theAOT system, yields a regularity criterion.
Since it involves only the observed part of the fluid velocity, we call it an observ-
able regularity criterion which is different from all other regularity criterion known
so far (e.g. the well-known Prodi-Serrin or the Beale-Kato-Majda regularity crite-
ria [7, 40]). Those conditions involve the knowledge of the entire solution u, while
ours is expressed in terms of finitely many observations on u, or equivalently, from
information gleaned from a finite rank projection on the state space applied to u.

Finally, extending our earlierwork in [9],we establish the existence of adetermining
map for the three-dimensional case. The determining map was first introduced for the
2D NSE in [22, 23] and its properties were studied in in detail in [9]. It plays a pivotal
role in the construction of the determining form, an ODE in an adequate trajectory
space associated to a dissipative system. The dynamics of the determining form, is
closely related to the dynamics of the dissipative system to which it is associated [24].
Recently, the determining map has also been used for data assimilation of statistical
solutions [9] and in estimating unknown parameters (such as viscosity in the NSE)
in a dissipative system [10]. We make crucial use of it in our work in the proof of
the observable regularity criterion as well as in obtaining a result on the existence
of determining modes and volume elements for the 3D Boussinesq system (Theorem
3.3). A more precise description of our main results now follows.
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1.1 The 3D Boussinesq System

The Boussinesq system in thermohydraulics is commonly used to model thermal
convection or the phenomenon of heat transfer by the motion of an incompressible,
Newtonian fluid. It occurs in diverse fields such mantle convection to atmospheric
motion [38]. The Bénard convection problem is a model of the Boussinesq convection
system of an incompressible fluid layer, confined between two solid walls, which is
heated from below in such a way that the lower wall maintains a temperature T0,
while the upper one maintains a temperature T1 < T0. In this case, after some change
of variables and proper scaling (by normalizing the distance between the walls and
the temperature difference), the three-dimensional Boussinesq equations that govern
the perturbation of the velocity(u) and temperature about the pure conduction steady
state(θ ) are

du

dt
+ ν�u + (u · ∇)u = θe3 (1.2)

dθ

dt
+ κ�θ + (u · ∇)θ − u · e3 = 0 (1.3)

∇ · u = 0 (1.4)

u(0, x) = u0, θ(0, x) = θ0 (1.5)

For boundary conditions, in the x3 direction we have

u, θ = 0, at x3 = 0 and x3 = 1

and in the x1 and x2 directions, for simplicity, we have the periodic boundary condition

u, θ are periodic, of period L in the x1 and x2 directions.

Here, x = (x1, x2, x3) is a point in the domain, u(t; x) = (u1(t, x), u2(t, x), u3(t, x))
is the fluid velocity and θ = θ(t, x) is the scaled fluctuation of the temperature around
the pure scaled conduction steady-state background temperature profile 1 − x3. It is
given by θ = T − (1 − x3), where T = T (t, x) is the scaled temperature of the
fluid inside the domain �. κ and ν are the thermal diffusivity and kinematic viscosity,
respectively. Formore details on its derivation and physical interpretation can be found
in [17].

1.2 A Sufficient Condition forWell-Posedness and the Asymptotic Tracking
Property

For (u, θ), the solution to the Boussinesq system given in (2.8)-(2.10), the observations
on the velocity component u are used to define the quantity
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M2
h,u = 32 sup

0≤t<T

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

‖PN (u)‖2
H1 ∼

∑

|k|≤N

|λk |2|û(k)|2, N ∼ 1

h
(Modal Interpolant)

Ch
∑

α

|ūα|2, ūα = 1

|Qα|
∫

Qα

u (Volume Elements)

(1.6)

where, 0 < T ≤ ∞ and λk are eigenvalues of the Stokes operator such that λ1 ≤ λ2 ≤
· · · with PN being the associated spectral projections. Also, in the above definition,
{Qα} denotes partition of the domain into finitely many cubes of side length h and the
corresponding finite set {uα} are called volume element observations. Due to the fact
that any Leray-Hopf weak solution satisfies sup[0,∞) ‖u‖L2 < ∞, we can show (see
Remark 2.6 for a proof) that Mh thus defined is a finite quantity. Here, h0 depends
explicitly on the physical parameters such as viscosity and thermal diffusivity, i.e. the
Raleigh and Prandtl numbers. If there exists 0 < h ≤ h0 such that

h2M4
h,u

≤ cν4, (ν is the fluid viscosity and c an adequate non-dimensional constant.)

(1.7)

then a choice of μ exists such that the data assimilated solution (w, η) is regular
(given in Definition 1) and converges exponentially to the actual solution (u, θ). We
also establish uniform in time bounds on ‖η‖L2p(�) for all natural numbers p.

1.3 Connection to Regularity

A solution (u, θ) of the Boussinsq system is said to be regular on [0, T ), T ≤ ∞ if
sup[0,T ) ‖u‖H1 < ∞. Due to the well-known Sather-Serrin weak-strong uniqueness
theorem [41], such a solution is unique in the class of weak solutions. It is the case
that Mh,u as defined in (1.6) satisfies

Mh,u � sup
[0,T )

‖u‖. (1.8)

For the modal interpolant, this immediately follows from the inequality ‖PNu‖H1 �
‖u‖H1 , while for the volume elements it follows from a similar estimate proven
in Corollary 6.3. It then immediately follows that if sup[0,T ) ‖u‖H1 , T ≤ ∞, then
there exists an h satisfying (1.7); how small h needs to be depends on the bound
sup[0,T ) ‖u‖H1 .

For two-dimensional systems such as the 2D NSE and 2D Boussinesq, it is well-
known that sup[0,∞) ‖u‖H1 is finite and can be estimated in terms of the system
parameters such as the Grashoff for the NSE and Raleigh and Prandtl for the Boussi-
nesq. Therefore, h, and consequently μ in (1.1), can be determined a priori in terms
of the system parameters. In our case, the bound sup[0,T ) ‖u‖H1 is not known as
we do not observe the full solution. In fact, at this stage, it is a priori possible that
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sup[0,T ) ‖u‖H1 = ∞. In other words, sup[0,T ) ‖u‖H1 < ∞ is only a sufficient condi-
tion for (1.7) to hold; but see next subsection. However, note that (1.7) depends only
on finitely many observational data. In other words, (1.7) is a condition imposed on a
finite rank projection of u in the phase space. Consequently, we can determine h and
μ from observational data, without any reference to the unobserved part of the true
solution. Thus our result can be viewed as a generalization of analogous results for
wellposed systems.

1.4 A NewObservable Regularity Criterion

It turns out that (1.7) is also a regularity condition, but on the weak attractor. As can
be seen from (1.2), in the Boussinesq system, when there is no spatial temperature
variation (for instance in the absence of a heating source, when there is no temperature
difference between the top and bottom plates), or if the temperature variation is taken
as given, then the Boussinesq system reduces to the NSE. For simplicity, and due to the
fact that the existence and properties of the weak attractor for the 3D NSE (see Sect.
4 for details) has been established and studied in [28, 30], we confine ourselves to the
case of the 3D NSE. However, the same result would also hold for the 3D Boussinesq
system.

To describe our result for the 3D NSE on the weak attractor, let h0 > 0 be defined
as

h−2
0 = max

{
1

4cλ1
,
32c| f |4
ν8λ21

}

,

where f is the body force, ν is the viscosity and λ1 is the smallest eigenvalue of the
Stokes operator. Let u(t), t ∈ R be a Leray-Hopf weak solution of the 3D Navier-
Stokes on the weak global attractor A. Let Mh be defined as in (1.6), except that the
supremum is taken on the interval (−∞, T ]. Assume there exists 0 < h ≤ h0 for
which h2M4

h ≤ cν4 where c is an adequate, non-dimensional constant. Then u(t) is
regular on (−∞, T ]. We refer to this as an observable regularity criterion because it
is purely based on the finitely many observations (modes or volume elements). This
regularity criterion is completely different from other known ones for the NSE such
as in [7, 40] which depend on control of all length scales of u. This leads us to the
following open question:

Can one formulate an analogous regularity criterion based on finitely many nodal
observations, that is, based on information on {u(xi )}Ni=1 where {xi }Ni=1 is an ade-
quately chosen, finite set of points in the domain?

The organization of the paper is as follows. In Sect. 2, we discuss thewell posedness
and the tracking property of the data assimilated 3D Boussinesq system. In Sect.
3 and Sect. 4, we establish the properties of the forward determining map for the
3D Boussinesq system and the determining map for the 3D Navier-Stokes system
respectively. In Sect. 5, we present our observable regularity criterion for the 3D NSE
on theweak attractor. In Sect. 6, theAppendix,we prove some facts,mostly concerning
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interpolant operators, that we need. To the best of our knowledge, these facts are new
and may have independent interest.

2 Existence of Strong Solution and the Asymptotic Tracking Property

2.1 Notation and Preliminaries

Following [14, 42], here we briefly introduce the functional setting for (1.2)-(1.5). For
α > 0, Hα(�) is the usual Sobolev space. We denote the inner product and norm
of L2(�) by (·, ·) and | · | respectively and the inner product and norm of H1(�) by
((·, ·)) and || · || respectively. We define F to be the set of C∞(�) functions defined
in �, which are trigonometric polynomials in x1 and x2 with period L , and compactly
supported in the x3-direction. We denote the space of vector valued functions on �

that incorporates the divergence free condition by V = {φ ∈ F × F × F |∇.φ = 0} .

H0 and H1 are closures of V and F in L2(�) respectively and V0 and V1 are closures
of V and F in H1(�) respectively.

H0 and H1 are endowed with the inner products

(u, v)0 =
3∑

i=1

∫

�

ui (x)vi (x)dx

and

(φ,ψ)1 =
∫

�

φ(x)ψ(x)dx

respectively, and the norms |u|0 = (u, u)
1/2
0 and |φ|1 = (φ, φ)

1/2
1 respectively. V0

and V1 are endowed with the inner products

((u, v))0 =
3∑

i, j=1

∫

�

∂ j ui (x)∂ jvi (x)dx,

((φ, ψ))1 =
3∑

j=1

∫

�

∂ jφ(x)∂ jψ(x)dx

respectively, and the associated norms ‖u‖0 = ((u, u))
1/2
0 and ‖φ‖1 = ((φ, φ))

1/2
1

respectively. We also denote by Pσ the Leray-Hopf orthogonal projection operator
from L2(�) to H0.
Let D(A0) = V0 ∩ (

H2(�)
)3
, D(A1) = V1 ∩ H2(�) and Ai : D(Ai ) → Hi be the

unbounded linear operator defined by

(Aiu, v)i = ((u, v))i , for i = 0, 1. (2.1)
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Werecall that Ai , for i = 0, 1, is a positive self adjoint operatorwith a compact inverse.
Moreover, there exists a complete orthonormal set of eigenfunctions φ j,i ∈ Hi , such
that Aiφ j,i = λ j,iφ j,i , where 0 < λ1,i ≤ λ2,i ≤ λ3,i ≤ · · · are the eigenvalues of Ai

repeated according to multiplicity.
For i = 0, 1, we denote by Hi

n the space spanned by the first n eigenvectors of Ai

and the orthogonal projection from Hi onto Hi
n is denoted by Pi

n . We also have the
Poincare inequality

λ
1/2
1 |v|i ≤ ‖v‖i , v ∈ Vi . (2.2)

where λ1 = min
{
λ1,0, λ1,1

}
.

Let V ′
i be the dual of Vi for i = 0, 1. We define the bilinear term B0 : V0 × V0 → V ′

0
by

〈B0(u, v), w〉V ′
0,V0

= (((u · ∇)v), w)0

and B1 : V0 × V1 → V ′
1 by

〈B1(u, v), w〉V ′
1,V1

= (((u · ∇)v), w)1.

The bilinear term Bi , for i = 0, 1, satisfies the orthogonality property

Bi (u, w,w) = 0 ∀ u ∈ V0, w ∈ Vi . (2.3)

We define the solution space H = H0 × H1 equipped with the inner product

〈s1, s2〉 = (u1, u2)0 + (θ1, θ2)1,

where s1 = (u1, θ1) and s2 = (u2, θ2).
We recall some well-known bounds on the bilinear term for velocity in the 3D case.

Proposition 2.1 If u, v ∈ V0 and w ∈ H0, then

|(B0(u, v), w)0| ≤ c‖u‖L6‖∇v‖L3‖w‖L2 ≤ c‖u‖0‖v‖1/20 |Av|1/20 |w|0 (2.4)

Moreover if u, v, w ∈ V0, then

|(B0(u, v), w)0| ≤ c‖u‖L4‖∇v‖L2‖w‖L4 ≤ c|u|1/40 ‖u‖3/40 ‖v‖0|w|1/40 ‖w‖3/40

(2.5)

We also recall the Ladyzhenskaya’s inequality for three dimensions :

‖w‖L4 ≤ C |w|
1
4
0 ‖w‖

3
4
0 (2.6)
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Remark 2.1 The subscripts 0 and 1 in this work are used to denote norms, spaces and
operators associated with the fluid velocity vector u and the scalar temperature field
θ respectively. When used as subscripts for norms, they are not to be confused with
the L2 or the the Sobolev H1 norms.

Remark 2.2 From [25], we know that the weak solution is uniformly bounded in time
in H = H0 × H1. Hence, for u and θ as in (1.2)-(1.3), there exists M0(u0, θ0),
M1(u0, θ0) ∈ R such that

|u|0 ≤ M0, and |θ |1 ≤ M1. (2.7)

We denote by Pσ the Leray-Hopf orthogonal projection operator from L2(�) to H0.
With the above notation, by applying Pσ to (1.2), wemay express the 3-DBoussinesqu
equation in the following functional form:

du

dt
+ νA0(u) + B0(u, u) = Pσ (θe3) (2.8)

dθ

dt
+ κA1(θ) + B1(u, θ) − u · e3 = 0 (2.9)

u(0, x) = u0, θ(0, x) = θ0. (2.10)

Henceforth, a � b means a ≤ Cb and a � b means a ≥ Cb. Also a ∼ b means both
a � b and a � b hold.

2.2 Interpolant Operators

A finite rank, bounded linear operator Ih : L2(�) → L2(�) is said to be a type-I
interpolant operator if there exists a dimensionless constant c > 0 such that

|Ih(v)| ≤ c|v| ∀v ∈ L2(�) and |Ih(v) − v| ≤ ch‖v‖ ∀v ∈ H1(�). (2.11)

We look at two main examples of type-I interpolants.

• Modal interpolation: In this case Ihu = P0
K (u) with h ∼ 1/λ1/2K , where P0

K
denotes the orthogonal projection onto the space spanned by the first K eigen-
vectors of the Stokes operator A0. Indeed, one can easily check that it satisfies
(2.11):

|PK (v)| ≤ |v| ∀v ∈ L2(�) and |PK (v) − v| � 1

λ
1/2
K

‖v‖ ∀v ∈ H1(�).

(2.12)

where λK = min{λ0K , λ1K }.
• Volume interpolation: In this case, � is partitioned into N smaller cuboids Qα ,

where α ∈ J =
{
( j, k, l) ∈ N × N × N : 1 ≤ j, k, l ≤ 3

√
N
}
. Each cuboid is of
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diameter h = √
2L2 + 1/ 3

√
N . The interpolation operator is defined as follows:

Ih(v) =
∑

α∈J
v̄αχQα (x), v ∈ L2(�) (2.13)

where

v̄α = 1

|Qα|
∫

Qα

v(x)dx, (2.14)

and |Qα| is the volume of Qα . For v ∈ V0, we define Ih(v) = (Ih(v1), Ih(v2),
Ih(v3)) , where v = (v1, v2, v3).

2.3 Well-Posedness

Definition 1 (u, θ) is said to be a weak solution to (2.8)-(2.10) if for all T > 0,

• u ∈ L∞(0, T ; H0) ∩ L2(0, T ; V0) and θ ∈ L∞(0, T ; H1) ∩ L2(0, T ; V1)
• u, θ satisfy, ∀v ∈ V0 and ∀ζ ∈ V1, a.e.t

d

dt
(u, v)0 + ν((u, v))0 + (B0(u, u), v) = (θe3, v)0

d

dt
(θ, ζ )1 + κ((θ, ζ ))1 + (B1(u, θ), ζ )1 − (u.e3, ζ )1 = 0.

(2.15)

A Leray-Hopf weak solution additionally satisfies, a.e. s, and for all t ≥ s, the energy
inequality

|u(t)|2 +
∫ t

s
ν‖u(σ )‖2dσ ≤ |u(s)|2 +

∫ t

s
(θe3(σ ), u(σ ))dσ. (2.16)

|θ(t)|2 +
∫ t

s
κ‖θ(σ )‖2dσ ≤ |θ(s)|2 +

∫ t

s
(u · e3(σ ), θ(σ ))dσ. (2.17)

A weak solution is said to be a strong/regular solution if it also belongs to

[
L∞(0, T ; V ) ∩ L2(0, T ; D(A))

]
×
[
L∞(0, T ; V1) ∩ L2(0, T ; D(A1))

]
.

Remark 2.3 Similar to the case of 3DNavier-Stokes, we have existence but not unique-
ness of weak solution [43]. Also, given initial data in V0×V1, a unique strong solution
exists for some [0, T ] and a strong solution is unique in the larger class of Leray-Hopf
weak solutions.

We will now be proving estimates and results for the weak solution to the data
assimilated 3-D NSE given by (2.18)-(2.20). This will be done by first working with
theGalerkin approximation of the systemgiven by (2.21)-(2.23) and then using density
arguments to obtain results for the original system.
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2.4 Existence ofWeak Solution

In this section, we prove the existence of a weak solution to the data assimilated
Boussinesq equation. Our data assimilated algorithm is given by the solution (w, η)

of

dw

dt
+ νA0(w) + B0(w,w) = Pσ (ηe3) + μ(Pσ (Ih(u) − Ih(w))) (2.18)

dη

dt
+ κA1(η) + B1(w, η) − w.e3 = 0 (2.19)

w(x, 0) = 0, η(x, 0) = 0. (2.20)

The Galerkin approximation (wn, ηn) of (w, η) satisfies

dwn

dt
+ νA0(wn) + PnB0(wn, wn) = (ηne3) + μ(Pn(Ih(u) − Ih(wn))) (2.21)

dηn

dt
+ κA1(ηn) + PnB1(wn, ηn) − wn · e3 = 0 (2.22)

wn(x, 0) = 0, ηn(x, 0) = 0 (2.23)

where, by abuse of notation, Pn denotes the projection onto the space spanned by the
first n eigenvectors of Ai for i = 0, 1.

Remark 2.4 The initial condition for the data assimilation algorithm is arbitrarily cho-
sen to be zero. The idea is to show that the solution (w, η) of the data assimilation
algorithmasymptotically converges to the solution (u, θ)of theoriginal system.Hence,
regardless of the choice of the initial data, we will be able to approximate the actual
solution with a prescribed precision as long as we let the algorithm run for a suffi-
ciently long time. As shown in Theorem 2.9, the run time however depends on how
close the initial guess of the algorithm is to the actual initial condition.

Theorem 2.2 Let (u, θ) be a Leray-Hopf weak solution to (2.8)–(2.10) for all t ≥ 0
and Ih be any type 1 interpolant. Let h0 > 0 be such that

h20 = νκλ1

16c
.

Then, provided h ≤ h0 and μ is chosen satisfying

ν

2ch20
≤ μ ≤ ν

2ch2

(
1

λ1
∼ L2

)

, (2.24)

there exists a weak solution (w, η) of (2.18) such that for any T > 0,

w ∈ L∞(0, T ; H0) ∩ L2(0, T ; V0), and η ∈ L∞(0, T ; H1) ∩ L2(0, T ; V1).
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Proof Taking the inner product of (2.21) with wn and (2.22) with ηn and adding, we
obtain

1

2

d

dt

(
|wn|20 + |ηn|21

)
+ ν‖wn‖20 + κ‖ηn‖21

≤ 2|ηn|1|wn|0 + μ(Ih(u) − Ih(wn), wn)

≤ 2|ηn|1|wn|0 + μ(wn − Ih(wn), wn)

− μ|wn|20 + μ(Ih(u), wn)

(2.25)

We bound each of the terms on the RHS below.
First, using Young’s inequality, (2.24) and (2.2), we have

2|ηn|1|wn|0 ≤ 2|wn|20
κλ1

+ κλ1|ηn|21
2

≤ μ|wn|20
4

+ κ‖ηn‖21
2

. (2.26)

Next, using (2.11), Cauchy-Schwartz, Young’s inequality and the second inequality
in (2.24), we obtain

μ|(wn − Ih(wn), wn)|0
≤ μ|wn − Ih(wn)|0|wn|0 ≤ μch2‖wn‖20 + μ

4
|wn|20

≤ ν

2
‖wn‖20 + μ

4
|wn|20,

(2.27)

Lastly, using Cauchy-Schwartz and Young’s inequality, we have

μ|(Ih(u), wn)|0 ≤ μ|Ih(u)|20 + μ

4
|wn|20. (2.28)

Combining all the estimates, we obtain

d

dt

(
|wn|20 + |ηn|21

)
+ ν‖wn‖20 + κ‖ηn‖21 + μ

2
|wn|20 ≤ 2μ|Ih(u)|20. (2.29)

Splitting the above inequality and using (2.2), we have

d

dt
|wn|20 + μ

2
|wn|20 ≤ 2μ|Ih(u)|20 and

d

dt
|ηn|21 + κλ1|ηn|21 ≤ 2μ|Ih(u)|20.

Applying Gronwall, (2.7), (2.11) and (2.23), we obtain

|wn|20 ≤ 4M2
0 , and |ηn|21 ≤ 2μM2

0

κλ1
. (2.30)
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Dropping the first and the last term on LHS of (2.29) and integrating on the interval
[s, s + 1], we obtain

∫ s+1

s

(
ν‖wn‖20 + κ‖ηn‖21

)
≤ 2μM2

0 . (2.31)

The remainder of the proof is similar to the proof of existence of weak solutions of
the 3D NSE ( [42], Theorem 1.2, page 164). ��

Remark 2.5 The solution of the AOT system (1.1) that we have obtained is also unique.
Later, from Theorem 3.1, we obtain uniqueness of solution on the time interval [0.∞).
The same argument can be used to show uniqueness here on the time interval [0, T ].

2.5 Time Independent Bound on Data Assimilated Temperature

The following theorem will establish a time independent bound on ‖η‖L2p , which
will be a stepping stone in proving convergence of the data assimilated solution to the
actual solution.

Theorem 2.3 Let p ∈ N and η and ηn be as in (2.19) and (2.23) respectively. Assume
that the hypotheses of Theorem 2.2 hold. Then ‖η‖L2p is uniformly bounded in time
and satisfies

‖η‖L2p ≤ CpM0

((2p − 1)λ1)
1
2p

:= Sp,u = Sp, (2.32)

where M0 is as in (2.7).

Proof Taking the inner product of (2.22) with η
2p−1
n , we obtain

(
dηn

dt
, η

2p−1
n

)

1
− κ

(
�ηn, η

2p−1
n

)

1
+
(
(wn · ∇)ηn, η

2p−1
n

)

1
= (wn · e3, η2p−1

n )1

(2.33)

We estimate each term below.

1

2p

dη
2p
n

dt
= η

2p−1
n

dηn

dt

⇒
(
dηn

dt
, η

2p−1
n

)

1
= 1

2p

d

dt

∫

�

η
2p
n dx = 1

2p

d

dt
‖ηn‖2pL2p

(2.34)
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Integrating by part, we obtain

−κ(�ηn, η
2p−1
n )1 = (2p − 1)κ

(
∇ηn, η

2p−2
n ∇ηn

)

1

= (2p − 1)κ
(
η
p−1
n ∇η, η

p−1
n ∇ηn

)

1

= 2p − 1

p2
|∇ (

η
p
n
) |21

(2.35)

(
(wn · ∇)ηn, η

2p−1
n

)

1
= −

(
(wn · ∇) η

2p−1
n , ηn

)

1

= −(2p − 1)
(
η
2p−2
n (wn · ∇) ηn, ηn

)

1

= −2p − 1

p2

(
(wn · ∇ηn) , η

2p−1
n

)

1

(2.36)

Therefore,
((

w · ∇ηn, η
2p−1
n

))

1
= 0.

From Holder’s inequality, we have

|(wn · e3, η2p−1
n )1| ≤ ‖wn‖Lq1 ·

∥
∥
∥
∥

(
η
p
n
)2− 1

p

∥
∥
∥
∥
Lq2

(2.37)

where q1 = 6p
4p+1 and q2 = 6p

2p−1 . Note that q1 ≤ 2 ∀p ∈ N and since � is a bounded
domain of finite measure, we obtain

|(wn · e3, η2p−1
n )1| ≤ C |wn|0 ·

∥
∥
∥
∥

(
η
p
n
)2− 1

p

∥
∥
∥
∥
Lq2

≤ C |wn|0 ·
(∫

�

(
η
p
n
)6
)1/q2

≤ C |wn|0 · ( ∥∥ηp
n
∥
∥
L6

) 2p−1
p

(2.38)

Applying the Sobolev embedding L6(�) ↪→ H1,Young’s inequality and (2.30), we
obtain

|(wn · e3, η2p−1
n )1| ≤ C |wn|0 · ( ∣∣∇ (

η
p
n
)∣
∣
1

) 2p−1
p

≤ Cp2p−2|wn|2p0 +
(
2p − 1

2p2

)
∣
∣∇ (

η
p
n
)∣
∣2
1

≤ Cp2p−2M2p
0 +

(
2p − 1

2p2

)
∣
∣∇ (

η
p
n
)∣
∣2
1 ,

(2.39)

where M0 is as in (2.7). Combining all the estimates we obtain

1

2p

d

dt
‖ηn‖2pL2p +

(
2p − 1

2p2

)
∣
∣∇ (

η
p
n
)∣
∣2
1 ≤ Cp2p−2M2p

0 (2.40)
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Substituting ζn = η
p
n , we obtain

1

2p

d

dt
|ζn|21 +

(
2p − 1

2p2

)

|∇ζn|21 ≤ Cp2p−2M2p
0 (2.41)

Since ζn = η
p
n , it shares the same boundary conditions as ηn , and hence (2.2) is

applicable to the above equation, giving us

d

dt
|ζn|21 +

(
(2p − 1)λ1

p

)

|ζn|21 ≤ Cp2p−1M2p
0 (2.42)

Now, applying Gronwall, we obtain

‖ηn‖2pL2p = |ζn|21 ≤ C

(
p2p

(2p − 1)λ1

)

M2p
0 (2.43)

Therefore, we have

‖ηn‖L2p ≤ CpM0

((2p − 1)λ1)
1
2p

:= Sp,u = Sp (2.44)

Hence ηn is a bounded sequence in L∞(0, T ; L2p(�)) and there exists a subse-
quence ηnk and η∗ in L∞(0, T ; L2p(�)) such that that ηnk converges to η∗ in
L∞(0, T ; L2p(�)) in the weak star topology. We also know that ηn , and hence ηn,k ,
converges to η in L∞(0, T ; L2(�)) in the weak star topology. Now since p ≥ 1 and
� is bounded, L2p(�) ⊂ L2(�) and L2(�) ⊂ Lq(�), where 2p and q are Holder
conjugates. Hence

L∞(0, T ; L2p(�)) is a subspace of L∞(0, T ; L2(�)), (2.45)

resulting in the sequenceηnk to have twoweak star limits in L1(0, T ; L2(�)). therefore
we must have η∗ = η and

‖η‖L2p ≤ CpM0

((2p − 1)λ1)
1
2p

:= Sp,u = Sp

��

2.6 Global Existence of Strong Solution

Another key result we will need in order to show convergence of the data assimilated
solution to the actual solution is the regularity of the data assimilated velocity w. In
order to do so, we will have to impose conditions on our data and look at the term
‖Ih(u)‖0. For the case of modal interpolation, in addition to satisfying (2.11), Ih also
satisfies
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‖Ih(v)‖ ≤ ‖PN (u)‖ ≤ c‖v‖ ∀v ∈ H1(�), N ∼ 1

h
(2.46)

The piece-wise constant volume interpolant as defined in (2.13) does not satisfy (2.46)
due to the lack of regularity of the characteristic function. In order to establish an
inequality similar to (2.46) and also an inequality explicitly in terms of the data
for volume interpolation, we define a smoothed volume interpolant operator Ĩh that
satisfies

‖ Ĩh(v)‖20 ≤ Ch
∑

α∈J
|v̄α|2 ≤ C‖v‖20 ∀v ∈ V0, (2.47)

where v̄α is as in (2.14). The proof of (2.47) and the justification as to why Ĩh is a
type-I interpolant is provided in the appendix.

Hence, we can now define a modified type-I interpolant which encompasses the
usual modal interpolant and the smoothed volume interpolant.

Next, for a general Leray-Hopf weak solution u of (2.8)-(2.10), we define the
quantity Mh,u(= Mh,u,T ) as

M2
h,u = 32 sup

0≤t≤T

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

‖PN (u)‖2 ∼
∑

|k|≤N

|λk,0|2|û(k)|2, N ∼ 1

h
(Modal)

Ch
∑

α

|ūα|2, ūα = 1

|Qα|
∫

Qα

u (Volume)
(2.48)

where, λk,0 is the kth smallest eigenvalue of A0 corresponding to the eigenvector φk,0

and PN (u) =
N∑

k=1

û(k)φk,0.

Remark 2.6 Observe that Mh,u , as defined in (2.48), depends only on the data and is
always finite. For the modal case, from (2.48), we may write

‖PN (u)‖2 ≤ λN |u|0 ≤ λN M0 (which is finite). (2.49)

In the volume interpolation case, from (2.13), we have

∑

α∈J
|ūα|2 ≤

∑

α∈J

(∣
∣
∣
∣

1

|Qα|
∫

Qα

u(x)dx

∣
∣
∣
∣

)2

≤ N 2

|�|2
∑

α∈J
‖u‖2L1(Qα)

≤ N

|�|
∑

α∈J
‖u‖2L2(Qα)

≤ N

|�| |u|20 ≤ N

|�|M
2
0 (which is finite).

(2.50)

Next, we have the following theorem that establishes the regularity of w.
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Theorem 2.4 Let Ĩh be a modified general type-I interpolant, Mh,u be as in (2.48) and
0 < T ≤ ∞. Let h0 > 0 be be given by

h−2
0 = c

ν
max

{
1

κλ1
,
1

κ

(

1 + 1

λ21

)}

. (2.51)

Assume that for some 0 < h ≤ h0

h2M4
h,u ≤ ν4

c
or equivalently

M4
h,u

ν3
≤ ν

ch2
. (2.52)

Let μ be chosen such that

max

{
ν

ch20
,
cM4

h,u

ν3

}

≤ μ ≤ ν

ch2
. (2.53)

Then, the data assimilated fluid velocity is regular and satisfies

‖w‖0 ≤ Mh,u . (2.54)

Proof Taking the inner product of (2.21) with A0(wn) and (2.22) with ηn and adding,
we obtain

1

2

d

dt

(
‖wn‖20 + |ηn|21

)
+ ν|A0wn|20 + κ‖ηn‖21

= −(B0(wn, wn), A0wn)0 + μ(wn − Ĩhwn, A0wn)0

− μ‖wn‖20 + μ( Ĩhu, A0wn)0 + (ηn, A0(wn) · e3)1 + (ηn, wn · e3)1
First, applying (2.4) and Young’s inequality, we have

|(B0(wn, wn), A0wn)|0 ≤ c‖wn‖3/20 |A0(wn)|3/20 ≤ c

ν3
‖wn‖60 + ν

4
|A0wn|20.

Also, from (2.46), (2.47) and (2.48), we see that, for a modified type-I interpolant Ĩh ,
we may write

32‖ Ĩhu(t)‖0 ≤ Mh,u, t ∈ [0, T ]. (2.55)

Similar to the proof of Theorem 2.2, applying Cauchy-Schwarz, Young’s inequality,
(2.53) and (2.2) to the remaining terms, we obtain

1

2

d

dt

(
‖wn‖20 + |ηn|21

)
+ ν

2
|A0wn|20 +

(

κ − 1

μ
− 2

μλ21

)

‖ηn‖21

+
(μ

8
− c

ν3
‖wn‖40

)
‖wn‖20 ≤ μ sup

[0,T ]
‖ Ĩhu(t)‖20.
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Let [0, T1] be the maximal interval on which ‖wn(t)‖ ≤ Mh,u for t ∈ [0, T1], where
Mh,u as in (2.47). Note that T1 > 0 exists because we have wn(0) = 0. Assume that
T1 < T . Then by continuity, we must have ‖wn(T1)‖ = Mh,u . Applying (2.7),(2.30),
the first inequality in (2.53) and dropping all terms except the first and the last term
on the LHS, we obtain

d

dt
‖wn‖20 + μ

8
‖wn‖20 ≤ 2μ sup

[0,T ]
‖ Ĩhu(t)‖20.

Applying Gronwall’s inequality and (2.55), we obtain

‖wn(t)‖20 ≤ 16 sup
[0,T ]

‖ Ĩhu(t)‖20 ≤ 1

2
M2

h,u ∀t ∈ [0, T1].

This contradicts the fact that ‖wn(T1)‖ = Mh,u . Therefore T1 ≥ T and consequently,
‖wn(t)‖ ≤ Mh,u for all t ∈ [0, T ]. Passing to the limit as n → ∞, we obtain the
desired conclusion for w. ��

2.7 Synchronization for General Type-I Interpolant

We will now show that the data assimilated solution approaches the actual solu-
tion(synchronization) for the general type-I interpolant. To show synchronization,
in addition to (2.16) and (2.17), we will need to establish an energy equality for the
data assimilation equation. To do so, we borrow the following definition and result
from [42].

Definition 2 Let us assume that X0, X , X1, are Hilbert spaces with

X0 ⊂ X ⊂ X1, (2.56)

the injections being continuous and

the injection of X0 into X is compact. (2.57)

For given γ > 0, we define the space

H γ (0, T ; X0, X1) =
{
v ∈ L2(0, T ; X0), D

γ
t v ∈ L2(0, T ; X1)

}
,

where, Dγ
t v is the derivative in t of order γ of v which is the inverse Fourier transform

of (2iπτ)γ v̂ or

̂Dγ
t v(t) = 2πτ v̂(τ ).

We also state the following compactness result from [42].
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Theorem 2.5 Let us assume that X0, X , X1, are Hilbert spaces that satisfy (2.56) and
(2.57). Then the injection of H γ (0, T ; X0, X1) into L2(0, T ; X) is compact.

Another result we need is the regularity of η on a bounded interval of time, which is
shown below.

Lemma 2.6 Let η and ηn be as in (2.19) and (2.23) respectively, Ĩh be a modified
general type-I interpolant, Mh,u be as in (2.48) and 0 < T < ∞. Let h0 > 0 be be
given by

h−2
0 = c

ν
max

{
1

κ
,

1

κλ1
,
1

κ

(

1 + 1

λ21

)}

. (2.58)

Assume that for some 0 < h ≤ h0

h2M4
h,u ≤ ν4

c
or equivalently

M4
h,u

ν3
≤ ν

ch2
. (2.59)

Let μ be chosen such that

max

{
ν

ch20
,
cM4

h,u

ν3

}

≤ μ ≤ ν

ch2
. (2.60)

Then η is regular and satisfies

‖η(t)‖1 ≤ 2μM2
0

β
eβT , ∀t ∈ [0, T ], with β = κ + Cκ2M2

h

and M0 is as in (2.7).

Proof Taking the inner product of (2.21) with wn and (2.22) with A1ηn and adding,
we obtain

1

2

d

dt

(
|wn|20 + ‖ηn‖21

)
+ ν‖wn‖20 + κ|A1ηn|21 + (B1(wn, ηn), A1ηn)

≤ |ηn|1|wn|0 + |A1ηn|1|wn|0 + μ(Ih(u) − Ih(wn), wn)

≤ |ηn|1|wn|0 + |A1ηn|1|wn|0 + μ(wn − Ih(wn), wn) − μ|wn|20 + μ(Ih(u), wn)

(2.61)

We bound each of the terms on the RHS below.
First, using Young’s inequality, (2.66) and (2.2), we have

|ηn|1|wn|0 ≤ μ|wn|20
4

+ κ‖ηn‖21
2

and

|A1ηn|1|wn|0 ≤ μ|wn|20
8

+ κ

4
|A1ηn|21

(2.62)
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Next, using (2.4), we see that

|(B1(wn, ηn), A1ηn)| ≤ C‖wn‖0|A1ηn|3/21 ‖ηn‖1/21 ≤ Cκ2M2
h‖ηn‖2 + κ

4
|A1ηn|21.

Combining the above estimates with (2.7), (2.27) and (2.28), we obtain

d‖ηn‖21
dt

−
(
κ + Cκ2M2

h

)
‖ηn‖21 ≤ 2μ|Ih(u)|20 ≤ 2μM2

0 . (2.63)

Now applying Gronwall, we obtain

‖ηn(t)‖1 ≤ 2μM2
0

β
eβt ≤ 2μM2

0

β
eβT , where β = κ + Cκ2M2

h .

Passing to the limit, we obtain the statement of the theorem. ��

The energy equality is shown in the following lemma.

Lemma 2.7 Let (w, η) be the weak solution to (2.18)–(2.20), Ĩh be a modified general
type-I interpolant, Mh,u be as in (2.48) and 0 < T < ∞. Let h0 > 0 be be given by

h−2
0 = c

ν
max

{
1

κ
,

1

κλ1
,
1

κ

(

1 + 1

λ21

)}

. (2.64)

Assume that for some 0 < h ≤ h0

h2M4
h,u ≤ ν4

c
or equivalently

M4
h,u

ν3
≤ ν

ch2
. (2.65)

Let μ be chosen such that

max

{
ν

ch20
,
M4

h,u

ν3

}

≤ μ ≤ ν

ch2
. (2.66)

Then

|w(t)|20 + 2ν
∫ t

0
‖w(s)‖20ds = |w(0)|20 + 2μ

∫ t

0
(Ih(u(s) − w(s)), w(s))0ds

+ 2
∫ t

0
(w · e3(s), η(s))1ds. (2.67)

|η(t)|21 + 2κ
∫ t

0
‖η(s)‖21ds = |η(0)|21 + 2

∫ t

0
(w · e3(s), η(s))1ds. (2.68)
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Proof Taking the inner product of (2.21) with wn and (2.22) with ηn and then inte-
grating over time on the interval [0, t], we obtain

|wn(t)|20 + 2ν
∫ t

0
‖wn(s)‖20ds = |wn(0)|20 + 2μ

∫ t

0
(Ih(u(s) − wn(s)), wn(s))0ds

+ 2
∫ t

0
(wn · e3(s), ηn(s))1ds. (2.69)

|ηn(t)|21 + 2κ
∫ t

0
‖ηn(s)‖21ds = |ηn(0)|21 + 2

∫ t

0
(wn · e3(s), ηn(s))1ds. (2.70)

Now, let

C∞+ ([0, T ]) = { f ∈ C([0, T ])| f is smooth and f (x) > 0 ∀x ∈ [0, T ]} .

Multiplying (2.69) with φ ∈ C∞+ ([0, T ]), integrating over [0, T ], we obtain
∫ T

0
|wn(t)|20φ(t)dt +

∫ T

0
2νφ(t)

∫ t

0
‖wn(s)‖20dsdt

=
∫ T

0
|wn(0)|20φ(t)dt +

∫ T

0
2μφ(t)

∫ t

0
(Ih(w(s) − wn(s)), wn(s))0dsdt

+
∫ T

0
2μφ(t)

∫ t

0
(Ih(u(s) − w(s)), wn(s))0dsdt

+ 2
∫ T

0
φ(t)

∫ t

0
(wn · e3(s), ηn(s))1dsdt .

(2.71)

Observe that from Theorem (2.4), we know that

wn⇀w in L2(0, T ; D(A0)) and wn
∗
⇀w in L∞(0, T ; V0).

Also, from (2.4), we obtain

|B0(w,w)|0 ≤ ‖w‖3/20 |Aw|1/20 . (2.72)

Applying the estimates (2.72), (2.54) and (2.31) to (2.18), we may conclude that

dw

dt
∈ L2(0, T ; H0).

Therefore, using Theorem 2.5, we obtain

wn → w in L2(0, T ; V0). (2.73)
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Hence, passing through the limit using (2.73), we obtain

∫ T

0
|w(t)|20φ(t)dt +

∫ T

0
2νφ(t)

∫ t

0
‖w(s)‖20dsdt =

∫ T

0
|wn(0)|20φ(t)dt

+
∫ T

0
2μφ(t)

∫ t

0
(Ih(u(s) − w(s)), w(s))0dsdt

+ 2
∫ T

0
φ(t)

∫ t

0
(w · e3(s), η(s))1dsdt .

(2.74)

for all φ ∈ C∞+ ([0, T ]). This amounts to saying (2.67) holds for almost everywhere
t ∈ [0, T ].
Due to Theorem 2.6, we may repeat the exact same argument for η to obtain (2.68). ��
Using the energy equality, We now establish the following lemma needed to show
synchronization.

Lemma 2.8 Let (u, θ) be the general Leray-Hopf weak solution of (2.8)–(2.10) and
(w, η) be the weak solution to (2.18)–(2.20). Let w̃ = w − u, η̃ = η − θ and
0 < T < ∞. Then,

|w̃(t)|20 + 2ν
∫ t

0
‖w̃(s)‖20ds ≤ |w̃(0)|20 − 2μ

∫ t

0
(Ih(w̃(s)), w̃(s))0 ds

+ 2
∫ t

0
B0(w̃(s), w̃(s)), w(s))0ds

+ 2
∫ t

0
(w̃(s) · e3, η̃(s))1ds. (2.75)

|η̃(t)|21 + 2κ
∫ t

0
‖η̃(s)‖21ds ≤ |η̃(0)|21 + 2

∫ t

0
B1(w̃(s), η̃(s)), η(s))1ds

+ 2
∫ t

0
(w̃(s) · e3, η̃(s))1ds (2.76)

Proof Recall that we denote by φ0
j the eigenfunction corresponding to λ0j , j =

1, 2, . . . , with λ01 ≤ λ02 . . . being the eigenvalues of A0. Let H0
n denote the span of

φ0
1 , φ

0
2 , . . . φ

0
n and P0

n denote the projection onto the space H0
n . Also, let P

0
n (u) = un

and P0
n (w) = wn . It is important to note that un and wn in this lemma are projections

of u and w onto a finite dimensional subspace and must not be confused with the

Galerkin projections of u and w. We observe that since un finite dimensional,
∂un
dt

exists in the classical sense. We hence have

d

dt
(wn, un)0 =

(
∂wn

dt
, un

)

0
+
(

wn,
∂un
dt

)

0

= (−B0(w,w) − νA0(w) + μ(Ih(u − w) + ηe3), un)0
+ (wn, f − B0(u, u) − νA0(u) + θe3)0 .

(2.77)
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Using the fact that P0
n commutes with A0, we obtain

(A0(u), wn)0 = (A0(u), Pn(w))0 = (Pn(u), A0(w)0) = (un, A0(w))0. (2.78)

Integrating on the interval [s, t], 0 ≤ s < t ≤ T , applying (2.78) and passing through
the limit, we see that for almost all s and t , 0 < s < t < T :

(w(t), u(t)) − (w(s), u(s))

=
∫ t

s
((η(σ )e3, u(σ ))0 + (θ(σ )e3, w(σ ))0) dσ

− 2ν
∫ t

s
(A0(w)(σ ), u(σ ))0dσ + 2μ

∫ t

s
(Ih(u(σ ) − w(σ))), u(σ ))0dσ

−
∫ t

s
{(B0(w(σ),w(σ)), u(σ ))0 + (B0(u(σ ), u(σ )), w(σ))0} dσ

(2.79)

Since u is weakly continuous in H0 and w is strongly continuous in H0, the function
t → (u(t), w(t)) is continuous and the relation (2.79) holds for all s and t , 0 ≤ s <

t ≤ T . Moreover, we observe that

(B0(w,w), u)0 + (B0(u, u), w)0 = (B0(w − u, w), u)0 = (B0(w − u, w − u), u)0 .

Incorporating this in (2.79) and letting s = 0, we obtain

(w(t), u(t)) + 2ν
∫ t

0
((w, u))0

= (w(0), u(0))0 +
∫ t

s
((η(σ )e3, u(σ ))0 + (θ(σ )e3, w(σ ))0) dσ

−
∫ t

0
(B0(w̃(s), w̃(s)), w(s))ds − 2μ

∫ t

0
Ih(w̃(s), u)ds

(2.80)

Adding (2.16) and (2.67) and subtracting two times (2.80), we obtain (2.75). Repeating
the same arguments for

d

dt
(ηn, θn)1 =

(
∂ηn

dt
, θn

)

1
+
(

ηn,
∂θn

dt

)

1
,

we obtain (2.68). ��
With the above lemma in place, we will now prove synchronization in the following
theorem.

Theorem 2.9 Let Ih be the general type-I interpolant, 0 < T < ∞ and Mh,u as in
(2.48). Also, let h0 > 0 be defined as

h−2
0 = max

{
c

νκλ1
,
c

νκ

(

1 + 1

λ21

)

,
CS82
ν4κ4

}

, (2.81)

123



Applied Mathematics & Optimization (2022) 86 :28 Page 25 of 53 28

where S2 is as in (2.32) with p = 2. We define w̃ = w − u and η̃ = η − θ . Assume
that for some h ≤ h0,

h2M4
h,u ≤ ν4

c
or equivalently

M4
h,u

ν3
≤ ν

ch2
. (2.82)

Let μ be chosen such that

max

{
ν

ch20
,
M4

h,u

ν3

}

≤ μ ≤ ν

ch2
. (2.83)

Then,

(
|w̃(t)|20 + |η̃(t)|21

)
≤
(
|w̃(0)|20 + |η̃(0)|21

)
e−αt ∀t ∈ [0, T ] (2.84)

where α = min

{
μ

4
,
κλ1

2

}

. In particular, if in the statement of Theorem 2.4, T = ∞,

then

lim
t→∞

(
|w̃(t)|20 + |η̃(t)|21

)
= 0. (2.85)

Proof Adding equations (2.67) and (2.68), we obtain

|w̃(t)|20 + |η̃(t)|21
+ 2ν

∫ t

0
‖w̃(s)‖20ds + 2κ

∫ t

0
‖η̃(s)‖21ds ≤ |w̃(0)|20 + |η̃(0)|21 − 2μ|w̃|2

+ 2
∫ t

0
(B0(w̃(s), w̃(s)), w(s))0ds + 2

∫ t

0
(B1(w̃(s), η̃(s)), η(s))1ds

+ 2μ
∫ t

0
(w̃ − Ih(w̃(s), w̃(s)))0 ds + 4

∫ t

0
(w̃(s) · e3, η̃(s))1ds

(2.86)

We bound each term on the RHS.
First, applying (2.5), (2.32), Cauchy-Schwartz and Young’s inequality, we obtain

|B0(w̃, w̃), w)0| ≤ |(B0(w̃, w), w̃|)|0 ≤ c|w̃|1/20 ‖w̃‖3/20 ‖w‖0
≤ c

ν3
‖w‖40|w̃|20 + ν

2
‖w̃‖20.

|(B1(w̃, η̃), η)|1 ≤ |w̃|1/40 ‖w̃‖3/40 ‖η̃‖1‖η‖L4 ≤ ν

4
‖w̃‖20 + κ

2
‖η̃‖21 + C

ν3κ4 S
8
2 |w̃|20
(2.87)

Similar to the proof of Theorem 2.2, we apply Cauchy-Schwarz, Young’s inequality,
(2.53) and (2.2) to estimate the remaining terms.Combining the estimates and applying
(2.2), (2.81),(2.83) and the fact that ‖w‖0 ≤ Mh,u , we obtain
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|w̃(t)|20 + |η̃(t)|21 + μ

4

∫ t

0
|w̃(s)|20ds + κλ1

2

∫ t

0
|η̃(s)|21ds ≤ |w̃(0)|20 + |η̃(0)|21.

(2.88)

Changing the interval of integration from [0, t] to [t − 1/α, t], applying Lemma 6.6
with y = |w̃(t)|2 + |η̃(t)|2, we obtain

(
|w̃(t)|2 + |η̃(t)|2

)

≤
(
|w̃(0)|20 + |η̃(0)|21

)
e
−α

(
t− 1

α

)

∀t ∈ [0, T ], where α = min

{
μ

4
,
κλ1

2

}

(2.89)

��
Remark 2.7 The proof of Theorem 2.9, when applied to the NSE, provides an alternate
proof of the well-known Sather-Serrin weak-strong uniqueness result [41] for the 3D
NSE which avoids the use of time mollification/regularization.

3 Forward DeterminingMap

We now describe the determining map introduced in [22], which played a crucial role
in obtaining the determining form for evolution equations. Using the ideas in [9], we
construct a similar map for the 3D Boussinesq and in the next section, for the 3D
Navier-Stokes equations. This allows us to obtain a result concerning the existence of
determiningmodes and volume elements for the 3DBoussinesq system (Theorem 3.3)
as well as the aforementioned observable regularity criterion on the weak attractor for
the 3D NSE.

We begin by introducing spaces that contain the domain and ranges of the mapW+
and by introducing the evolution equation which yields the definition of W+.

We denote by L2
b(R

+; D(A0)) the functions in L2(R+; D(A0)) which are transla-
tion bounded, i.e.,

sup
s≥0

∫ s+1

s
|A0(u(r))|20dr < ∞. (3.1)

Similarly, L2
b(R

+; V ) denotes the functions in L2(R+; V ) which satisfy

sup
s≥0

∫ s+1

s
‖u(r)‖20dr < ∞.

Let

Y+ =
(
Cb(R+; V0) ∩ L2

b(R+; D(A0))
)

× Cb(R+; H1)
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and

Z+ =
(
Cb(R+; H0) ∩ L2

b(R+; V0)
)

× Cb(R+; H1)

where, Cb(I ; B) denotes the space of all bounded and continuous functions over the
interval I with values in the Banach space B. Y+ and Z+ are Banach spaces with
norms

‖(u, θ)‖Y+ =
{

sup
s∈R+

‖u(s)‖20 + sup
s≥0

∫ s+1

s
|A0(u(r))|20dr + sup

s∈R+
|θ(s)|21

} 1
2

. (3.2)

and

‖u‖Z+ =
{

sup
s∈R+

|u(s)|20 + sup
s≥0

∫ s+1

s
‖u(r)‖20dr + sup

s∈R+
|θ(s)|21

} 1
2

(3.3)

respectively. Moreover, let X be the Banach space

X+ = Cb(R
+; (H1(�))3)

equipped with the norm

‖v‖X+ = sup
s≥0

‖v(s)‖0. (3.4)

The observed spatial coarse-mesh data is denoted by v(t). For the purpose of data
assimilation, we consider the case v ∈ X+ with ‖v‖X+ ≤ ρ ∼ h−1/2 for some ρ > 0.
We use BX+(ρ) to denote the closed ball in X+ of radius ρ centered at 0. We also
define the Banach space

P+ = Cb(R+; H0) × Cb(R+; H1)

with the norm

‖(u, θ)‖P+ =
{
|u|20 + |θ |21

} 1
2

(3.5)

For σ ∈ I ⊂ R
+ and aBanach space B, we define the time translation τσ : C(I ; B) →

C(I ; B) as

τσ (u(t)) = u(t + σ). (3.6)

Now given v ∈ BX+(ρ), we consider the following initial-value problem:

dw

dt
+ νA0(w) + B0(w,w) = Pσ (ηe3) + μ(Pσ (v − Ih(w))) (3.7)
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dη

dt
+ κA1(η) + B1(w, η) − w.e3 = 0 (3.8)

w(x, 0) = 0, η(x, 0) = 0. (3.9)

The corresponding Galerkin approximation is given by

dwn

dt
+ νA0(w) + B0(wn, wn) = Pn(ηne3) + μ(Pn(v − Ih(w))) (3.10)

dηn

dt
+ κA1(ηn) + B1(w, ηn) − wn .e3 = 0 (3.11)

wn(x, 0) = 0, ηn(x, 0) = 0. (3.12)

We can now define the map W+.

Definition 3 Let ρ > 0.We define the forward determining mapW+ : BX+(ρ) → Y+
as

W+(v) = (w, η). (3.13)

Theorem 3.1 Let Ih be a general type-I interpolant, v ∈ BX+(ρ) for some ρ >

0
(
ρ ∼ 1/

√
h
)
, 0 < T ≤ ∞ and

M2
h,u = 32 sup

[0,T ]
‖v‖20. (3.14)

Also, let h0 > 0 be defined as

h−2
0 = max

{
c

νκλ1
,
c

νκ

(

1 + 1

λ21

)

,
CS82
ν4κ4

}

, (3.15)

where c, h are as in (2.11) and S2 is as in (2.32) with p = 2. Assume that for some
h ≤ h0,

h2M4
h,u ≤ ν4

c
or equivalently

M4
h,u

ν3
≤ ν

ch2
. (3.16)

Let μ be chosen such that

max

{
ν

ch20
,
M4

h,u

ν3

}

≤ μ ≤ ν

ch2
. (3.17)

Then, there exists a weak solution (w, η) to (3.7)–(3.9). Moreover, the following state-
ments hold true

(a) ‖w‖0 ≤ Mh,u

(b) W+ : BX+(ρ) → Z+ is Lipschitz continuous.
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(c) Let (u, θ) be a weak solution (2.8)–(2.10). Assume that |Ih(u)(s) − v(s)|0 → 0
as s → ∞. Then ‖W+(v)(s) − (u(s), θ(s))‖P+ → 0 as s → ∞

(d) Let v1, v2 ∈ BX+(ρ), Then, W+(v1) = W+(v2) iff Pσ (v1 − v2) = Pσ (v̄) = 0,
where v̄ = v1 − v2.

(e) For every σ ∈ R
+,

W+ ◦ τσ (v) = τσ ◦ W+(v). (3.18)

Proof The existence of a weak solution (w, η) and the proof of (a) is obtained by
repeating the proof of Theorem 2.2 and Theorem 2.4, after replacing Ih(u) with v.

To prove (b), we define w̄n = w1
n − w2

n , η̄n = η1n − η2n and v̄n = Pn(v̄1 − v̄2),
where (w1

n, η
1
n) and (w2

n, η
2
n) are Galerkin approximations of (w1, η1) and (w2, η2)

respectively and (w1, η1) = W+(v1) and (w2, η2) = W+(v2).
w̄n and η̄n satisfy the equations

dw̄n

dt
+ νA0(w̄n) + B0(w̄n, w

2
n) + B0(w

1
n, w̄n)

= η̄ne3μPn(v̄n − Ih(w̄n))

= μv̄n + μPn(w̄n − Ih(w̃n)) − μw̄n

(3.19)

dη̄n

dt
+ κA1(η̄n) + B1(w̄n, η

2
n) + B1(w

1
n, η̄n) − w̄n · e3 = 0 (3.20)

Taking the inner product of w̄n and η̄n with (3.19) and (3.20) respectively, we obtain

1

2

d

dt

(
|w̄n|20 + |η̄n|21

)
+ ν‖w̄n‖20 + κ‖η̄n‖21

+ μ|w̄n|20 ≤ |(B0(w̄n, w
2
n), w̄n|)|0 + |(B1(w̄n, η

2
n), η̄n)|1

+ 2|w̄n|0|η̄n|1 + |μ(w̄n − Ih(w̄n))|0|w̄n|0 + μ|v̄n|0|w̄n|0.
(3.21)

Applying Young’s inequality, we obtain

μ|v̄n|0|w̄n|0 ≤ μ|v̄n|20 + μ

4
|w̄n|20, (3.22)

Bounding the other terms on the RHS of (3.21) exactly as in Theorem 2.9, we obtain

1

2

d

dt

(
|w̄n|20 + η̄n|21

)
+ ν‖w̄n‖0 +

(
μ

4
− c

ν3
‖wn‖40 − CS82

ν3κ4

)

|w̄n|20

+
(

κλ1

2
− 4

μ

)

|η̄|21 ≤ μ|v̄n|20.
(3.23)

We already have ‖w‖0 ≤ Mh,u . Now applying (3.17) and (3.15), we have

d

dt

(
|w̄n|2|0 + |η̄n|21

)
+ μ

4
|w̄n|20 + κλ1

2
|η̄n|21 ≤ 2μ|v̄n|20. (3.24)
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Next, applying Gronwall (for t, σ ∈ [0, T ] with t > σ ) separately to |w̄n|2 and |η̄n|2,
we obtain

|w̄n(t)|20 ≤ |w̄n(σ )|20e−(μ/4)(t−σ) + 8 sup
t∈[0,T ]

|v̄n|20,

|η̄n(t)|21 ≤ |η̄n(σ )|21e−
(

κλ1
2

)
(t−σ) + 4μ

κλ1
sup
t∈R+

|v̄n|20.
(3.25)

w̄n and η̄n converge respectively to w̄ and η̄ weakly. Also v̄n → v̄n in Bx+(ρ).
Therefore, letting n → ∞, setting σ = 0 and noting that w̄(0) = η̄(0) = 0, we
obtain

|w̄(t)|2|0 ≤ 8 sup
t∈R+

|v̄|20 and |η̄(t)|21 ≤ 4μ

κλ1
sup
t∈R+

|v̄|20. (3.26)

Using (3.23), we may write

ν‖w̄n‖0 ≤ μ sup
t∈R+

|v̄n(t)|20. (3.27)

Letting n → ∞ and integrating both sides on the interval [t, t + 1], we obtain

sup
t∈R+

∫ t+1

t
ν‖w̄(s)‖0ds ≤ μ sup

t∈R+
|v̄(t)|20. (3.28)

(3.26) and (3.28) together prove (b).
To prove (c), we define w̃ = w − u and η̃ = η − θ , where (w, η) = W+(v).

Replacing Ih(u) with v in (2.67) and repeating the arguments of Lemma (2.8), we
obtain a modified version of (2.75), given by

|w̃(t)|20 + 2ν
∫ t

σ

‖w̃(s)‖20ds ≤|w̃(0)|20 + 2
∫ t

σ

B0(w̃(s), w̃(s)), w(s))0ds

+ 2μ
∫ t

σ

(v(s) − Ihw(s), w̃(s))0 ds

+ 2
∫ t

σ

(w̃(s) · e3, η̃(s))1ds.

≤|w̃(0)|20 + 2
∫ t

σ

B0(w̃(s), w̃(s)), w(s))0ds

+ 2μ
∫ t

σ

(v(s) − Ihu(s), w̃(s))0 ds

+ 2μ
∫ t

σ

(w̃ − Ihw̃(s), w̃(s))0 ds

− μ

∫ t

σ

‖w̃‖0ds + 2
∫ t

σ

(w̃(s) · e3, η̃(s))1ds..

(3.29)
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Applying Cauchy-Schwarz and Young’s inequality, we obtain

2μ |(v(s) − Ihu(s), w̃(s))0| ≤ 2μ|v(s) − Ihu(s)|20 + μ

2
|w̃(s)|20. (3.30)

Also,

|v|20 ≤ 1

λ1
‖v‖20 ≤ 1

λ1
ρ2. (3.31)

and |Ihu|0 ≤ |u|0 ≤ M0. Hence it makes sense to talk about the term

sup
0≤s≤∞

|Ih(u)(s) − v(s)|0.

Proceeding exactly as in Theorem 2.9, we obtain

|w̃(t)|20 + |η̃(t)|21 + μ

4

∫ t

σ

|w̃(s)|20ds + κλ1

2

∫ t

σ

|η̃(s)|21ds ≤ |w̃(σ )|20 + |η̃(σ )|21
+ 2μ sup

σ≤s≤t
|Ih(u)(s) − v(s)|0.

(3.32)

Next, letting

α = min

{
μ

4
,
κλ1

2

}

, σ = t/2

and applying Corollary 6.7, (2.30) and (2.7), we obtain

(
|w̃(t)|20 + |η̃(t)|21

)
≤ Me−α(t/2) + 4μ sup

t/2≤s≤t
|Ih(u)(s) − v(s)|0, (3.33)

where

M = max

{

4M2
0 ,

2μM2
0

κλ1

}

.

Taking the lim sup as t → ∞ and using the hypothesis that |Ih(u)(s) − v(s)|0 → 0
as s → ∞, we see that

lim
t→∞

(
|w̃(t)|20 + |η̃(t)|21

)
= 0, (3.34)

proving (c).
To prove (d), we note that w̄ = w1 − w2 = 0 and η̄ = η1 − η2 = 0, where

(w1, η1) = W+(v1) and (w2, η2) = W+(v2). Since w1 and w2 are regular, the term
w̄ is differentiable a.e on R

+. From (3.7), we may write
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dw̄

dt
+ νA0(w̄) + B0(w̄, w1) + B0(w2, w̄) − η̄e3 = μPσ (v̄ − Ih(w̄)) (3.35)

Letting w̄ = 0 and η̄ = 0, we obtain Pσ (v̄) = 0. If Pσ (v̄) = 0, we obtain W+(v1) =
W+(v2) from the Lipschitz continuity of W+.

To show (e), we observe that τσ ◦ W+(v) is a solution of (3.7)-(3.9) corresponding
to τσ (v). From the Lipschitz property of the mapW+, we have uniqueness of solution.
Hence

W+ ◦ τσ (v) = τσ ◦ W+(v).

��
Corollary 3.2 Let Ih be a general type-I interpolant and u be a weak solution
(2.8)–(2.10). Let the hypothesis of Theorem 3.1 hold. Then ‖W+(Ih(u))(s) −
(u(s), θ(s))‖P+ → 0 as s → ∞
Proof Applying part (c) of Theorem 3.1 with v = Ih(u), we obtain the statement of
the corollary. ��
Remark 3.1 The fact that W+ is Lipschitz continuous means that the way we recon-
struct our solution from the data is "stable". Lipschitz continuity in turn implies
uniqueness of solutions as well. Also, Corollary 3.2 says that the solution obtained
from type-I interpolation data(for appropriate h) asymptotically approaches the actual
solution.

Theorem 3.3 Let (u1, θ1) and (u2, θ2) be two restricted Leray-Hopf weak solutions
and Mh,ui (for i = 1, 2) be as in (2.48). Also, let h0 > 0 be defined as

h−2
0 = max

{
c

νκλ1
,
c

νκ

(

1 + 1

λ21

)

,
CS82
ν4κ4

}

, (3.36)

where c, h are as in (2.11) and S2 is as in (2.32) with p = 2. Assume that on [0,∞),
for i = 1, 2, for some h ≤ h0,

h2M4
h,ui ≤ ν4

c
or equivalently

M4
h,ui

ν3
≤ ν

ch2
. (3.37)

Then, if

lim
t→∞ |Ih(u1)(t) − Ih(u2)(t)|0 = 0

then

lim
t→∞ |u1(t) − u2(t)| = 0 and lim

t→∞ |θ1(t) − θ2(t)| = 0.
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Proof Repeating the proof of part (c) of Theorem 3.1 with (u, θ) = (u1, θ1), (w, η) =
(u2, θ2) and v = Ihu2, we obtain the statement of the theorem. ��
Remark 3.2 The above theorem shows that h ≤ h0 satisfying (3.37) is asymptotically
determining.

4 DeterminingMap on theWeak Attractor

In this section, only for simplicity,wewill be looking at solutions to the data assimilated
3D NSE on the weak attractor. We discuss well-posedness of the data assimilated
equation for time ranging over all real numbers as well as the question of uniqueness
and regularity for 3-D NSE on the weak attractor when the low modes are known.
The three-dimensional incompressible NSE with time independent forcing (assumed
for simplicity) is given by

∂u

∂t
+ (u · ∇)u − �u + ∇ p = f

∇ · u = 0
(4.1)

Concerning the boundary conditions, we either consider the 3D NSE on a domain
�R

3 with ∂� ∈ C2 and homogeneous Dirichlet boundary condition u|∂� = 0 or
on the torus T

3 with space-peridic boundary condition with period L in each of the
spatial variables. Applying the Leray-Hopf projection Pσ on divergence-free vector
fields (see [14]) to (4.1), we obtain

∂u

∂t
+ B0(u, u) + A0(u) = f .

∇ · u = 0
(4.2)

where, by abuse of notation, we denote Pσ ( f ) by f . Applying P0
n to (4.2), we obtain

the Galerkin approximation to the system, given by

∂un
∂t

+ B0(un, un) + A0(un) = P0
n f

∇ · un = 0
(4.3)

4.1 Well-Posedness

We begin by providing definitions of weak and strong solutions [14, 42].

Definition 4 A (Leray-Hopf) weak solution on a time interval I = [0, T ] ⊂ R is
defined as a function u = u(t) on I with values in H0 and satisfying the following
properties:

• u ∈ L∞(0, T ; H0) ∩ L2(0, T ; V0) ∩ C(0, T : V ′
0)
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• du

dt
∈ L4/3(0, T ; V ′

0)

• u satisfies the functional equation (4.2) in the distribution sense on I , with values
in V ′

0;

• For almost all t ′ ∈ I , u satisfies the following energy inequality

|u(t)|20 + 2ν
∫ t

t ′
‖u(s)‖20ds ≤ |u(t ′)|20 + 2

∫ t

t ′
( f (s), u(s))0ds. (4.4)

for all t ∈ I , with t ′ > t .

Definition 5 A weak solution is said to be a strong/regular solution if it also belongs
to L∞(0, T ; V0) ∩ L2(0, T ; D(A0)).

We have the following previously established results on existence and uniqueness.

Theorem 4.1 Let f ∈ L2(0, T ; V ′
0). Then, there exists a weak solution u of (4.2),

satisfying all the properties given in Definition 4.

Theorem 4.2 Let v be a strong solution to (4.2). Then, there doesn’t exist any other
weak solution u of (4.2).

Remark 4.1 For 3-D NSE, we have existence of weak solution(Theorem 4.1), but not
uniqueness. Moreover, we have uniqueness of strong solutions(Theorem 4.2), but not
existence.

4.2 Weak Attractor

Despite the lack of a well-posedness result for the three-dimensional Navier- Stokes
equations, it is still a natural question to ask what the dynamics and the asymptotic
behaviors of their weak solutions are, despite the possibility that they are not unique
with respect to the initial condition. In particular, it is natural to askwhether there exists
some sort of global attractor in this case. Due to the lack of a well-defined semigroup
associated with the solutions of the system, the classical theory of dynamical system
does not apply directly. Nevertheless, it is still possible to adapt a number of results
from the classical theory to this situation.

One of the first andmain results in this directionwas given in [30], and subsequently
in [39], in which an object called the weak global attractor was defined. Its topological
properties were further studied in [28].

Definition 6 TheWeak attractor for the NSE, A, denotes the set of u0 ∈ H0 for which
there exists a weak solution u(t) of (4.2), for t ∈ R, such that

• u ∈ L∞(R; H0)

• u(0) = u0.

Remark 4.2 The weak global attractor for the 3-D Navier-Stokes operator has the
following properties:
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• For every weak solution u of (4.2) on the time interval (0,∞), we have

u(t) → A weakly in H0, as t → ∞.

• A is weakly compact in H0.

• A is invariant in the sense that if u0 ∈ A and u is a global weak solution uniformly
bounded in H0 with u(0) = u0 then u(t) ∈ A for all t ∈ R.

4.3 DeterminingMap

We begin by introducing spaces that contain the domain and ranges of the determining
map W and by introducing the evolution equation which yields the definition of W .

We denote by L2
b(R; D(A0)) the functions in L2(R; D(A0)) which are translation

bounded, i.e.,

sup
s∈R

∫ s+1

s
|A0(u(r))|20dr < ∞. (4.5)

Similarly, L2
b(R; V ) denotes the functions in L2(R; V ) which satisfy

sup
s∈R

∫ s+1

s
‖u(r)‖20dr < ∞.

Let

Y = Cb(R; V0) ∩ L2
b(R; D(A0)) and Z = Cb(R; H0) ∩ L2

b(R; V0).

where, Cb(I ; B) denotes the space of all bounded and continuous functions over the
interval I with values in the Banach space B. Y and Z are Banach spaces with norms

‖u‖Y =
{

‖u‖20 + sup
s∈R

∫ s+1

s
|A0(u(r))|20dr

} 1
2

. (4.6)

and

‖u‖Z =
{

|u|20 + sup
s∈R

∫ s+1

s
‖u(r)‖20dr

} 1
2

(4.7)

respectively.
For τ ∈ I ⊂ R and a Banach space B, we define the time translation τσ :

C(I ; B) → C(I ; B) as

τσ (u(t)) = u(t + σ). (4.8)
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Moreover, let X be the Banach space

X = Cb(R; (Ḣ1(�))3) ∩ V0

equipped with the norm

‖v‖X = sup
s∈R

‖v(s)‖0. (4.9)

The observed spatial coarse-mesh data is denoted by v(t). For the purpose of data
assimilation, we consider the case v ∈ X with ‖v‖X ≤ ρ for some ρ > 0. We use
BX (ρ) to denote the closed ball in X of radius ρ centered at 0.

The data assimilation algorithm is given by the solution w of the equation

∂w

∂t
+ B0(w,w) + νA0(w) = f + μ(v − Ih(w))

∇ · w = 0
(4.10)

Observe that the above system is not an initial value problem but an evolution equation
for all t ∈ R. The Galerkin approximation of (4.10) is obtained by applying Pn and is
given by

∂wn

∂t
+ B0(wn, wn) + νA0(wn) = Pn f + μ(Pn(v) − Ih(wn))

∇ · wn = 0
(4.11)

where un is as in (4.3).

Theorem 4.3 Let u be the solution to (2.8)–(2.9) on the weak attractor for t ∈ R,
v ∈ BX (ρ) for some ρ > 0 and Ih be any type 1 interpolant. Define

M2
h = 8

( | f |2
ν2λ1

+ ρ2
)

. (4.12)

Also, let h0 > 0 be defined as

h20 = 1

4cλ1
. (4.13)

Assume that for some h ≤ h0,

h2M4
h,u ≤ ν4

c
or equivalently

M4
h,u

ν3
≤ ν

ch2
. (4.14)

Let μ be chosen such that

max

{
M4

h

ν3
,

ν

ch20

}

≤ μ ≤ ν

ch2
. (4.15)

123



Applied Mathematics & Optimization (2022) 86 :28 Page 37 of 53 28

Then there exists a unique global solution (w, η) of (2.18)-(2.19) such that

w ∈ L∞(R; V0) ∩ L2(R; D(A0)). (4.16)

Moreover, the following bounds hold

(1) ‖w‖0 ≤ Mh .

(2)
∫ t+1

t
|A0w(t)|20dt ≤ 4

ν

(
1

ν
| f |20 + μρ2

)

Also, consider v1, v2 ∈ BX (ρ) and letw1 andw2 be solutions to (4.10) corresponding
to inputs v1 and v2 respectively. Denote w̃ = w1 − w2 and ṽ = v1 − v2. Then

(3) |w̃(t)|20 ≤ 4‖ṽ‖2X
(4)

∫ s+1

s
‖w̃(t)‖20dt ≤ 4μ

ν
‖ṽ‖2X

Proof The proof existence of global solution satisfying (4.16) is obtained by showing
that the solution, wn to the Galerkin system (4.11) with w(−N ) = 0 satisfies (1) and
(2) on the time interval [−N ,∞)(the proof for which follows exactly that of Theorem
2.4) and extracting a subsequence via the diagonal process and then passing to the
limit. We proceed as in Theorem 2.4. We will first look at equation (4.11) on the time
interval [−N ,∞] with the initial condition wn(−N ) = 0.
Taking the inner product of (4.11) with A0wn , we obtain

1

2

d

dt
‖wn‖20 + ν|A0wn|20

= −(B0(wn, wn), A0(wn))0 + μ(wn − Ih(wn), A0(wn))0

− μ‖wn‖20 + μ(Pn(v), A0(wn))0 + ( f , A0(wn))

(4.17)

Applying (2.1) and Cauchy-Schwarz, we obtain

μ(Pn(v), A0(wn))0 ≤ μ‖Pn(v)‖20 + μ

4
‖wn‖20

|( f , A0wn)0| ≤ 1

ν
| f |20 + ν

4
|A0wn|2.

Bounding the remaining terms as in Theorem 2.4 and combining estimates, we obtain

d

dt
‖wn‖20 +

(
μ − c

ν3
‖wn‖40

)
‖wn‖20 + ν

2
|A0wn|20 ≤ 2

ν
| f |20 + 2μ‖Pn(v)‖20 (4.18)

Let [−N , T1] be the maximal interval on which ‖wn(t)‖ ≤ Mh for t ∈ [−N , T1],
where Mh as in (4.15). Note that T1 > −N exists because we have wn(−N ) = 0.
Assume that T1 < ∞ . Then by continuity, we must have ‖wn(T1)‖ = Mh . Applying
(2.7),(2.30), the first inequality in (2.53) and dropping all terms except the first and
the last term on the LHS of (4.18), we obtain

d

dt
‖wn‖20 + μ

2
‖wn‖20 ≤ 2

ν
| f |20 + 2μ sup

t∈R
‖Pn(v)‖20. (4.19)
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Applying Gronwall, we obtain, for all t ∈ [−N , T1],

‖wn‖20 ≤ 4

( | f |2
ν2λ1

+ ‖(v)‖2X
)(

1 − e− μ
8 (n+t)

)
≤ 4

( | f |2
ν2λ1

+ ρ2
)

≤ 1

2
M2

h .

This contradicts the fact that ‖wn(T1)‖ = Mh . Therefore ‖wn(t)‖ ≤ Mh for all
t ∈ [−n,∞). Dropping all terms except the last term on the LHS of (4.18) and
integrating both sides over the interval [t, t + 1], it follows that

∫ t+1

t
|A0wn|20 ≤ 4

ν

(
1

ν
| f |20 + μρ2

)

(4.20)

Therefore, we have a sequence of solutions wn that satisfy (1) and (2) on the interval
[−N ,∞). One can now extract a convergent subsequence via the diagonal process
and pass through the limit to show that the limit w is a solution to (4.10) and satisfies
(4.16), (1) and (2).
We now proceed to prove (3) and (4). Let w1,n and w2,n satisfy (4.11) with v = v1
and v = v2 respectively. Then w̃n = w1,n − w2,n and ṽn = Pn(ṽ) satisfy

dw̃n

dt
+ νA0(w̃n) + B0(w̃n, w1,n) + B0(w2,n, w̃n)

= μPn(ṽ − Ih(w̃)) = μṽn + μ(w̃n − Ih(w̃n)) − μw̃n

(4.21)

Taking the inner product of (4.21) with w̃, we obtain

1

2

d

dt
|w̃n|20 + ν‖w̃n‖20 + μ|w̃n|20

≤ |(B0(w̃n, w1,n), w̄n|)|0 + |μ(w̃n − Ih(w̃n))|0|w̄n|0 + μ|ṽn|0|w̄n|0.
(4.22)

We bound each term on the RHS.
First, applying (2.5), Cauchy-Schwartz and Young’s inequality, we obtain

|(B0(w̃n, w1,n), w̃n|)|0 ≤ c|w̃n|1/20 ‖w̃n‖3/20 ‖w1,n‖0
≤ c

ν3
‖w1,n‖40|w̃n|20 + ν

2
‖w̃n‖20.

(4.23)

Applying (2.11), Cauchy-Schwartz, Young’s inequality and (4.15) as in Theorem 2.2
to bound the remaining terms, we obtain

d

dt
|w̃n|20 + ν

2
‖w̃n‖20 +

(
μ − c

ν3
‖w1,n‖40|

)
|w̃n|20 ≤ 2μ|ṽn|0. (4.24)
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From proof of (1), we know that ‖w1,n(t)‖0 ≤ Mh ∀t ∈ R. Hence, applying (4.15)
and integrating on the interval [σ, t], we obtain

|w̃n(t)|20 ≤ |w̃n(σ )|2e μ
2 (σ−t) + 4‖ṽn‖2X

(
1 − e

μ
2 (σ−t)

)
. (4.25)

Letting σ → −∞, we obtain

|w̃n(t)|20 ≤ 4‖ṽn‖2X (4.26)

Keepingonly the second termon theLHSof (4.24) and integratingon the interval[s, s+
1], we obtain

∫ s+1

s
‖w̃n(t)‖20dt ≤ 4μ

ν
‖ṽn‖2X (4.27)

Taking the limit n → ∞ in (4.26) and (4.27), we obtain (3) and (4). ��
Definition 7 Consider ρ > 0, μ > 0 and h > 0 satisfying the hypothesis of Theorem
4.3. Then, the determining map W : BX (ρ) → Y is given by W (v) = w.

Remark 4.3 Observe that Y ⊂ Z . Hence, from (3) and (4) in Theorem 4.3, we may
conclude that W : BX (ρ) → Z is Lipschitz continuous. Lipschitz continuity in turn
implies uniqueness of solutions.

Corollary 4.4 The determining map W defined in Definition 7, in addition to being
Lipschitz continuous has the following properties

(1) Let v1, v2 ∈ BX (ρ), Then, W (v1) = W (v2) iff Pσ (v1 − v2) = Pσ (v̄) = 0.

(2) For every σ ∈ R,

W ◦ τσ (v) = τσ ◦ W (v). (4.28)

Proof To prove (4.4), we note that w̄ = w1 − w2 = 0, where w1 = W (v1) and
w2 = W (v2). Sincew1 andw2 are regular, the term w̄ is differentiable a.e on R. From
(4.10), we may write

∂w̄

∂t
+ νA0(w̄) + B0(w̄, w1) + B0(w2, w̄) = μPσ (v̄ − Ih(w̄)) (4.29)

Letting w̄ = 0, we obtain Pσ (v̄) = 0. If Pσ (v̄) = 0, We obtain W (v1) = W (v2) from
the Lipschitz continuity of W .

To show (4.4), we observe that τσ ◦ W (v) is a solution of (4.10) corresponding to
τσ (v). From the Lipschitz property of the map W , we have uniqueness of solution.
Hence

W ◦ τσ (v) = τσ ◦ W (v).

��
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5 An Observable Regularity Criterion on theWeak Attractor

In this section we establishes that the Leray-Hopf weak solution u to (4.2) on weak
attractor is in fact a strong solution. We restrict our attention to the 3D NSE only
for simplicity. Similar result can be established using the same method for the 3D
Boussinesq system as well.

The regularity criterion for the 3D NSE on the weak attractor is as follows:

Theorem 5.1 Let u be a Leray-Hopf weak solution of (4.2) on the weak attractor. Let
h0 > 0 be defined as

h−2
0 = max

{
1

cλ1
,
c| f |4
ν8λ21

}

( f is the body force).

Assume there exists 0 < h ≤ h0 for which

h2M4
h,u ≤ ν4

c
.

Then u(t) is regular for all t ∈ R.

Wewill use the following three lemmas to prove Proposition 5.5, which will help us
obtain our regularity criterion stated above. The first lemma is obtained by repeating
the arguments of Lemma 2.8.

Lemma 5.2 Let u be the general Leray–Hopf weak solution of (4.1) and w be the
strong solution to (4.10) as given in [11]. Let w̃ = w − u . Then,

|w̃(t)|20 + 2ν
∫ t

0
‖w̃(s)‖20ds ≤ |w̃(0)|20 + 2

∫ t

0
b(w̃(s), w̃(s), w(s))ds

− 2μ
∫ t

0
(Ih(w̃(s), w̃(s)))0 ds

(5.1)

Bounding each term in (5.1) as in Theorem 4.3 and applying Lemma 6.6, we obtain
the second lemma.

Lemma 5.3 Let u be a general Leray–Hopf weak solution of (4.1) and w be a strong
solution to (4.10) as given in [11]. Also, let w̃ = w − u. Then,

|w̃(t)|20 ≤ 4M2e
−μ

(
t− 1

μ

)

. (5.2)

where

M = max

⎧
⎨

⎩
sup

0≤t≤ 1
μ

|w(t)|0, sup
0≤t≤ 1

μ

|u(t)|0
⎫
⎬

⎭
. (5.3)
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Lemma 5.4 Let u be a Leray-Hopf weak solution of (4.1) on the weak attractor and
w be the strong solution of (4.10) as given in the Theorem 4.3. Let w̃ = w − u and
w̃τ (t) = w̃ (t − τ − 1/μ). Then

|w̃τ (t)|20 ≤ 4M2e
−μ

(
t− 1

μ

)

. (5.4)

where M is as in (5.3).

Proof Dropping the middle term on the LHS of (??), we obtain

|w̃(t)|20 + μ

∫ t

0
|w̃(s)|20ds ≤ |w̃(0)|20 (5.5)

Changing the interval of integration from [0, t] to [t − τ − 2/μ, t − τ − 1/μ], we
obtain

|w̃(t − τ − 1/μ)|20 + μ

∫ t−τ−1/μ

t−τ−2/μ
|w̃(s)|20ds ≤ |w̃(t − τ − 2/μ)|20 (5.6)

Applying the definition of w̃τ , (5.6) can be rewritten as

|w̃τ (t)|20 + μ

∫ t

t−1/μ
|w̃τ (s)|20ds ≤ |w̃τ (t − 1/μ)|20. (5.7)

Proceeding exactly as in Lemma 5.3, we obtain the statement of the lemma. ��
Proposition 5.5 Let u be a general Leray–Hopf weak solution of (4.1) and w be a
strong solution to (4.10) as given in Theorem 4.3. Also, let w̃ = w − u and w̃τ (t) =
w̃ (t − τ − 1/μ). Then, |w̃(t)|0 = 0 ∀t ∈ R.

Proof It is enough to show that for any t0 ∈ R , |w̃(t0)|20 ≤ ε. Given t0 ∈ R, let τ ∈ R

be such that

(
4M2e−μτ

)
e−μ(t0) ≤ ε, (5.8)

where M is as in (5.3). Then, from Lemma 5.4, we have

|w̃τ (t0 + τ + 1/μ)|20 ≤
(
4M2e−μτ

)
e−μ(t0). (5.9)

Applying (5.8) and the definition of w̃τ , we obtain

|w̃(t0)|20 ≤ ε. (5.10)

��
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From the above theorem we see that on the weak attractor, u = w, where u is a
general Leray-Hopf weak solution to (4.1) and w be a strong solution to (4.10). This
would in turn mean that u on the weak attractor can be shown to be regular whenever
we can can construct such aw, giving us a regularity criterion summarized in Theorem
5.1.

5.1 Weakened Regularity Condition

In Theorem 4.3, the condition we imposed on the data to show regularity of w can be
weakened. In this section, we will show that the weakened condition on the data is
sufficient to obtain the same regularity result as that in Theorem 4.3(1).

We define Kh := Kh,τ0 , for τ0 > 0 and Holder conjugates p ≥ 3 and q ≥ 1, as

Kh = sup
t∈[−∞,T ]

(∫ t+τ0

t
‖Ihu‖2pds

)1/2p

. (5.11)

The weakened condition is obtained in terms of Kh instead of ρ. The criterion is as
follows:

Theorem 5.6 Let u be a Leray-Hopf weak solution of (4.2) on the weak attractor and
Kh be defined as in (5.11). Let h0 > 0 be defined as

h−2
0 = max

{

cλ1,
c| f |4
ν5λ2

}

.

Assume there exists τ0 > 0 and 0 < h ≤ h0 for which Kh < ∞ and

h2 max

⎧
⎨

⎩

ν

ch20
,

(
CK 4

h

q
2
q

) p
p−2

⎫
⎬

⎭
≤ ν

c
.

Then u(t) is regular for all t ∈ R.

To obtain the above result, we first prove the following proposition.

Proposition 5.7 Let Ĩh be a modified general type-I interpolant, Kh be defined as in
(5.11) and 0 ≤ T ≤ ∞. Let h0 > 0 be given by

h−2
0 = max

{

cλ1,
c| f |4
ν8λ2

}

(5.12)

Assume there exists τ0 > 0 and 0 < h ≤ h0 such that Kh < ∞ and

h2
(
CK 4

h

q
1
q

) p
p−2

≤ ν

c
. or equivalently

(
CK 4

h

q
1
q

) p
p−2

≤ ν

ch2
. (5.13)

123



Applied Mathematics & Optimization (2022) 86 :28 Page 43 of 53 28

Let μ be chosen such that

max

⎧
⎨

⎩

ν

ch20
,

(
CK 4

h

q
1
q

) p
p−2

⎫
⎬

⎭
≤ μ ≤ ν

4ch2
. (5.14)

Then, the data assimilated fluid velocity is regular and satisfies

‖w‖0 ≤ Mh, (5.15)

where

M2
h = 8| f |2

λ1ν2
+ CK 2

hμ
1/p

q1/q

(
1

1 − e− νλ1 p
4 τ0

)1/p

. (5.16)

Proof Taking the inner product of the 3-D NSE with A0wn , we obtain

1

2

d

dt
‖wn‖20 + ν|A0wn|20

= −(B0(wn, wn), A0(wn))0 + μ(wn − Ih(wn), A0(wn))0

− μ‖wn‖20 + μ(Ihu, A0(wn))0 + ( f , A0(wn))

(5.17)

Applying Cauchy-Schwartz and Young’s inequality, we obtain

μ(Ihu, A0(wn))0 ≤ μ‖Ihu‖20 + μ

4
‖wn‖20.

|( f , A0wn)0| ≤ | f |0|A0wn|0 ≤ 1

ν
| f |20 + ν

4
|A0wn|2

Bounding the remaining terms similar to Theorem 2.4 and inserting the above estimate
into (5.17), we obtain

d

dt
‖wn‖20 +

(
μ − c

ν3
‖wn‖40

)
‖wn‖20 + ν

2
|A0wn|20 ≤ 2

ν
| f |20 + 2μ‖Ihu‖20 (5.18)

Let [0, T1] be the maximal interval on which ‖wn(t)‖ ≤ Mh for t ∈ [0, T1]. Note that
T1 > 0 exists because we have wn(0) = 0. Assume that T1 < T . Then by continuity,
we must have ‖wn(T1)‖ = Mh . Applying (5.14)and (5.16) to (5.18) and dropping the
last term on the LHS of (5.18), we obtain

d

dt
‖wn‖20 + μ

2
‖wn‖20 ≤ 2

ν
| f |20 + 2μ‖Pn(v)‖20. (5.19)
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Applying Gronwall’s and Holder’s inequalities, for any t ∈ [0, T1] we obtain

‖wn(t)‖2 ≤ 4| f |2
μν

+ 2μ
∫ t

0
e− μ

2 (t−s)‖Ihu‖2ds

≤ 4| f |2
μν

+ 2μ

(∫ t

0
e− μq

4 (t−s)ds

)1/q (∫ t

0
e− μp

4 (t−s)‖Ihu‖2pds
)1/p

≤ 4| f |2
μν

+ Cμ1/p

q1/q

(∫ t

0
e− μp

4 (t−s)‖Ihu‖2pds
)1/p

(5.20)

Where 1 ≤ p, q ≤ ∞ are Holder conjugates. We now try to bound the second term
on the RHS of the above inequality.
Case 1: t ≥ τ0.

Let k =
⌊
t

τ0

⌋

be the largest integer such that kτ0 ≤ t . Therefore,

t = kτ0 + ε, where 0 ≤ ε ≤ τ0. (5.21)

Let α = pμ

4
. Then, from (5.11) and (5.21), we may write

∫ t

0
e− μp

4 (t−s)‖Ihu‖2pds ≤
k∑

j=1

∫ jτ0

( j−1)τ0
e−α(t−s)‖Ih(u)‖2pds

+
∫ t

nτ0

e−α(t−s)‖Ih(u)‖2pds

≤ e−αε
k∑

j=1

e−α(n− j)τ
∫ jτ0

( j−1)τ0
‖Ih(u)‖2pds

+
∫ nτ0+ε

nτ0

‖Ih(u)‖2pds

≤ e−αεK 2p
h

k−1∑

m=0

emατ0 + K 2p
h ≤ 2K 2p

h

1 − eατ0
.

(5.22)

Case 2: t ≤ τ0.
From(5.11), we see that

∫ t

0
e−α(t−s)‖Ihu‖2ds ≤

∫ t

0
‖Ihu‖2ds ≤

∫ τ0

0
‖Ihu‖2ds ≤ K 2p

h ≤ 2K 2p
h

1 − eατ0
(5.23)
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Applying (5.22), (5.23) and (5.16) to (5.20), we obtain that for any t ∈ [0, T1]

‖wn(t)‖2 ≤ 4| f |2
μν

+ CK 2
hμ

1/p

q1/q

(
2

1 − e− μp
4 τ0

)1/p

≤ 4| f |2
λ1ν2

+ CK 2
hμ

1/p

q1/q

(
2

1 − e− νλ1 p
4 τ0

)1/p

≤ 1

2
M2

h .

(5.24)

This contradicts the fact that ‖wn(T1)‖ = Mh . Therefore T1 ≥ T and consequently,
‖wn(t)‖ ≤ Mh for all t ∈ [0, T ]. Passing to the limit as n → ∞, we obtain the desired
conclusion for w. ��
Similar to Theorem 5.1, using Lemma 5.2 - Lemma 5.4, we obtain the regularity
criterion given in Theorem 5.6

Remark 5.1 Note that in Theorem 5.6, the definition of Mh is given by (5.16), which
is not the same as (2.48). Also, the regularity criterion given by Theorem 5.6 is in the
spirit of the criterion given by Corollary 5.2 in [31]. However, our condition solely
depends on the observed data.

6 Appendix

We now present the proofs of a few novel results that have been used to prove theorems
in this paper. Although some of the ideas of the proofs are borrowed from [6], to the
best of our knowledge, these estimates concerning the interpolant operators are new
and may have independent interest.

Recall that for volume interpolation, we divided our domain into smaller sub
domains(cuboids Qα) of diameter h and indexed by the set J . Let us define the
set E ⊂ J as

E =
{
α = (α1, α2, α3) ∈ J : α3 = 1 or α3 = 3

√
N
}

. (6.1)

E represents the collection of sub domains touching the top and bottom boundaries
(x3 = 0 and x3 = 1). For sub domains Qα with α ∈ E , we introduce a modification
Qε,α for 0 < ε < h, given by

Qε,α =
{

((α1 − 1) ∗ hL , α1 ∗ hL ) × ((α2 − 1) ∗ hL , α2 ∗ hL ) × (ε, h1) , for α3 = 1

((α1 − 1) ∗ hL , α1 ∗ hL ) × ((α2 − 1) ∗ hL , α2 ∗ hL ) × (1 − h1, 1 − ε) , for α3 = 3
√
N ,

(6.2)

where hx = x/ 3
√
N . We now define the Ĩh as

Ĩh(v)(x) =
∑

α∈J
v̄αφα(x), v ∈ H1(�) (6.3)
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where

φα = ρε ∗ ψQα , ρε(x) = ε−3ρ (x/ε) , v̄α = 1

|Qα|
∫

Qα

v(x)dx . (6.4)

ψQα (x) =
{

χQα , for α /∈ E
χQε,α , for α ∈ E (6.5)

ρ(x) =
⎧
⎨

⎩

K0 exp

( −1

1 − x2

)

, for |x | < 1

0 , otherwise
(6.6)

and

(K0)
−1 =

∫

|x |<1
exp

( −1

1 − x2

)

dx .

We set ε = h/10.

Remark 6.1 ‖ Ĩh‖0 is well defined since the characteristic function of each sub domain
has been mollified. The characteristic function of sub domains touching the top and
bottom boundaries have been modified(Qε,α) so that it’s support is an “ε distance”
away from the top and the bottom boundaries. This is done so that after mollification,
the modified characteristic function respects the Dirichlet boundary condition at x3 =
0, 1.

Lemma 6.1 Let φα and ρ be defined as in (6.4) and (6.6) respectively. Then, for i = 1,
2 and 3

|∂xi φα|2 ≤ Ch‖∂xi ρ‖2L∞(�)

Proof Recall that φα = ρε ∗ ψQα . Applying Young’s inequality for convolutions, we
obtain

|∂xi
(
ρε ∗ ψQα

) |2 = | (∂xiρε

) ∗ ψQα |2
≤ ∥
∥∂xiρε

∥
∥2
L1(�)

∣
∣ψQα

∣
∣2

(6.7)

Now, we look at each term on the RHS of (6.7). Differentiating the second Eq. in (6.4)
with xi and using the fact that ε = h/10, we obtain

∥
∥∂xiρε

∥
∥2
L1(�)

=
(∫

|x |≤ε

∣
∣
∣ε

−4∂xi ρ(x/ε)
∣
∣
∣ dx

)2

≤ Cε−2‖∂xi ρ‖2L∞(�)

≤ Ch−2‖∂xi ρ‖2L∞(�).

(6.8)

From the definition of χQα , we readily obtain

∣
∣ψQα

∣
∣2 ≤

∫

Qα

12dx = |�|
N

≤ h3 (6.9)
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Combining (6.7), (6.8) and (6.9) and noting that |�|/N ≤ h3, we obtain

|∂xiφα|2 ≤ C |�|h−2

N
‖∂xi ρ‖2L∞(�) ≤ Ch‖∂xi ρ‖2L∞(�) (6.10)

��
We now prove the following theorem. The proof technique was borrowed from [6],
where it was used to prove a similar statement for the two dimensional case.

Theorem 6.2 Let K = {−1, 0, 1}3 and Ĩh be as in (6.3) and Kρ =
(

3∑

i=1

‖∂xi ρ‖2L∞(�)

)1/2

. Then ,

| Ĩh(v)|2H1(�)
≤ ChK 2

ρ

∑

α∈J
|v̄α|2 ∀v ∈ H1(�). (6.11)

Proof We set ε = h/10. Hence, it follows immediately that |φαφβ | = 0 for α −
β /∈ K, where K = {−1, 0, 1}3. Differentiating (6.3) and applying Cauchy-Schwarz
inequality, we obtain

|∂xi Ĩh(v)|2 ≤
∫

�

∑

γ∈K

∑

α∈J

∣
∣v̄α∂xi φα(x)

∣
∣
∣
∣v̄α+γ ∂xi φα+γ (x)

∣
∣ dx

≤
∫

�

∑

γ∈K

⎛

⎝
∑

α∈J
|v̄α |2 ∣∣∂xi φα(x)

∣
∣2

⎞

⎠

1/2⎛

⎝
∑

α∈J
|v̄α+γ |2 ∣∣∂xi φα+γ (x)

∣
∣2

⎞

⎠

1/2

dx

≤
∫

�

∑

γ∈K

∑

α∈J
|v̄α |2 ∣∣∂xi φα(x)

∣
∣2 dx ≤ 27

∫

�

∑

α∈J
|v̄α |2 ∣∣∂xi φα(x)

∣
∣2 dx

≤ 27
∑

α∈J
|v̄α |2|∂xi φα |2 (6.12)

Applying (6.10) to (6.12), we may write

|∂xi Ĩh(v)|2 ≤ C |�|h−2

N
‖∂xi ρ‖2L∞(�)

∑

α∈J
|v̄α|2 ≤ Ch‖∂xi ρ‖2L∞(�)

∑

α∈J
|v̄α|2 (6.13)

Now, summing over i , we obtain

| Ĩh(v)|2H1(�)
≤ C |�|h−2

N
K 2

ρ

∑

α∈J
|v̄α|2 ≤ ChK 2

ρ

∑

α∈J
|v̄α|2 ∀v ∈ H1(�). (6.14)

��
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Corollary 6.3 Let Ĩh be as in (6.3) and Kρ =
(

3∑

i=1

‖∂xi ρ‖2L∞(�)

)1/2

. Then

‖ Ĩh(v)‖ ≤ CKρ‖v‖ ∀v ∈ H1(�) and
∑

α∈J
|v̄α|2 ≤ CN 1/3

|�|1/3 ‖v‖2. (6.15)

Proof We first look at the term
∑

α∈J
|v̄α|2 in (6.13). Using the definition of v̄α given in

(2.14), Holder’s inequality and Gagliardo-Nirenberg-Sobolev inequality, we obtain

∑

α∈J
|v̄α|2 ≤

∑

α∈J

(∣
∣
∣
∣

1

|Qα|
∫

Qα

v(x)dx

∣
∣
∣
∣

)2

≤ N 2

|�|2
∑

α∈J
‖v‖2L1(Qα)

≤ N 2

|�|2
∑

α∈J
|Qα|5/3‖v‖2L6(Qα)

≤ CN 1/3

|�|1/3
∑

α∈J
‖v‖2H1(Qα)

≤ CN 1/3

|�|1/3
∑

α∈J

3∑

i=1

∥
∥
(
∂xi v

)
χQα

∥
∥2
L2(�)

≤ CN 1/3

|�|1/3
3∑

i=1

⎛

⎝
∑

α∈J

(
∂xi v

)
χQα ,

∑

α∈J

(
∂xi v

)
χQα

⎞

⎠

(6.16)

Next, using the fact that for α, β ∈ J ,

χQαχQβ =
{
0 if α �= β

χQα if α = β,
(6.17)

we can simplify the expression on the RHS of (6.16) to obtain

∑

α∈J
|v̄α|2 ≤ CN 1/3

|�|1/3
3∑

i=1

‖∂xi v‖2L2(�)
≤ CN 1/3

|�|1/3 ‖v‖2. (6.18)

Applying (6.18) to the the first inequality in (6.14) and summing over i , we obtain

‖ Ĩh(v)‖ ≤ CKρ‖v‖ ∀v ∈ H1(�). (6.19)

��
Next, we briefly try to see why Ĩh is a type-I interpolant. We first look at a lemma,
which is a modified version of a similar result in [18].

Lemma 6.4 Let U = {
(p, q, r) ∈ R

3 : |p − a| < 0.5h, |q − b| < 0.5h, |r − c| <

0.5h, for a, b, c ∈ R} be a cube of side length h > 0 and center m = (a, b, c)
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and u ∈ W 1,p(U ) . Assume 1 ≤ p ≤ ∞. Then there exists a C, depending on only on
p, such that

‖u − (u)U‖p ≤ Ch‖∇u‖p,

where

(u)U = 1

|U |
∫

U
u(x)dx

Proof From Theorem2.2, it follows that the statement is true for a cube V of side
length one given by V = {(p, q, r) ∈ R

3 : |p| < 0.5, |q| < 0.5, |r | < 0.5}. For
y ∈ V , we define v ∈ W 1,p(V ) by

v(y) = u(hy + m).

From Theorem 2.2 we obtain

‖v − (v)V ‖p ≤ C‖∇v‖p.

Changing variables, we obtain the statement of the theorem. ��
Theorem 6.5 Let Ĩh be the smoothed volume interpolant as defined in (6.3). Then Ĩh
is a type-I interpolant.

Proof Recall that |φαφβ | = 0 for α − β /∈ K, where K = {−1, 0, 1}3. Repeating the
arguments in (6.12) and applying Young’s inequality for convolutions, we obtain

| Ĩh(v)|2 ≤ 27
∑

α∈J
|v̄α|2|φα|2 ≤ 27

∑

α∈J
|v̄α|2‖ρε‖2L1(�)

|ψQα |2 (6.20)

Observe that

‖ρε‖L1(�)|2 =
(∫

|x |≤ε

∣
∣
∣ε

−3ρ(x/ε)
∣
∣
∣ dx

)2

≤ C‖ρ‖2L∞(�)

(6.21)

Applying (6.21) and the middle inequality of (6.9) to (6.20), we obtain

| Ĩh(v)|2 ≤ C‖ρ‖2L∞(�)

|�|
N

∑

α∈J
|v̄α |2 ≤ C‖ρ‖2L∞(�)

|�|
N

∑

α∈J

(∣
∣
∣
∣

1

|Qα |
∫

Qα

v(x)dx

∣
∣
∣
∣

)2

≤ C‖ρ‖2L∞(�)

N

|�|
∑

α∈J
‖v‖2L1(Qα)

≤ C‖ρ‖2L∞(�)

∑

α∈J
‖v‖2L2(Qα)

≤ C‖ρ‖2L∞(�)|v|2

(6.22)
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We now look at |v − Ĩh(v)|.

|v − Ĩh(v)|2 ≤
∣
∣
∣
∣
∣
∣

∑

α∈J
(v − v̄α)φα

∣
∣
∣
∣
∣
∣

2

(6.23)

After repeating the arguments in (6.20) and (6.21), we obtain

|v − Ĩh(v)|2 ≤ C‖ρ‖2L∞(�)

∑

α∈J
|(v − v̄α)φα|2

≤ C‖ρ‖2L∞(�)

|�|
N

∑

α∈J
|(v − v̄α)|2‖φα‖2L∞(�)

≤ C‖ρ‖2L∞(�)

N

|�|
∑

α∈J
|(v − v̄α)|2‖ρε‖2L∞(�)|ψ |2L1(�)

≤ Ch−6 |�|2
N 2 ‖ρ‖4L∞(�)

∑

α∈J
|(v − v̄α)|2

(6.24)

Lastly, applying Lemma 6.4 and noting that |�|/N ≤ h3, we obtain

|v − Ĩh(v)|2 ≤ Ch2‖ρ‖4L∞(�)

∑

α∈J
‖v‖2H1(Qα)

≤ Ch2‖ρ‖4L∞(�)‖v‖2H1(�) (6.25)

Therefore, from (6.22) and (6.25), we see that Ĩh is a type-I interpolant. ��
We now state and prove the following lemma due to E.S Titi (via private communica-
tion). ‘

Lemma 6.6 Let y : R → R be a real valued function, with y(t) ≥ 0 ∀t ∈ R. Let
K ≥ 0. If y satisfies, for 0 ≤ s ≤ t and a constant μ > 0, the inequality

y(t) + μ

∫ t

s
y(τ )dτ ≤ y(s) + K , (6.26)

then

y(t) ≤ μe
−μ

(
t− 1

μ

) ∫ 1
μ

0
y(τ )dτ + 2K , ∀t ≥ 1/μ. (6.27)

Proof Let

ψ(t) =
∫ t

t− 1
μ

y(τ )dτ. (6.28)
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Choosing s = (t − 1/μ),we can then rewrite (6.26) as

∂ψ(t)

dt
+ μψ(t) ≤ K . (6.29)

Thus, from standard Gronwall over the interval [σ, t] inequality, we obtain

ψ(t) ≤ ψ (σ) e−μ(t−σ) + K

μ
. (6.30)

Choosing σ = 1/μ, we obtain

ψ(t) ≤ ψ (1/μ) e
−μ

(
t− 1

μ

)

+ K

μ
. (6.31)

Now, keeping only the first term on the LHS of (6.26), integrating with respect to s

over the interval
[
t − 1

μ
, t
]
and applying (6.31), we see that

(
1

μ

)

y(t) ≤
∫ t

t− 1
μ

y(τ )dτ + K

μ
≤ ψ (1/μ) e

−μ
(
t− 1

μ

)

+ 2K

μ

≤ e
−μ

(
t− 1

μ

) ∫ 1
μ

0
y(τ )dτ + 2K

μ
.

(6.32)

Multiplying (6.32) by a factor of μ, we obtain (6.27). ��
If, in (6.30), we choose σ = t/2, we obtain the following Corollary

Corollary 6.7 Let y : R → R be a real valued function, with y(t) ≥ 0 ∀t ∈ R. Let
K ≥ 0. If y satisfies, for 0 ≤ s ≤ t and a constant μ > 0, the inequality

y(t) + μ

∫ t

s
y(τ )dτ ≤ y(s) + K , (6.33)

then

y(t) ≤ μe−μ(t/2)
∫ t/2

t/2−1/μ
y(τ )dτ + 2K , ∀t ≥ 1/μ + 2K . (6.34)

References

1. Albanez, D.A.F., Benvenutti, M.J.: Continuous data assimilation algorithm for simplified Bardina
model. Evol. Equ. Control Theory 7(1), 33–52 (2018)

2. Albanez, D.A.F., Nussenzveig, L., Helena, J., Titi, E.S.: Continuous data assimilation for the three-
dimensional Navier-Stokes-α model. Asymptot. Anal. 97(1–2), 139–164 (2016)

3. Altaf, M.U., Titi, E.S., Gebrael, T., Knio, O., Zhao, L., McCabe, M.F., Hoteit, I.: Downscaling the 2D
Bénard convection equations using continuous data assimilation. Comput. Geosci. bf 21(3), 393–410
(2017)

123



28 Page 52 of 53 Applied Mathematics & Optimization (2022) 86 :28

4. Asch, M., Bocquet, M., Nodet, M.: Data Assimilation: Methods, Algorithms, and Applications, Fun-
damentals of Algorithms, 11. Society for Industrial and Applied Mathematics (SIAM), Philadelphia,
PA (2016)

5. Anthes, R.A.: Data assimilation and initialization of hurricane prediction models. J. Atmos. Sci. 31,
702–719 (1974)

6. Azouani, Abderrahim, Olson, Eric, Titi, Edriss S.: Continuous data assimilation using general inter-
polant observables. J. Nonlinear Sci. 24(2), 277–304 (2014)

7. Beale, T., Kato, T., Majda, A.: Remarks on the breakdown of smooth solutions for the 3-D Euler
equations. Commun. Math. Phys. 94, 61–66 (1984)

8. Bessaih, H., Olson, E., Titi, E.S.: Continuous data assimilation with stochastically noisy data. Nonlin-
earity 28, 729–753 (2015)

9. Biswas, A., Foias, C., Mondaini, C.F., Titi, Edriss S.: Downscaling data assimilation algorithm with
applications to statistical solutions of the Navier-Stokes equations Annales de l’Institut Henri Poincaré
C. Anal. Non linéaire 36(2), 295–326 (2019)

10. Biswas, A., Hudson, J.: Parameter estimation and its determination from observational data via the
determining map. (in preparation)

11. Biswas, A., Price, R.: Continuous data assimilation for the three dimensional Navier-Stokes equations.
Siam J. Math. Anal. arXiv:2003.01329 (2020)

12. Blayo, E., Verron, J., Molines, J.-M.: Assimilation of TOPEX/POSEIDON altimeter data into a circu-
lation model of the North Atlantic. J. Geophys. Res. 99(C12), 24691–24705 (1994)

13. Blömker, D., Law, K., Stuart, A.M., Zygalakis, K.C.: Accuracy and stability of the continuous-time
3DVAR filter for the Navier-Stokes equation. Nonlinearity 26(8), 2193–2219 (2013)

14. Constantin, P., Foias, C.: Navier-Stokes Equations. Chicago Lectures in Mathematics, University of
Chicago Press, Chicago, IL (1988)

15. Daley, R.: Atmospheric Data Analysis. Cambridge Atmospheric and Space Science Series, Cambridge
University Press, Cambridge (1991)

16. Desamsetti, S., Dasari, H.P., Langodan, S., Titi, E.S., Knio, O., Hoteit, I.: Dynamical downscaling
of general circulation models using continuous data assimilation. Quart. J. R. Meteorol. Soc. (2019).
https://doi.org/10.1002/qj.3612

17. Doering, C.R., Gibbon, J.D.: Applied Analysis of the Navier-Stokes Equations, vol. 12. Cambridge
University Press, Cambridge (1995)

18. Evans, L.C.: Partial Differential Equations. American Mathematical Society (2010)
19. Farhat, A., Glatt-Holtz, N.E., Martinez, V.R., McQuarrie, S.A., Whitehead, J.P.: Data assimilation

in large Prandtl Rayleigh-Bénard convection from thermal measurements. SIAM J. Appl. Dyn. Syst.
19(1), 510–540 (2020)

20. Farhat, A., Jolly, M.S., Titi, E.S.: Continuous data assimilation for the 2D Bénard convection through
velocity measurements alone. Physica D 303, 59–66 (2015)

21. Farhat, A., Lunasin, E., Titi, E.S.: Data assimilation algorithm for 3D Bénard convection in porous
media employing only temperature measurements. J. Math. Anal. Appl. 438(1), 492–506 (2016)

22. Foias, C., Jolly, M.S., Kravchenko, R., Titi, E.S.: A determining form for the two-dimensional Navier-
Stokes equations: the Fourier modes case. J. Math. Phys. 53(11), 115623 (2012)

23. Foias, C., Jolly, M.S., Kravchenko, R., Titi, E.S.: A unified approach to determining forms for the 2D
Navier-Stokes equations–the general interpolants case. Russ. Math. Surv. 69(2), 369 (2014)

24. Foias, C., Jolly, M., Lithio, D., Titi, E.S.: One-dimensional parametric determining form for the two-
dimensional Navier-Stokes equations. J. Nonlinear Sci. 27(5), 1513–1529 (2017)

25. Foias, C., Manley, O., Temam, R.: Attractors for the Bénard problem: existence and physical bounds
on their fractal dimension Nonlinear Analysis: Theory. Methods Appl. 11(8), 939–967 (1987)

26. Foias, C., Mondaini, C.F., Titi, E.S.: A discrete data assimilation scheme for the solutions of the two-
dimensional Navier-Stokes equations and their statistics. SIAM J. Appl. Dyn. Syst. 15(4), 2109–2142
(2016)

27. Foias, C., Prodi, G.: Sur le comportement global des solutions non-stationnaires des équations de
Navier-Stokes en dimension 2. Rend. Sem. Mat. Univ. Padova 39, 1–34 (1967)

28. Foias, C., Rosa, R., Temam, R.: Topological properties of the weak global attractor for the three
dimensional Navier-Stokes equations. Discret. Contin. Dyn. Syst. 27(4), 1611–1631 (2010). https://
doi.org/10.3934/dcds.2010.27.1611

29. Foias, C., Temam, R.: Determination of the solutions of the Navier-Stokes equations by a set of nodal
values. Math. Comp. 43, 117–133 (1984)

123

http://arxiv.org/abs/2003.01329
https://doi.org/10.1002/qj.3612
https://doi.org/10.3934/dcds.2010.27.1611
https://doi.org/10.3934/dcds.2010.27.1611


Applied Mathematics & Optimization (2022) 86 :28 Page 53 of 53 28

30. Foias, C., Temam, R.: The connection between the Navier-Stokes equations, dynamical systems, and
turbulence theory. In: Directions in Partial Differential Equations, pp. 55–73 (1987)

31. Holst, M.J., Titi, E.S.: Determining projections and functionals for weak solutions of the Navier-Stokes
equations. Contemp. Math. 204, 125–138 (1997)

32. Hudson, Joshua, Jolly, Michael: Numerical efficacy study for data assimilation for the 2D magneto-
hydrodynamic equations. J. Comput. Dyn. 6(1), 131–145 (2019)

33. Kelly, D.T.B., Law, K.J.H., Stuart, A.M.: Well-posedness and accuracy of the ensemble Kalman filter
in discrete and continuous time. Nonlinearity, pp. 2579–2603 (2014)

34. Larios, A., Pei, Y.: Approximate continuous data assimilation of the 2D Navier-Stokes equations via
the Voigt-regularization with observable data. Evol. Equ. Control Theory 9(3), 733–751 (2020)

35. Leoni, D., Patricio, C., Mazzino, A., Biferale, L.: Inferring flow parameters and turbulent configuration
with physics-informed data assimilation and spectral nudging. Phys. Rev. Fluids 3(10), 104604 (2018).
https://doi.org/10.1103/PhysRevFluids.3.104604

36. Majda, A., Harlim, J.: Filtering Complex Turbulent Systems. Cambridge University Press, Cambridge
(2012)

37. Pawar, S., Ahmed, S., San, O., Rasheed, A., Navon, I.M.: Long short-termmemory embedded nudging
schemes for nonlinear data assimilation of geophysical flows. Ohys. Fluids (2020). https://doi.org/10.
1063/5.0012853

38. Pedlosky, J.: Geophysical Fluid Dynamics. Springer–Verlag, New York (1986)
39. Sell, G.: Global attractors for the three-dimensional Navier-Stokes equations. J. Dyn. Differ. Eqs. 8,

1–33 (1996)
40. Serrin, J.: On the interior regularity of weak solutions of the Navier-Stokes equations. Arch. Ration.

Mech. Anal. 9, 187–195 (1962)
41. Serrin, J.: The initial value problem for the Navier-Stokes equations. In: R.E. Langer, (ed.) Nonlinear

Problems, pp. 69-98. University of Wisconsin Press, Wisconsin (1963)
42. Temam, R.: Navier-Stokes Equations. Theory and Numerical Analysis. In: Studies inMathematics and

its Applications, 3rd edn. North-Holland Publishing Co., Amsterdam-New York (1984) (Reedition in
the AMS Chealsea Series, AMS, Providence, 2001)

43. Temam, R.: Infinite-Dimensional Dynamical Systems in Mechanics and Physics. Springer Science &
Business Media, New York (2012)

44. Verron, J.: Altimeter data assimilation into an ocean circulationmodel: sensitivity to orbital parameters.
J. Geophys. Res. 95(C7), 443–459 (1990)

45. Xin, T., Tong, A.J.M., David, K.: Nonlinear stability and ergodicity of ensemble based Kalman filters.
Nonlinearity 29(2), 657–691 (2016)

46. Zerfas, C., Rebholz, L.G., Schneier, M., Iliescu, T.: Continuous data assimilation reduced order models
of fluid flow. Comput. Methods Appl. Mech. Eng. 357, 112596 (2019)

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps
and institutional affiliations.

123

https://doi.org/10.1103/PhysRevFluids.3.104604
https://doi.org/10.1063/5.0012853
https://doi.org/10.1063/5.0012853

	Determining Map, Data Assimilation and an Observable Regularity Criterion for the Three-Dimensional Boussinesq System
	Abstract
	1 Introduction
	1.1 The 3D Boussinesq System
	1.2 A Sufficient Condition for Well-Posedness and the Asymptotic Tracking Property
	1.3 Connection to Regularity
	1.4 A New Observable Regularity Criterion

	2 Existence of Strong Solution and the Asymptotic Tracking Property
	2.1 Notation and Preliminaries
	2.2 Interpolant Operators
	2.3 Well-Posedness
	2.4 Existence of Weak Solution
	2.5 Time Independent Bound on Data Assimilated Temperature
	2.6 Global Existence of Strong Solution
	2.7 Synchronization for General Type-I Interpolant

	3 Forward Determining Map
	4 Determining Map on the Weak Attractor
	4.1 Well-Posedness
	4.2 Weak Attractor
	4.3 Determining Map

	5 An Observable Regularity Criterion on the Weak Attractor
	5.1 Weakened Regularity Condition

	6 Appendix
	References




