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Abstract

In this paper, we study existence times of strong solutions of the three-dimensional Navier-Stokes equa-
tions in time-varying analytic Gevrey classes based on Sobolev spaces H®, s > % This complements the
seminal work of Foias and Temam (1989) [26] on H ! based Gevrey classes, thus enabling us to improve
estimates of the analyticity radius of solutions for certain classes of initial data. The main thrust of the paper
consists in showing that the existence times in the much stronger Gevrey norms (i.e. the norms defining the
analytic Gevrey classes which quantify the radius of real-analyticity of solutions) match the best known
persistence times in Sobolev classes. Additionally, as in the case of persistence times in the corresponding
Sobolev classes, our existence times in Gevrey norms are optimal for % <s< %
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1. Introduction

We consider the incompressible Navier—Stokes equations (NSE) in a three-dimensional do-
main © = [0, L]?, equipped with the space-periodic boundary condition. The NSE, which are
the governing equations of motion of a viscous, incompressible, Newtonian fluid, are given by

ot
V.-u=0,

du 1
— —VvAu+ u-Vyu+—-Vp=0,
0

u(x,0) =u0(x),

where x = (x1,x2,x3) € @, u(x,t) = (u1, uz,u3) is the unknown velocity of the fluid, u® =
(u(l), ug, ug) is the initial velocity, v > 0 is the kinematic viscosity of the fluid, p is the density,
and p the unknown pressure. The incompressibility constraint is manifested in the divergence
free condition V - u = 0.

Recently, several authors [2,16,18,19,44,49] have obtained “optimal” existence times, and the
associated blow-up rates, assuming they exist, for solutions of the 3D NSE in Sobolev spaces
HY, s > % In particular, in [49], by employing a scaling argument, Robinson, Sadowski and
Silva established that the optimal existence time of a (strong) solution of the NSE in the whole

space R3, for initial data in H®, s > ;, is necessarily given by

T (uo) 2
lluol 7

(1.2)

4
251

The optimality refers to the fact that if one establishes an existence time Which depends solely on
llugll s which is better than (1.2), i.e. has the form T > ”y with y < 2 , then the NSE is

™~ u
globally well-posed in H*. Observe that an existence time of the form (1.2) 1mmed1ately yields
the blow-up rate

1
lu@Ollas 2 ————=7 -
=1

where T, < oo is the putative blow-up time of ||u(z)| gs. It follows from the optimality of the
existence time that this blow-up rate is also optimal [49]. In the same work [49], the authors
obtained the following existence/persistence times in the space H®, namely,

1 1 5 3
T, 3 <5< bR S ;é bR
lluoll s
Tz | " ; (13)
5 S > -
llwoll 2

Evidently, the existence time is optimal for % <s< %, s # %, while the existence time for s >

%, though not optimal, is the best known to-date. The borderline cases, namely s = %, s = %,

were subsequently considered by varying methods in [16,18,19,44], including Littlewodd-Paley
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decomposition and other harmonic analysis tools, the upshot being that the optimal existence

time T ~ —L— also holds for s = %, while the optimal existence time in H>/ is still open.

luoll s

The purposHe of our present work is to investigate as to what extent the above mentioned
existence/persistence times (and the associated blow-up rates) hold if one considers the evolu-
tion of the NSE in an analytic Gevrey class, equipped with the much stronger Gevrey norm
which characterizes space analyticity, with the goal of obtaining sharper lower bounds of the
space-analyticity radius of the solutions. In fluid-dynamics, the space analyticity radius has
an important physical interpretation: at this length scale, the viscous effects and the (nonlin-
ear) inertial effects are roughly comparable, and below this length scale, the Fourier spectrum
decays exponentially [8,21,25,34,35,39]. In other words, the space analyticity radius yields a
Kolmogorov type dissipation length scale encountered in conventional turbulence theory. The
exponential decay property of high frequencies can be used to show that the finite dimensional
Galerkin approximations converge exponentially fast. For instance, in the case of the complex
Ginzburg-Landau equation, analyticity estimates are used in [20] to rigorously explain numer-
ical observations that the solutions to this equation can be accurately represented by a very
low-dimensional Galerkin approximation, and that the “linear” Galerkin approximation performs
just as well as the nonlinear one. Furthermore, a surprising connection between possible abrupt
change in analyticity radius (which is necessarily shown to be intermittent in [7] if it occurs)
and (inverse) energy cascade in 3D turbulence was found in [7]. Other applications of analytic-
ity radius occur in establishing sharp temporal decay rates of solutions in higher Sobolev norms
[6,46], establishing geometric regularity criteria for the Navier-Stokes and related equations and
in measuring the spatial complexity of fluid flow [14,31,38] and in the nodal parameterization of
the attractor [27,28].

In a seminal work, Foias and Temam [26] pioneered the use of Gevrey norms for estimating
space analyticity radius for the Navier-Stokes equations which was subsequently used by many
authors (see [6,11-13,24], and the references there in); closely related approaches can be found
in [15,32,33]. In this work, Foias and Temam showed that starting with initial data in H 1 one
can control the much stronger Gevrey norm of the solution up a time which is comparable to
the optimal existence time of the strong solution in H!. The Gevrey class approach enables
one to avoid cumbersome recursive estimation of higher order derivatives and is known to yield
optimal estimates of the analyticity radius [47]. Other approaches to analyticity can be found in
[29,43,45] for the 3D NSE, [37] for the Navier-Stokes-Voight equation, [22,23] for the surface
quasi-geostrophic equation, [42] for the Porous medium equation, and [1] for certain nonlinear
analytic semi-flows.

The (analytic) Gevrey norm of # in the Sobolev space H*®, which we refer to as the Sobolev-

1
Gevrey norm here, is defined by le*42 u|| s, where A is the Stokes operator. We recall that the
norms ||u|| s and || A%/ 2u)| 12 are equivalent for mean-zero, divergence-free vector fields [17]. In

1

case [|e*4? u|| gs < oo, then u is space-analytic and the uniform space analyticity radius of u is
bounded below by «. We provide below a brief summary of, and comments on, our results.

1
2

1. Assume that the initial data [|€04 ug|| s < 0o with B > 0; Bo = O corresponds to ug € H*.

1
In this case, sup,¢[o 7 |eBotPDAZ | s < 0o with 0 < B < % for T ~ ﬁ, % <
o2 up 27
s < % and T ~ + s > % (see Theorem 2.1). The quantity St captures the gain in
llefoA2 w2,

© O N o g A O N =



© 0O N o g A O N =

A OB A B A OB B A WO W W W WWNNNDNDNNDNRNDNDRN 2 o a2 s a2 o
N OO oA WD 4 O O 0N OO 0B WN 42 0O O 0 N o 0o & W NN 4 0O 0 0o N o o P~ w NN = o

JID:YJDEQ AID:10740 /FLA [m1+; v1.341] P4 (1-43)

A. Biswas, J. Hudson and J. Tian Journal of Differential Equations eee (eeee) esee—see

analyticity due to the dissipation. If we set 8 = 0, then this gives a persistence time in the
Gevrey class corresponding to Sg. Note that the time of persistence of the solution in the
Gevrey class in this result coincides with the optimal time of existence (1.2) in the range

% <s< % but is far from optimal in the range % <s< % and is also smaller than the best

known existence time in Sobolev classes in case s > % obtained in [49]. The case s =1 is

precisely the classical result of Foias and Temam [26], while this result for % <s< % was

obtained using semigroup methods in [10,11]. We provide a proof of this result using energy
technique, mainly for completeness, but also to illustrate that one can as a consequence,
adapt a technique from [21] to obtain an improved estimate of the analyticity radius, which
is possible by considering the evolution of Gevrey norm in H® with s > 1; see Theorem 2.2
and Remark 2.1. This provides one of our motivations for considering the evolution of the
Gevrey norm in higher-order Sobolev spaces.

. Subsequently, in Theorem 2.3 and Theorem 2.4, we improve the existence times in the

Gevrey classes given in Theorem 2.1 for s in the range s > %, s # % The existence time

in Gevrey classes obtained in Theorem 2.4 for % <5< % is optimal, i.e. coincides with (1.2)

while the existence time obtained in Theorem 2.3 for s > % coincides with the best known

existence time in Sobolev classes H® obtained in [49]. In order to prove these results, we
first obtain refined commutator estimates of the nonlinear term in Lemma 4.1, Lemma 5.1
and Lemma 5.2 which exploit their respective orthogonality properties. These estimates are
new to the best of our knowledge and are motivated by those in [5,9] obtained for the surface
quasi-geostrophic equations. Using these estimates, for initial data in H®, s > %, s # %, we

1
show that sup, (o 7) leP1A% u|| s < oo where T is given as in (1.2) in the said range of s (for
large data). It is worth mentioning that the differential inequalities for the evolution of the
Gevrey norms that one obtains in these cases are non-autonomous; estimates of existence
times of these given in Lemma 4.4 and Lemma 5.3, though elementary, may be new as well.
Moreover, in Corollary 2.2, we give an alternate proof for the persistence in the Sobolev
class H* for the entire range % <s< %, thus unifying the results in [49] and [16,19,44] and
showing that the case % is not a borderline in our approach. Furthermore, unlike in [16,44],
our method is elementary and avoids any harmonic analysis machinery such as paraproducts

and Littlewood-Paley decomposition.

. The study of blow up in Gevrey classes is of importance for the NSE as it was shown in [7]

that in certain situations, an abrupt change in analyticity radius (which in turn is measured
by a Gevrey norm) is indicative of a strong inverse energy cascade. The persistence time in
Theorem 2.1 (set 8 =0, By > 0) readily yields a blow-up rate provided there exists a time T

1
at which the analyticity radius possibly decreases from Sy (and consequently lePoA2 u () || s
blows up as t approaches T,). This is substantially different from the blow-up of a sub-
analytic Gevrey norm studied in [3,4]. As we show in Corollary 2.1, a blow-up of a sub-
analytic Gevrey norm can only occur if the solution itself loses regularity; whether or not
a solution loses regularity is precisely one of the millennium problems. In other words, for
a globally regular solution, persistence in a sub-analytic Gevrey class is guaranteed for all
times. However, this is not necessarily the case for analytic Gevrey norms. For instance, it
is not difficult to show that for forced NSE, there exists a body-force, and an initial data u
in a Gevrey class, such that the solution exists globally in H® while a Gevrey norm of the

1
form ||eBotht A2y, |lgs < oo blows up in finite time. This is due to restriction posed on the
solution by the analyticity radius of the driving force. To the best of our knowledge however,

-
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an example of such a phenomenon in the unforced case is unknown. Therefore it is of interest
to determine the blow-up rate in Gevrey classes even for solutions that are globally regular.
Although our Theorem 2.1 provides a blow-up rate, this may not be optimal for s > % At
the very least, the blow-up rate provided in (2.8) does not correspond to the best known
rate in Sobolev classes e.g. in [49]. We leave it as an open problem to determine whether
these rates can be matched. Although we obtain existence time results for Gevrey classes
that matches the existence times in [49,16,44] in Theorem 2.3 and Theorem 2.4, they are for

1
time-varying Gevrey classes defined by [|e#)4% u|| s, i.e. Bo =0, and therefore ug € H*. A
similar result on existence time for By > 0 will yield an improvement of the blow-up rate in
Gevrey classes. This is an open problem as well.

2. Main results

Before describing our main results, we first establish some notation, concepts, and settings.

. . 2w . . . . .
Using the notation ko = 7 define the dimensionless length, time, velocity, and pressure vari-

ables

=1
I
X
=)
=
~
I
<
X
(=48]
o
<
I
SN
I

A and V denote the gradient and Laplacian operators with respect to the primed variables. Hence-
forth, for simplicity, we assume that v =1, L =2m, p =1, and ko = 2% = 1. We have the
dimensionless version of the NSE as

9
a—L;—Au+(u-V)u+Vp=O, (2.22)
V.ou=0, (2.2b)
u(x,0) =u’(x), (2.2¢)

after dropping the tildes.
Moreover, we will focus on 2 = [0, 271]3, employ the Galilean invariance of the NSE, take u

to be mean free, i.e., /u =0.
. Q . . . . . . . .
In this paper, we are interested in investigating the existence times of strong solutions of
the three-dimensional Navier-Stokes equations in time-varying analytic Gevrey classes based on
Sobolev spaces H*, s > % The results vary as the value of s changes.

-
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2.1. Functional analytic framework
With Q = [0, 2713, we denote by LQ(Q) the Hilbert space of all L-periodic functions from

R3 to R3 that are square integrable on Q with respect to the Lebesgue measure and mean free.
The scalar product is taken to be the usual L2(£2) inner product

(u,v) = / u(x)-v(x)dx,

Q

and we denote
ol g2 = (u )2

The real separable Hilbert space H is formed by the set of all R3-valued functions u(x), x €
R3, which has the Fourier expansion

u(x) = Z i(k)e™ ™ (withii(0) =0),

keZ3\{(0,0,0)}

where the Fourier coefficients i (k) € C3, for all k € Z3 \ {(0, 0, 0)}, satisfy

i =10y, k-i(k)=0, forallk € Z*\{(0,0,0)} and [[ul7, = Y  |a(k)|* < oo.
keZ3\{(0,0,0)}

For s > 0, the space HS(Q) is defined by

H@=jucH:u= Y  a@e", uljsq =) k>l <oo
keZ3\{(0,0,0)}

For simplicity, we denote || - ||HS(§2) as || - ||s. For s < 0, the space H () is defined to be the dual
of H(Q). The I'-type norm of the Fourier coefficients is given by

lulps@= Y. kI,

keZ3\{(0,0,0)}

We write ||ul| r for |lu|| o. It is easy to see that F*(£2) form an algebra under multiplication and
FO(Q) is referred to as the Wiener algebra [8].

2.1.1. Gevrey class of functions
We say that a function u € C*°(2) is in Gevrey class Gev(a; 0) if

%
0™ (x)| < M (ﬂ) VxeQ, 2.3)

om

6
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where m = (mq, --- ,m,) € N" is a multi-index, m! = m1!---m,! and jm| = Z?:l m;. The ana-
Iytic Gevrey class corresponds to § = 1, in which case, the function u is real analytic with uniform
analyticity radius « for all x € Q. In case 0 < 6 < 1, the functions are called sub-analytic. For a
function u € H, its Gevrey norm is defined by

1/2

[
0 .
ull 2 = Ne** ully = R [ e TP I

keZ3\{(0,0,0)}

0
S wA2
lulls, o0 = 1 AZe”

where o > 0. The connection between Gevrey class and Gevrey norm is given by the fact that
(2.3) holds for all x € Q if and only if ||ulls,«:¢ < 00 [46,47]. In case 8 = 1, this is equivalent to
the fact that u is real analytic with uniform radius of real analyticity «. We will denote

Gu(s,a;0) = {u € H: |lulls,a0 < OO} )

and in case 6 = 1, for simplicity, we will write Gv(s, «) instead of Gv(s,«; 1) and we will
denote ||ulls,q:1 as ||uls,«. Clearly,

Gv(s,a) C Gu(s,;0) C H™(Q) forall 0 <6 < 1,s e R,m e R.
If u € Gu(s, @), then clearly
)] < e flullsq,
and therefore, the uniform analyticity radius « establishes a length scale below which the Fourier
power spectrum decays exponentially which in turn relates it to the Kolmogorov decay length

scale in turbulence theory [8,21].
The maximal analyticity radius for a function u € H® is defined by

Amax(u) =sup{a >0: ”u”oz,s < 00}.
One can check easily that A4, (1) is independent of s.
2.2. The functional differential equation

Let IT be the orthogonal projection from L? onto the subset of L? consisting of those functions
whose weak derivatives are divergence-free in the L? sense. A is the Stokes operator, defined as

A= —TIA. (2.4)
B is the bilinear form defined by
B(u,u) =TI [(u - V)u]. (2.5)
Then, the functional form of the NSE can be written as

du

o +Au + B(u,u) =0. (2.6)

© O N o g A O N =
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2.3. Main results

We will now present our main results. Here, we denote by c all the dimensionless constants
which are independent of s, while all the dimensionless constants which depend on s are denoted
by cs.

Theorem 2.1. Let u be a strong solution of (2.2) with initial condition u® € Gu(s, Bo)(S), for
some s > %, Bo>0,and 0 < B < % If||140||5,,30 < ¢, then sup, ¢ o) lltlls, go+pr < 00
If”’/lolls,ﬂ() > Cy, deﬁne

1
*=sup{T >0] sup [ePotPDA2y 1), < o0

tel0,7T]
We have
1 1 3
70 2)4_71 , 3 <s < b}
7> 1 lu ”s,/so 2.7
~ 3
—, s> 3.
1©13 g, 2

1
Moreover, if T* < oo, ||ePoTBOAZ (1) ||s will blow-up at the following rate

1 1 3
T> §<S<§

1 25—
2 k) 4
e PotBOAZ y )|y = 4 T70 7 . 2.8)

\S]IS8)

1
(T*—0)2

Proceeding as in [7,21], we can optimize over the choice of 8 to obtain a better lower estimate
of the analyticity radius.

Theorem 2.2. Let u be a strong solution of (2.2) with initial condition u® € Gu(s, Bo)(RQ), for
some ; <s<3 and,Bo, B>0. Whent €0, ")

8,
- e 2 u(0) ||, g
lulls, po+p: < T

2 i
2 () 5! ( e 1))

where

25 — 1 2
t*:s—zlog 1+ ﬁ

2 s
g 2 ()1 55!

Moreover, for the optimal choice of B = /2c¢s||u(0) || p ﬁo G, with ¢ being the positive solution of

— ﬁ log(l1+¢ 1 5 =0, a lower estimate of the analyticity radius is given by

© O N o g A O N =
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1
)\max(u(t*)) > Bo+ Cs————> -
lu(O)11,

Remark 2.1.Let up = )"y ey @(k)e™, 1 < ¢, with Y |ii(k)|* = 1 and observe that
llulls ~ N*. Then by Theorem 2.2 the lower estimate of the (gain in) analyticity radius is given

2s "
N 2s—1
this lower estimate improves in our case if one considers 1 < s < % However, one cannot take

Cs c
by ®__ . The lower estimate in [21] in this case is N—l, which corresponds to s = 1. Clearly,

the limit as s % in this estimate as ¢y — 0.

Corollary 2.1. Let u be a strong solution of (2.2) with initial condition u® € Gu(s, ro; ), for

somes>%,ro>0,and0<9<l.Let

[
T =sup T >0] sup [ u(r)|y < oo
1€[0,T]

If T* < oo, then as t /' TH, lim, sp: [|u(?)|ly = oo for any s’ > % Moreover, |u()|Gu(s,ry:6)
blows up at an exponential rate at T*.

Theorem 23 Let u be a strong solution of the Navier—Stokes equations (2.2) with initial condi-
tion u® € H*(Q), for some s > % Let 0 < B < L, and define

1
T*=sup{T > 0| sup [le#**u(r)|s <oo}.

t€[0.T]
(i) If
0 2s
u 4 2
dulls 5 e p% mm{l, 0y }
lu®ll L2
then
5
0 T2
. _ u
T*>c5m1n{1, ||u0||L21}<”0¢> .
lull 2
(i) If
0 2s
u 4 %
s <csﬁ5mln{l, T }
llu®ll 2
then

T* >min[2, 22/5],

5
5 : -1 Iu®lls \ ™ 2
where Z = cy,min {1, u” } ( .
s ! ” ”LZ ”u()”L2
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Theorem 2.4. Let u be a strong solution of (2.2) with initial condition ueH (), for some
% <s< % Let0< B < %, and define

1
T*=sup{T >0] sup [’ u()|ls; < oo

1€[0,T]
(i) If
0 Cs
(TR ——
2
then
c
T > 5 —.
[[uO "
(ii) If
0 Cs
1l < —
2
then
T* > min HN,Nl/Z},
c
where N' = 7s4
Juf 5

Remark 2.2. The differential inequalities for the evolution of the Gevrey norms leading up to the
proofs of Theorem 2.3 and Theorem 2.4 are non-autonomous and much more complicated than
that of Theorem 2.1. Consequently, finding an optimal g leading to an improved estimate of the
analyticity radius as has been done in Theorem 2.2 is difficult. Thus, it would be of interest to
find an improved estimate of the analyticity radius for s > % by optimizing over the choice of 8.

Remark 2.3. Following the technique presented in Theorem 2.4, we present in the corollary
below an alternate proof (i.e. different from the ones in [16,18,19,44,49]) of the existence

time/blow-up rate in spaces H® for the entire range % <5< % which in particular shows that

the case s = %, which appears as a borderline case in [16,18,19,44,49] is not really a borderline

in our approach.

Corollary 2.2. Let u be a strong solution of (2.2) with initial condition u® € H*(Q), for some
s € (%, %). Define

T*=sup{T > 0| sup fu(®)|s < oo}
tel0,7T]

Then

10
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T#> &

4
[l
Moreover, if T* < 0o, then

() s > ——=——. 2.9)
(T+ -7

The rest of the paper is organized as follows. Section 3 provides the background and setting
for our analysis. In Section 4, working on the velocity equation, we obtained new commutator
estimates of the nonlinear term in Gevrey spaces. Using these estimates, in subsection 4.1, the
existence time and blow-up rates have been obtained for ||u||Gy(s,g,+4:) When s > % s # %
We have also obtained an improved estimate of the analyticity radius for [|u||Gu(s,g,+gr) When
% <s< % In subsection 4.2, we improve the existence times in the Gevrey classes when s > %
In Section 5, working on the vorticity equation, we improve the existence times in the Gevrey
classes when % <s< % Section 6 is the Appendix which includes several proofs of several
requisite lemmas& propositions.

3. Preliminaries

We recall the definition of strong solutions from [51].
LetV=1ue HIIOC(Q), u is periodic, and V - u =0 in Q} and ug € V, u is a strong solution of
NSE if it solves the variational formulation of (2.2a)-(2.2c) as in [17,51], and

uelL?0,T; D(A)NL®0,T:V),

for T > 0. The following lemma will be used in this paper.

Lemma 3.1. [50] Let | < p < 00, if 51, sz<%, s1 452 >0, and s + 52 >

&z — L then
p T op e

flu v||s1+sg—;‘—,,p = CS],Sz,n,p”M”S],p”vllsz,p» (3.1

forallue Vg, , andv eV, .

In our current setting, we have n =3, p’ =2, p = 2. Since we mainly work in the Gevrey
spaces, we will need another version of the above lemma.

1 i
Lemma 3.2. In three dimensional spaces, for s, sy < % and s1+ s3>0, u=e*4%u; € H! and

1 .
v =4y, € H2, we have
ot 01l gy 30 < 0l 3 = Cops il allvn s (32)

Lemma 3.3. [44] If X < X'V and X (1) — oo ast — T, then

1 1y
X = <VC(T—t)) '

11
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Lemma 3.4. [49] If0<s; <3/247r < sy and u € H' N H%, then u € F" and

||M||FY <C||M||_3Y2 r=3/2)/(s2— Y1)” ”gg/z‘f‘r_sl)/(SZ_Sl). (33)

Lemma 3.5. [49] Suppose that the local existence time in H*(R?) depends on the norm in
HS (R3), with

/

Ts(uo) = ————.
lluoll H (R3)

Then

(5-2s5)/2s —5/2s

TY (MO) 2 Cs ||u0||L2(R3) ||u0||H3(R3)

In case the solution blows up at time T < oo then

[) ”(5 2s5)/5 —2?/5

lu(T _t)||Hs(R3) > csllu(T — L2(R3)

We also need the following nonlinear generalization of the Gronwall inequality, which applies
to the case of a nonlinear but positive vector field. For the proof, see Theorem 2.4 of [36].

Lemma 3.6. [36] Suppose that F (u,t) is a Lipschitz continuous and monotonically increasing

d
in u. Suppose that u(t) is continuously differentiable, and Eu(t) < F(u(t),t) forallt €[0,T].

d
Let v be the solution of Ev(l) =F(),1), v(0) =u(0), and define

T*=sup{t>0]|supv(t) <ooy.
[0,7]

Then u(t) <v(t) forallt [O, min{7T, T*}].

In addition to the previous lemmas, we will also need to make use of several standard inequal-
ities, which we present here for convenience.

Young’s inequality for products says that for nonnegative real numbers a and b and positive
P

b4
real numbers p and g satisfying % + % =1, we have: ab < e + —. We will frequently use
p q
2 2
Young’s inequality with p =g =2: ab < % + 5 Young’s inequality with € > 0 will also be
2 2
b
used: ab < ;l— + %
€
Holder’s inequality for sequences generalizes the Cauchy—Schwartz inequality. It states that

for p, g € [1, 00) satisfying % + %1 <1

= (Swer) (S

k=1 k=1

12
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The following energy estimate for the incompressible NSE (due to Leray) is essential, and
allows us to bound the L? norm of any solution of (2.2) by that of its initial data

t
Huawir+2/HVu®Wiﬂssﬂu%ﬁp (3.4)
0

4. Estimates on the velocity equation
We start from the functional form (2.6) of the NSE
u; + Au+ B(u,u) =0.

We can obtain the following estimates for the nonlinear term. The proofs of the following two
lemmas which provide the main estimates of the nonlinear term are in the Appendix.

Lemma 4.1. (i) For Vs > 0, and Yu € Gv(s + 1, &) N F°, we have

1
A2
<cslle* ull pollulls,ellulls+ia- (4.1)

1
‘ <B(u, u), ASe?2A? u)

(ii) For Vs > 1, and Yu € Gv(s + l,a)ﬂFl, we have

1 1
A2 2 A2
= colle™ ull pillul} o + csalle™ ull il ol as 42)

1
‘ <B(u, u), ASe>A? u)

and consequently,

1
2

1 1
A2 2 2, oA 2 2 2
<cslle®™ ullprllulls o +cso”lle* ullp llulls o + Ellullm,a. 4.3)

1
‘(B(u, u), AseZO‘Azu>

1
We also obtain the following estimates on [|e4” u/|| 12

Lemma 4.2. For all s > 0 and for all u € Gu(s, ) N L2,

1
2 .
e ull 2 < Velull g2 + Q) ulls.a-
4.1. Existence time for |ullGu(s, go+p1) When s > %, s # %
In the proofs below, we follow the customary practice of providing a priori estimates which
can be rigorously justified by first obtaining these estimates for the finite dimensional Galerkin

system, the solutions to which exist for all times, and then passing to the limit.

Lemma 4.3. When s > 0, Bo, B > 0, the solution, u, of (2.2) with initial data ul e Gv(s, Bo)
satisfies the following differential inequality

13

-

© O N o g b~ 0N



© 0O N O g~ O N =

DN NN NN 2 oA a o A a a a a a
o A W N - O © ©® N O o b~ W N =+ O

27

JID:YJDEQ AID:10740 /FLA
A. Biswas, J. Hudson and J. Tian

and taking inner product with A’ e2(Po+ANA

1
: 1
— BllAzePotBDAZ

2 2 2
5 77 105 o1 s F 151 opr

1
A2
< s le POt POAZ Y |l pollulls, porpellttlls+1, po-tpe-

Proof. Starting from the functional form of the NSE

u; +Au+ B(u,u) =0,

1
2 u, we have

dt

We can explore (4.5) term by term. For the first term,

1 1 1
<fz_b; A2 pn Al u) = S AL 2, g a i 2Ty
Ld s (gorpnat 2 L (BotBnAZ 12
ZEE”AM ully, — BllA+e ulls.

For the second term of (4.5), we can write it in terms of the Gevrey norm

1 1 1
<A”’ Asez(ﬂOWt)Azu) N (A%A%e(ﬂommzu, A%A%e(ﬂﬁﬂt)f\z“) = 11341, 0451

For the third term of (4.5), applying (4.1) with & = By + B¢, we have

1 1
’(B(u, u), Asez(ﬂo+ﬁt)Azu> < CS”e(ﬁoJrﬂt)A?

ull pollulls, po+pe llells+1, go+pt -

Substituting (4.6), (4.7), and (4.8) into (4.5), we have (4.4). O

Proof of Theorem 2.1. With 0 < 8 < 1, we have

1 1 1 1
'3||A4e(/30+ﬂl)A2 ””3 < 5 ||e(50+;‘5l)A2 ””?Jrl'

When s > %, we have

1 |
(Bo+B1)A2 (Bo+B1)A2

lle ullpo < cslle wlls+1-

Therefore, (4.4) becomes

15 2
EE”MHS,/SO‘HSI + §”U||s+l,ﬂ0+ﬂt < csllulls.pot+pellullsn pospe-

14

| | |
<d_u’ AS 2 PotpnA2 u) + <Au, AS g2 PotpnA2 u> + (B(u, u), AS g2 PotpnA2 u) =0.
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If ||lu® s, < 22, then - ||u||s fotpt = 0, llulls,py+p: remains bounded for all time and

leelly. o+ < llalls. o-
Now suppose O Bo > % Then we have the following cases.

(1) <s<j3 App]ymg Lemma 3.4 on e(ﬁ0+ﬁ’)A2 uwithr =0,s1 =s,and sp =s + 1, we
obtain

1 1
||e(/30+ﬂl)A2u”F0SC”e(ﬂoﬁSl)Az ”5 1/2||e(ﬁo+5f)A2 ||3/2 s (4.9)
Therefore, (4.4) becomes

1d s+1/2 5/2—s
5_” ” /304,_/3["‘ ”””3+1 ﬂ0+,3[<cs||u||sﬁ0+ﬁ;” ||s+1,ﬂ0+;3t'

Apply Young’s inequality and after simplification, we have

d 2Y+3

d_”””s Bo+Bt = Cs”u”S Bo+Bt*

Considering the blow up time T of |ulls gy+p:: if T* < oo, then, as ¢t / T*, applying
Lemma 3.3, we have

1
c
le PPN U@ty s > ———5
(T* —1)~
This is equivalent to
s Cs
0| 3=
10| %]

(2) s > 5: We have

1 1
e PotBDAZ || o < ey || POTADAZ y |

therefore, (4.4) becomes

d 2 1 2 2
E”u”s,ﬁo+ﬁ[ + §||M||s+1,/30+,3; = ||”||s,ﬂ0+ﬁt||”||s+1,ﬂo+/3t~

N =

Apply Young’s inequality and after simplification, we have

d
Tl ot < sl gy

Considering the blow up time T of |ulls gy+p:: if T* < oo, then, as ¢ / T*, applying
Lemma 3.3, we have

15
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1
2 C
leBHPOAT (o) g > ———.

(r*—n2
This is equivalent to
Cs

O,

*

Proof of Theorem 2.2. We start from:

1
_ B ATeBotBnAT 2

1d 2 2
EE”M”s,ﬂo.i_ﬂt s tllullir go+pe

1
A2
< sl ePorEOAZ | collulls, pot e llutlls+1, po+-pe -

Applying (4.9), we have

1
. 1
Bll AT PotPOAZ 2

5 a7 10 e — s Flleellsy g+ e
<c

s+1/2 0 15/2s
slleels oo Iy o

Journal of Differential Equations eee (eeee) esee—see

(4.10)

1
1 !
Since [| A% FOAZ 1% < lully g4 pelllls+1.60+p:- applying Young’s inequality, we have

A B 2
Bll Ak Br+p0A% ully < SNl v+ 5 ||M||s+1,ﬂo+ﬂz~
Moreover,
2(2s+1)
s+1/2 5/2—s pre= 2
[|u ||sﬂ0+/3t” ||s+1 Bo+pt = CS”u”Sﬁo-‘rﬁl+§”u”5+1yl30+ﬂf'

Therefore, (4.10) becomes

2025+1) 2
1d S

2
5 210 g < esllll oL+ 5 1

or equivalently, since ||ulls,g,+g: 7 O for all > 0, we have

d et P2
E”u“s,ﬂoﬂ‘}t < csllullg ppe + 7||M||s,,30+,31-

2

Multiplying both sides by e~ ﬂT’, we have

2 2

2 Bl 1454
—<€ T ulls, po+) < cse™T (€™ T Nully, porpr) I

Consequently,
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2,
e 2 Ju(0)ls,
luelly. o1 < Bl — @.11)

2 e
(1 2 ||u(0)||§°ﬁ01 (ezzf’lf _ 1))

This implies that ||u||s,g,+p: is finite on the interval [0, t*), where

25 — 1 2
’ log| 1+ p

27 :
& 20, ()] %!

*

Choosing ¢ = %, then the associated analyticity radius A is

r* 25 — 1 2
p =B+ i log| 1+ P

4
g 2, ()17

A= Bo+

The value of 8 that maximizes A is given by

— 2 )17,

where ¢ is the positive solution of the equation

1 1
——log(l+¢H+——=0
sz los+e)+

The corresponding analyticity radius at t = % is
1

h=Po+c(2s —1)————. O

MO~

Proof of Corollary 2.1. Assume that T+ < co. Then clearly

limsup [lu||5, .0 = 00. (4.12)
t /TH

Assume that lim, »7: |u(t)[ly # oo, then, liminf, ~7: |lully < oo and there exists a sequence

{tj}?il with t; / T# and lu(zj)lls <M < oco. From Theorem 2.1, it follows that there exists
Ty > 0 such that

sup lu(tj +8)lls,pr = Ky < 00. (4.13)
te(0,Ty]

Choose t;, satisfying ;, < T+ <t;, + Ty Let 28 = T* — t},. Then, due to (4.13), we have

17
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sup  u sy uo < Knm, (4.14)
1€ltjy+8,T%)

where ag = 83. Observe now that for any s, s’, rg, a9 >0 and 0 < 6 < 1, Vv € Gu(s, ap), it’s
also in Gu(s’, ro; ). We have

”U”s/,ro;e =< Cx’,s,ro,oto”v“s,oto' (4.15)

From inequalities (4.14) and (4.15), we obtain a contradiction to (4.12). Therefore,
lim, ~7¢ lu(@®)lly = oo,

Consequently, due to [4], the subanalytic norm will blow up exponentially. O
4.2. Existence time for |ullGu(s,gr) when s > %

We will need the following two lemmas to proceed.

Lemma 4.4. Consider the differential equation
d 5 _3 5 _
E=eve T e (B0 T e (BT e (BT (4.16)

with initial condition ¢ (0), for s > %, 0<B< l, and the local existence time Ty < oo.
4s

When £(0) > ¢, 8~ % min {yzz——s % ] it holds that

. S
csmln[yZSfS,y ]

T, > S (4.17)
)
_4s 25 _2s
When ¢ (0) < cg8~ 5 min {y 5,y s }, it holds that
7, > min {7, 25}, 4.18)

5
csmin{ym, y‘l}
LO)F

where Z =

The proof of the above lemma is provided in the appendix. In the next lemma, we establish
the crucial differential inequality associated to the evolution of the Gevrey norm.

Lemma 4.5. When s > % and 0 < B < %, the solution, u, of (2.2) with initial data u e HS

satisfies the following differential inequality

d | R 2 S50
E”u”s,ﬂt Scsllulls,,g,zs lull, 2> +cs (B2 llully g,

1+2 23 -
+es (B ulls g lull 2+ es(BOP 7 lully g, (4.19)

18
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1
2

Proof. Taking inner product with A%e?#4% y; of the NSE and applying (4.3) with o = ¢, we get

| =

i 1
lel? g — BIATP A% ul) + )2y g, (4.20)

| =
QU

t

1 1 1
A2 2 2.2 A2 2 2 2
< csllePull il gy + e B2 NP Al S gy + SNl g

1
BtA2

i 1
When 8 < % applying the Poincaré inequality, we have ,3||A%e'3’A2 u||? < 3 lle u||f+1.
Therefore, (4.20) yields
2 Az 2 2,2 AT 2 2
~—lull} g < cslleP 2 ull prllull} g, + e B2 NP A ull3 lull? g, (4.21)

2dt

Applying Lemma 3.4, in (3.3), and taking r =1, s; =0, and sp = s in (3.3), for % < s and
u € L, N H*, we obtain

5
lullpr < cllull, 3 llulls

bltn

S—

1
Replacing u by ef'4% u, it follows that

1 Io_s 1 s
P A% ull 1 < clle? P ull,, > P4 ulf . (4.22)
Squaring both sides of (4.22), we have
ﬁzA% 2 ﬁtA% 2-3 ,szA% 2
le” " ullpr = clle™ " ull,, " lle” " ully . (4.23)

Substituting (4.22) and (4.23) into (4.21), we get

245 243

1 5 1 5
tA2 1= 2.2, BtA2 2=%
PATUN L 5 lully g + e B2 NP A 0wl lully 5 (4.24)

1d
=—ull§ g <cslle
Sl gy S sl

When s > %, 1— 25—S > 0, we have (a—}—b)l’zis < cs(alf% +b1*2%) fora, b, ¢ > 0. Therefore,
applying Lemma 4.2, we have

1 5 5 1 5
tA2 1=75 1-3 =3, Az 1=%
1P A ull 5™ < ellull ™ +es (B 2 (1P 4 ully . (4.25)

Similarly, since 2 — % >0, (i.e. s> %), we obtain

ﬁzA% 2-32 2-3 25—5 ﬂtA% 2-3
lle ull 2* =csllull,,” +cs(Br) lle ulls *. (4.26)

19
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Substituting (4.25) and (4.26) into (4.24), and after simplification, we have

2+ _
|mmm qwmmnnyh+qwo‘www,
+qwnnwwmmm +q@¥“%ﬂ@p
which leads to (4.19). O

Proof of Theorem 2.3. From Lemma 4.5, we have

d _3
mwmm<qwmmnwyh+qwo‘wmw,
ey Bl s + e (B ul

S
Lety = ||u0|| % . Using the energy estimate (3.4), i.e., lu(¢)||;2 < ||u0||Lz we have

d _3
77 1lls.pr <Cv||”||”3, y tes(Bt) leullg,g,

+cwmnmumy—uwmﬂSWmum

We will complete the proof using Lemma 3.6. Let ¢ (¢) solve the differential equation

ﬁz—cy#+%+qwo“n F e (B2 YRS o (BP0,

with £(0) = go = [|u® 5.
Defining the local existence time of ||u||5, g to be

T, =sup [t >0]| sup ”u(r)”s,ﬁr < OO} s
rel0,t]

and the local existence time of ¢ to be

Ty =supyt>0] sup [{(r)] <oo.
ref0,z]

Then, using Lemma 3.6 we can say that £ (1) > ||lu(t)|ls, for all ¢ € [0, min{T, T,,}], and
hence conclude T, > T;. Moreover, we assume T, < 00, so Ty < 0o (actually, we can see this
easily from the differential equation of ¢). To obtain a lower bound of T;,, we will now analyze
T.

From Lemma 4.4, when 0 < 8 < l, we have the following.

Case (i): In case

20
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_ 2

2 ds —B5
z . 0 0
6l = ¢(0) = e~ min {55,y ~% | = ¢ smm{nu AP }

ie., if

14Ol

1401 .2

_2
> e mm{l,nuonL; }

it holds that

5
51
5 . y
csmin{ym, y‘l} csmm{||u°||L2, ||MO||sz }
T, > T{ > 5 = 5
OB )

5
0 T2
. 011 { 1€l
=comin {1, 117} (o)
10,

1
2

Denoting the maximal time of existence of ||e#’47 u||; to be T*, we have

_35

0 ulls \ %

T" > c;minql, ||lu || o .
[uO]l 2

Case (ii): In case

_ 25

0 25 z _d 0 0~ 25>
100l = £0) < e~ min [y 35, = | = ™% min 12, 1007 |

ie., if
0
[Zag(B
110l 2

_2s
<3 mm{ 111, ,° }

it holds that

T* > min [z, 22/5} , 4.27)

5
- 0 — 3¢
WhereZ=csmin{1, ””O”Zzl}( [ ) %

11,2

5. Existence time for [|u||Gy(s,5r) When % <s< %

It will be more convenient here to study the evolution in Gevrey classes using the vorticity
equation instead of the velocity equation. As we will see below, this will enable us to avoid the
borderline of the Sobolev embedding encountered in [16,18,19,44,49]. The equation for evolu-
tion of vorticity w = V X u is given by

21
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w;+ Aw+ B(u,w) — B(w,u) =0, (5.1
() =w(x,0)=V x u(x). (5.2)

Here, the operators A and B are defined in (2.4) and (2.5), respectively.
Recall

A2
lolls,e = e ol

Since ||wll5,¢ = llull5+1.o, We are taking s = § 4 1. We have the following estimates, proofs
of which can be found in the Appendix.

Lemma 5.1. For —% <5< % and w € Gv(s + 1, ), we have

1 ~ ~
2 §+3
‘(B(w u), ATe?A? ) <csloll;,} ||w||s+fa (5.3)
Lemma 5.2. For —% <§< % and w € Guv(s + 1, ), we have
‘(B(u,w), AT A > <ol o ||g+fa +esallol, oo ||g+1 o (5.4)

We will also need the following lemma concerning existence time of a non-autonomous dif-
ferential equation to proceed the proof of which is provided in the appendix.

Lemma 5.3. Let X (¢) satisfy

d
X = e X\TTE 4o (BT X, (5.5)

with initial condition X(O) <5< 2, 0<pB< —, and the local existence time Tx < 00.
Cs
When X (0) > ————, we have
(B

2+1’
2

Cs

X(0)Ti%

When X (0) < we have

2+1’
2

Tx >min{Q, Ql/z}, (5.7)
cs

where Q = ————
X (0)+% Eux

We can now study the existence time of the solutions of the NSE in the Gevrey spaces when
% <s<3 FlI’St we have the following Lemma.

22
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Lemma 5.4. When —% <5< % B = 0, we have the following differential inequality

~ 5 ~
2 + -5 5—S
_E”w”iﬁt 6||a>lls+ aT IlelsH Bt <cs||w||A B IIwIIAH pr +csf3t||a>||5 Bt IIwIIA~2

2 Lpt

(5.8)

Proof. Taking the inner product of (5.1) with A¥e2f! Al w, we have
<a) Avezﬂm% )—l—(Aa) Ayezﬂ’A% ) (B(u w), A’e 26142 ) (B(a) u), ASe 26142 >
=0. (5.9

Similar to the calculation in Section 4, we have

< 1 1d
§ 2BtA2 _ -« 2 2
(w,,A e w) = 5 ol g = BlolZ,y 4,0 (5.10)
and
N 1
(Aa), Asew'“w) = lloll3, ) g- (5.11)

Applying Lemma 5.2 with « = B¢ and combining (5.3), (5.4), (5.10), and (5.11), the estimate
of (5.9) becomes

3_< 5
2 —S 5—S
27 Ilwlls g~ Blolz ) 5 + ||w||s+1 g = Cs”“)”S pr ||w||s+1 pr +C;,3t||w||s pr I|w|I2+1,ﬁ,- ]

Proof of Theorem 2.4. For % <s< %, ie., % <5< %, we consider 1 5 < S <3 3and§ = 2, sepa-
rately.
Case (1), 4 7 <$ < : Using Young’s Inequality, we have

3+25 3-25 ?+§:
cslloll 1017, g < cslloll ™ + 71013 gy
and
1+2§ 5-2§ 1+2A ’
csBtllol; 5, ol ly 4 <Cs(ﬂt)2‘ ' Ilwlls P Z”w”§+]”3['

Taking 8 < 5 applylng the Poincaré inequality, we have

Bllwll* < l||w||g
§+%,ﬂl ) s+1,B8t"
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Therefore, from (5.8) we deduce

342§ 4 5. 1423

d LA g
2 1425 = %1
77 1@lls e = cslloll; g +es(BOTT ol; 5 -

After simplification, we have

d 1+ 4 I e
—llolls pr < cslloll; 4 Cs ol g .
o lollspr < csllwlls g, +es(BOTTwll; 5 (5.12)
Let X(t) be the solution of the differential equation
d 1+ S
—X(t) =c; X TS 4 c5(Br)F1X BT (5.13)

dt

with Xog = X(0) = ||°|);. Then, using Lemma 3.6, we have X () > lw(@)lls,p: for all ¢ €
[0, min{Tx, T,,}]. Here, Tx and T,, are the local existence time of X and ||w||5 g;, respectively.
Moreover, we can conclude that T, > Tx, and we assume T, < 00, also, Tx < 00.

From Lemma 5.3, when 0 < 8 < l, we get the following.
Case (1a): When

14l = 10’5 = X (0) >

s
2541 T 25—1
2

it holds that

Cs Cs

T,>Tx > —= —. (5.14)
XOT= o0 7
s

Considering the existence time of ||wl|5 g; (i.e., [lu|ls,,): T*, we have

Cs C
T*>Tx > s = . (5.15)
5 25—1
il AR 70

f2

Case (1b): From Lemma 5.3, when

Cs Cy
161l = 0°lls = X (0) < —37 = —5
B (B
it follows that
Cs Cs Cs Cs
T, > Tx > min = —, ———— ! =min - — (5.16)
X X(O) 1 IOl Ol
N N
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In conclusion, for Case (1ii), we have

. c c
T* > min g — g >
o1 |
®l1 255 101 7
Case (2): when 5§ = %, ie. s= %, (5.8) becomes

1d 2 2 2 2 2
sl = Blolf g el ,, <cslol} ol 5 +cbiloly glol} - (617)

Comparing the terms on the right hand side of (5.17), we can expect that there is a region
(when ¢ and ||w||% pr are both small), the term c§,8t||a)||% B ||cu||23 B can be absorbed by ||a)||23 Bt
' ’ 2 2

(919

Let ¢ =

and let 1€ as the solution of ||w||1 ,, = —. (If [|w]||1 ,, does not blow up, then
Cs Bt 7:Bt
the Theorem holds. Assume ||w|| 1 i blows up, then such 19 exists.)

When 0 <t < t<>, we have

¢
lolly 5 < 7= 0l 4 <

’

4C§,3t

and consequently, from (5.17), we obtain

linwnz — Bllwl? 4 +lol3 . <cloll , ol + Lol
2dt" "3 LAt 360 = SR p g B T g RS e

When g < %, apply Young’s inequality to the above inequality and simplify it, we have
L}, <csllol = Lol 4, <clol
Sopr = SN pe T g Vg pe = SSUE

Denoting Y () = ||a)||% g then we have

d 3
=Y <ay (5.18)

The local existence time of ¥ is: Ty =sup {7 > 0| sup |Y(r)| <oo
rel0,t]

We have ¢ < Ty <oo,and when 0 < ¢ < ©, we compare Y (t) with ¥ (¢), where, ¥ (¢) is the
solution of

Ly = (5.19)
— vy =c¥, .
dt N

with ¥ (0) = Y (0) with local existence time Ty, also Ty < oo.
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Applying Lemma 3.6 on (5.18) and (5.19), we have

Y(t) < ¥ (1), forallr € [o, min{to, Tx, T,,,}].

9 v

¢ ¢
Denoting the interception point of v (¢) with A as ty, we have: ¥ (ty) = . Moreover, ty <
v

0 < Ty.
Solving (5.19), we have

() =W 0) 2 — ;)2 (5.20)
Therefore
WO —citg) 2=
by

After simplification, we obtain
Y (0)7% — 5ty =& 215 = &5 + oty =Y (0) 72

This is similar to the result in (6.25) with § = % We follow similar procedure as in Case (1)
and obtain the results on the existence time. O

Proof of Corollary 2.2. From Lemma 5.4, when — ; <5< % we have the following inequality

542 - -
looll?, B — Bllol? + IlelsH pr = CsllwllA Bt ||60||3+1 Bt +Cs,3t||w||5 Bt || IISH Bt

2d S+ Bt

When we consider the Sobolev space, we have § = 0. Applying Young’s inequality on the
above inequality and simplify it, we have

3425

d 2 1+25
s—llol; < cllel; .

Applying Lemma 3.3 and considering the existence time T of |lw(t) |5, we have

+25

1425 —
lo(T* = D)lls > cst™ 7 = o)z > s (T —1)

If wetake s =5+ 1, so % <s5 < %, it follows that

_ 1428 + _2s1
lu@lls = llo@®)lls > c;(TF =)~ F >c(TF—1)" "7 .

This is equivalent to

i Cs
T > 7y O

[luO)| &

26

© O N o g b~ O N =



© 0O N O g~ O N =

- A
N = O

13

15
16
17
18
19
20
21
22
23

33

43
44
45
46

IN
hej

JID:YJDEQ AID:10740 /FLA [m1+; v1.341] P27 (1-43)

A. Biswas, J. Hudson and J. Tian Journal of Differential Equations eee (eeee) esee—see

6. Appendix

Proof of Lemma 4.1. (i) Let us start by observing

1 1 1
(B(u, u), AseZaA2u> = <AS/2601AZB(M’M)’ As/ZeotAzu)'

1 1
We just need to estimate the term ||A*/%¢*4” B(u, u)||;2. So we consider I = (As/ze‘m2 X

B(u,u), w), for an arbitrary w € H with ||w|;2 = 1. (In fact, we may take w € Gv(s, ), and

then pass to the limit in H. Accordingly, let w € Gv(s, @) with ||lw|[;2 =1.)

Sl s
<A2e"‘A2 B(u,u), w) = (B(u, u), Aze%A? w)
=i (- din—j) @ bop) k| e
J.k
=iy (k-diej) @ - gkl e,
J.k
since iix—; - (k — j) =0.

The rest of the proof follows from the proof of the first inequality in Lemma 3.1 in [49]. We
also use the triangle inequality on the exponential function, namely,

ookl < galk—jlgalil

(ii) Starting from the relation

1 .1 T
<B(u, u), AS e2aA? u) = (Afe‘“‘2 B(u,u), Aze%4? u> ,
s l s l
note that since (B(u, A2e¥4%y), Aze%A? u) =0, we have

1 s 1 s 1 s 1
(B(u, uw), Asez"‘Azu) = (A2e°‘A2 B(u,u) — B(u, A2e“4 u), Aze““u) . (6.
We need to estimate
s l S l

|A2e%A? B(u,u) — B(u, A2e%4 7 u)| ;2.

Let us consider
s 1 s 1
I = <A76“A2 B(u,u) — B(u, A2e%4” u), w) ,

for [[w]l; 2 = 1. (As before, taking w € D(Gv(s, o)) with ||w]|| ;2 = 1, and then pass to the limit.)
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Using the Fourier expansion of u&w are given by

u= E wje*, w= E wrek .

JEZ3\{(0,0,0)} keZ3\{(0,0,0)}

It follows that

1 . 1
(A’Ee"‘Az B(u,u), w) = (B(u, u), A2e42 w)

=i (j-dik—j) @bkl e,

J-k

and

1
(B(u, Az ), w) =i Z(j Sl - W_p)]j eV
Jik
.. . . . A A oA s alk
Combining the above two equations together, we have [ =i Z(] dg—j)(Uj-w_g) (|k| s oIkl _
.k
1[5 e®l |). Using the reality condition w_; = Wy, we obtain an estimate for I given by

1115 37 1l g i |l e — et 6.2)
J.k

Define f by f(x) = x*¢**. Then f’(x) = sx’"1e®* + xSae®*. Taking n =alj| + (1 — a)|k|,
where 0 < a < 1, then 5 is between |j| and |k|. If |k| <|j]|, then |n| <|j| < |j| + [k — j)|; if
|7l < k|, then |n| < |k| <|j|+ |(k — j)|. Therefore, we have 0 < n <|j|+|(k — j)|. Also, when
s > 1,5 — 1> 0. Therefore, after applying the mean value theorem and the triangle inequality, it
follows that

|k |S eIkl — |j|Se“‘f"\ =1£' Ikl — 151
<If ik — )

Sns—leom + nsaean

[(k = j)I

1 e s + a1k = ).

Replacing n by |j| + || with [ =k — j, we have
kfre ¥ — e (6.3)
< (111D e eV (s + | j| + atll]) |11
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Substituting (6.3) into (6.2), we can refine our estimate for /

(<Y Gl e 1L+ 12D eI (s (| ]+ 12D) 1]

L

J

=5 3 gl by 11171011+ 1" el

Lj

oyl b 1117+ 1) e Te!

l

J

AA A o as—1 -1 i el
<y Y laglld e 1111 e et

Lj

+esa Y arldlb 1P+ 11 )e e

L,j

A A A . i !
<co Y lallag b1l e

Lj

+esa Y (gl b 1 e eV
Lj

. il A I A oA
<co > 1ile a1y 1 e b |
j l

. il A 1 1A 1A
+osa Y 1jle Va1 e e iy iy |
J l

< csllullsallwlz2 Y 1i1e i1 + csarllullssralwllzz 1l iy

J
1

J
1

A2 A2
= csllullsallwlp2le®” " ull pr + csallulls+r,olwl g2 1€ ull 1.

Therefore

1
’(B(u, u), Asez‘””u)

1 1 1
M bl s b3 s b3
= A2¢“? B(u,u) — B(u, A2 u)|| 2 - ||A2e%A7 || 2

<cglle*?

1
2

2 A
ull prllullyy + csalle”

1
2

ull pillulls+1,allels,o-

This establishes (4.2). Moreover, after applying Young’s inequality, we obtain

csa|le

1
aA2

2
ull prifulls+ialulls,e < csa®lle

29
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Therefore,

'(B(u, u), Asez"‘A% u)

which is precisely (4.3). O

1 1
A2 2 2, @Az
<cslle®  ull prllully o +csa”lle®

2 2
ulerllwllse + 5 1ellssr o

Proof of Lemma 4.2. For Vm > 0, if 0 < a|k| < 1, then ¢*¥l < ¢, and if a|k| > 1, we have
ekl < (ak|)™ e k!, Therefore, for V¢ > 0 and k, we have e < e + (a|k|)"e* and 2 <
e + Qualk|)" >,

Taking m = 2s, it follows that

1
e aiffs = 3 <Z(e+<2a|k|>% 200 i 2

=D _eliwl + Y _QalkD> e Mjay 2.
k k

Since va + b < /a + /b, for a, b > 0, we have

NI-—‘

fle*”

u”LZ <\/Z€|Mk|2+2(2a|k|)zsezalk|Mk|2
s\/Ze|ﬁk|2+\/Z(zmknzs(ﬂa'k'muz
k k

= Vellull,2 + /<2a)2s D k|2 2k |2
k

1
= JVelull 2 + Qa)*[|A2e* A7 u| 2
= Vellull 2 + Qo) ulls.q. O

Proof of Lemma 4.4. Comparing the terms on the right hand side of (4.16), we can expect that
there is a region (when ¢ and ¢ are both small) where csy§1+257 is the dominating term among

. . . . . S
the four terms on the right hand side. In order to find this specific region, we compare ¢y ¢ '+
with the other three terms (note that c; is positive).

1. Comparing cs)/{“r% with ¢ (,BI)S_%§23
2s
Cser

NGO

if ¢ y;“”b > cs(B1)*~ 2; equivalently, ¢ <

2. Comparmg eyt with Cs(,Bl)2 2145

if ¢,y ¢ 1T > ()P y R, equlvalently, (< ——%-
v (B) B
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3. Comparing csy§1+% with ¢s(81)* 3 ¢3:
2s
Csym

2s(2s—=3) °

(1) 5

if csyg'H'% > ¢ (B1)* 7323, equivalently, ¢ <

Therefore, if

4s—5

. & 23(2—3) . 2 2 _2s . 1 1 1
¢=eomin{p=, g%, g7 55 L omin fy 2,y 7%y E5]  min ety
t

1+3

then the first term (csy ¢ ) is the dominating term among the four terms on the right hand side

of (4.16).
When s > %, we have 4?5 < w < 5. Therefore, when g < 5

VRN [N T 1Yo 1)
B75 =miny 77, 75, BT ES L

Denoting
- 4s 2s 2 2s
C:CA,B Smln{)/Zs—S,y ,y® }_c_s Smln[VZSS y 5}
1 1 1
WhenO <t < 1: ﬁzmln 5 Tk o3 .Whent>l.7=mln S TE ey
£ P ts 174550 t P s 174550

From (4.16), we observe that ¢ starts with positive initial data and is an increasing function

c

Moreover, since ¢ /" oo as t 7 T, it will first intersect either the curve —— or the curve t_ for
t 5

some #; € (0, T;). We have the following cases.

c
Case (i): when ¢ (0) > ¢, then (1) > ¢. In this case, ¢ (¢) first intercepts with the curve of —-.
ts
Denoting the interception point as #;, we have 0 <7, < 1.
¢ 5
Therefore, when 0 < ¢ < ;, we have {(f) < —-. (csyg““’f) is the dominating term among

15
the four terms on the right hand side of (4.16). It follows that

dg 5
o < degytita, (6.4)

Moreover, when 0 < t < t,, we compare ¢ (t) with ¢ (t), where, ¢ (¢) is the solution of

d¢ 5
o =deyye'ta, (6.5)

with ¢ (0) = £(0).

Applying Lemma 3.6 on (6.4) and (6.5), we have: £ (1) < ¢(1), forallz € [0, min {z,, Ty, T }].
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It follows that there exists a #,4 that

¢
4s °

P (tp) = (6.6)

U

Iy

Since ¢ (¢) < ¢ (t), we conclude 0 < 14 < f; < 1. Thus, the following relation holds: 7y < t; <
T;.
Solving (6.5), we have

B() = ($(0) T —cyy)”3 . 6.7)

4s

Combining (6.6) and (6.7), it holds that: ($(0)™ — ¢,y14)” 5 =1, ° .

After simplification, we obtain: (;5(0)_25_: —csyty = EE_SS t¢2) .
Therefore

.5 _3
E5 13+ ety = p(0) 5. (6.8)

Since t4 < 1, i.e., t¢2 < tg, from (6.8), we have: ¢(O)*2% < (5575 + csy> ty.
Therefore

H(0)" 3 < ét¢, (6.9)
C

1 =5 . - 4s . 25 2s
where = =2 max {CT , csy}. Since ¢ = ¢;f~ 5 min {y x5, y" 5 }, therefore
c

1 ~ 5
Since B < 1, we have — :csmax{yfm, y],i.e.,é:csmin[ym, )/71].
¢

From (6.9), we have

e csmin[y%, y’I]
lp > 5 — 5
¢ (0)2 £(0)z
Therefore
. 5
Cg mlH{J/ZS*S s y_l}
T >ty > .

OB

S
csmin{yb_—S, y_l}
< .
¢(0)x

Case (ii): when ¢£(0) < ¢, if £(1) > ¢, same as Case (i), we have Ty > 15 >

32
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~ . . . . c . . .
If ¢(1) < ¢, in this case, ¢(¢) first intercepts with the curve of s Denoting the interception

point as f;, we have t; > 1.

d
Similar to Case (i), we have: when 0 <t < #;, d—i < 4csy;'1+%. Also, when we consider
¢ (1) as the solution of
d 5
P e,y E, (6.10)

with ¢ (0) = ¢(0), we have: £(1) < ¢(¢), forall € [0, min {t, Ty, Ty }].
Moreover, ty < t; < T;. If 0 <ty < 1, same as Case (i), we have

5
csmin{ym, y_l}

T >ty > s
¢(0)2
If 14 > 1, then
¢
d(ty) = —. (6.11)
T
Solving (6.10), we have
_3 _2s
@)= (@O0)" > —csyr)” 5. (6.12)
Combining (6.11) and (6.12), we have: (¢ (O)_% — Cy)/t(p)_%s = 5t¢ﬂ'.
After simplification, we obtain: ¢(O)*% —Csyty = E%tg/ % Therefore
&) heyty =¢(0) %, (6.13)

Since t4 > 1, then t¢,5/2 > 1y, from (6.13), we have: ¢(0)_% < (55_YS + csy> t¢5/2. Therefore

1
P(0)F < Et¢5/2. (6.14)

Following similar analysis as Case (i), we have c= ¢y Min {y 5 , y_l } and

&22/s csmin[yk%, y—Z/S}
T, > 1y > = ;
¢0)s 2(0)s

Therefore, for Case (ii), we have

T; > 1 > min {7, 2%,

33
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cémln{yZSS Y- }
where Z = O

O

Proof of Lemma 5.1.

[m1+; v1.341] P.34 (1-43)
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1 P co
‘(B(a), u), AsezaAza)>‘ = ‘(AZeO‘A2 B(w,u), AZeD‘AZa)>‘

When —% <5< % applying Lemma 3.2 with s; = =5 and s, = =5, we have:

2
Vulls o < cilloldis
4 ’

1425

2
Furthermore, lo]3.5: , < csllollz; lloll;]

1
‘(B(a) M) AS 200A2 )

Proof of Lemma 5.2. Starting from

< llo-Vulsollolsq-

3+25 3+25

3-8

fila . Therefore, (6.15) becomes

3425 3-2§ 2v

<clollg, lol;;] O

S+1,a°

_ 1 . | . 1
(B(u,a)), Asez‘“ﬂw> = (Aieo‘AjB(u,w), Aie“A7w> .

Since (B(u,Aze““w),Aze““w)

=0, it follows that

< 1 s 1 s 1 s L
(B(u,a)), Ase2°‘A2a)> = <A76“A2 B(u, w) — B(u, A2e%4* w), Afe““w> =P.

Furthermore

1
(A2e"‘A2 B(u, w), A3 A%,

and

- 1 . 1
<B(u, Az ), Afe“A7w>

. oA A A 25 2alk
=iy (k)@ - &) lkF e,
j.k

=iy (k)@ &)l e k| Te .
J.k

Combining the above two equations together, we have

_12(] Uy — ])(a)]

J.k

G-kl M (e — e )

34

(6.15)

o -

(6.16)
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Since u is divergence free, we have (k — j) - itx—; =0 and

P=i Z(k k=)@ - @_k)|k|§€ot|k| (|k|§ea|k\ . |j|§ea|j|> .
J.k

Since w_j = c?)_k we obtain the estimate of P

P13 kg 116 o ™ [ e — 1711 (6.17)
Jok

Defining f(x) = x%¢**, then f’(x) = §x°~1e** + xSwe®*. Taking n = a|j| + (1 — a)|k],
where 0 < a < 1, then n is between |j| and |k|. If |k| < |j]|, then |n| < |j| < |j| + [(k — j)|; if
|7l < |k|, then |n| < |k| <|j| 4+ |(k — j)|. Therefore, we have 0 < n <|j| 4+ |(k — j)|. Applying
the mean value theorem, it follows that

kT k! — 11 eV = | £ Gl 11kl = 1711 < 1 £ ) (k = )]
= |Gn" e e |1 = .
Therefore, taking I =k — j, (6.17) becomes
1Pl < Y Ikl [k | e

I+j=k
= A A A 5 alk] (. 15—1
<131 > Iklldgl|@; x|kl e =" e* 1]
I+j=k

o Y lkllald; 1@ 1kl M [l e
I+j=k

G e+ nae )| I

=P+ P

We first analyze P = |5 Z kel |2 160 | | K| e KT 5= e
I+j=k
Case (i): When —% <§ < 1,since |n| =alj|+ (1 —a)lk|, 0 <a <1 and we have
Case (ia): if | j| < |k|, then || > | j|, we have: |p*~! < |51
Moreover, since 0 < 1 < | j| + |I], we have: ¢ < e®Vle®l Taking 0 < § < 1, it follows that

Py<I5]Y 0 Lkl |a klfe k|15 el
I+j=k

< I8 ) KAy - (11 @1 - (g [k e
I+j=k

< I$]llor * o2l gi-s | oll545,0
where

35
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2 A 12 2|l 2 2(5—1) ~ 12 2all
lonll7, =D lanPe® !, lanll7, =D 117 Vlay e,
) 1

When —% <S5 <1and max{% —5,0} < § < 1, from Lemma 3.2 with 51 = #ﬂg and
sy = #, we have
2
lleor * 2l 15 < esllonll smasans lwall 12525 = clloli3ans0s -
4 9
Therefore
2
P <c5llol| 342528 a||w||§+6,a-
4 9
1 ~ . 1 ~ . (3 o~
When —5<§< 1 w1thmax{§ —s,O} <d§ < mln{i -3, l}, we have
5 242541 328 s s
lloll B2 g, =clel;,” lol;, andlolise <cloll;, ol -
Therefore
25+§§+1 3723725 1—s s
Pr<ciloly,” Nl lolilloll,,,
=cllol;, ol -
Case (ib): if | j| > |k|, then |n| > |k|, we have: |n|* ! < k"L
Therefore
Pr< 51 Tkl a1kl e s el
I+j=k
~ Sorna el A i A 5 alk
<131 D7 Ik QUane™ - (1o 1eVT) - (x| Ik | e ™)
I+j=k
< Islllor * o1l g llolls,q
en —5 < § < 1, from Lemma 3.2 with s =32 gy, sy = r,we ave: || * w1 g5 <
When —§ 1, from L 3.2 with s = 242 and s, = 22 we h i <
2
ol .
2
Therefore, Py < czlloll5is  l@ls.a-
4 i
Since
ol , < csllol; 3 ol . (6.18)

3+22§ %
we have: P| < csllol; , llol; -

Case (i)): When 1 <§ < 3, since || < || +|I|, we have: [n =" < (|j| + )"

36
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Therefore

Pr<§ ) lkllanld @l lklFe ¥ (i1 + 1) e e |
I+j=k

<& Y kI - (TP - (@j1e VT - (e IkIS e )

I+j=k

< A l S5—1) A i A § alk
<cs§ Y kI - (11T @11 - (e kl e

I+j=k

< c5Sllor * wall i llollz,q-

Whenl <5§ < %, from Lemma 3.2 with 5| = % 1=2%

2
lor * w2l 1 < csllor |l 3425 w2 |l 725 = c5ll@ 500 -
4 4 T o«

2
Therefore, P1 < cslloll5is  l@ls.a-
¢ 3% 3%
From (6.18), we have: P| < c§||a)||§’§ ||a)||§_ﬁ1’a.

Combining case (i) and (ii), when —% <§< %, we always have

3425 3-25

Y Y P T P

Next, we can analyze the estimate for

A A A 5 alk 5
Py=a Y [kllild; ||l ke nl* ei).
I+j=k

Case (a):0<s§ < %, we have: |n|§ <(jl+ |l|)§. Therefore,

Py<a Y [kllalld;laxl ke (1] + 1) e e i
I+j=k
A A ~ 5 alkl, 5 5 i 1
<cso Y [klld|ld; x| kI e (171 + 115)e e i
I+j=k
< o KNale:11é k§a|k|l§a|j| (1|l|l
<csa Y [kllgl@; 1@kl e Mz el
I+j=k

<csa > kI ANy - (@1 - (kT ek

I+j=k

< ca|lwr * w3l g1-s lollsts,a

where |37, = Y [1[¥|ay*e**"!. When 0 < § < 3 with max {§— .

. 5425 —28 5—25—25§
Lemma 3.2 with s; = — and sp = — ‘We have

37

and s = =5, we have

[m1+; v1.341] P37 (1-43)
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(6.19)

O} < § < 1, from
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2
lwr * w3l g1-s < csllon ||5+2§—28 ||w3||5—z§—25 = Cslloll 50 ,
4 £

-
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2
Therefore, Py < czetl|@]|505  N@l545.0
4 ’

WhenO§§<%Withmax{f—%,%—E,O}<8<1,wehave

5 25+§§—| 5—23—25
||0)||5+2.§—2s’a =cllol;,” lol;, and lolsisa SCcllwll ||60||S+10,
Thus
264%571 5723725 1—5
PZSCEO‘”C‘)”ga lolly Nl o ||s+1a
=c5 allwll || ||S+ia
Case (b): —% <§<0.
Case (bl): if | j| < |k|, then |n| > | j|, we have: |n|® <|j|®. Therefore,
P < KNG 1 el ek 715 g@lil gl
» S« k|||l |k]" ™ ] 17 e e
I+j=k
=8, 15 a1 el A j A §+5 olk
<o Y kP e - (1€ - (] k[T e )
I+j=k
<allor * o3|l gi-slloll5+s,-
5+2s _ 5dF

When —% <5 <0with0 <8 < 1, from Lemma 3.2 with 5; =
have

8 and 52

2
llor * w3l g1 < esllonll seais sl sz = cllollsiia |,
by

2
Therefore, Py < czel|@l|505  N@l515.0
4 ’

When—%<§<Owith%—§<8<1,wehave

5 28+%§—I 5—22—25
||0)||5+2§725 o= Glol;,” lel;,y, andleliise < csllwll IlelsH o
we have
26+%§ 1 5-28-25
P =calol;,” ol , IIwII IIwIIYHa

5+ s
=csalloll; o IIHW

Case (b2): if | j| > |k|, then |n| > |k|, we have: []° < |k°.

38
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Therefore

Py<a Y lklliglld; a1kl e k[T e e
I+j=k

S+1-38 A I ~ j ~ 5+68 alk
<o Y IR ey - (1@l - (kT e
I+j=k

<allwr * w1l giri-sllollsts.q-

When —% <5 <0with0 < d < 1, from Lemma 3.2 with 51 =57 = W, we have
lor * @l gois < cslloll3
1 CU2||H5+1—8 <csloll 5425-28
4 9
2
Therefore, P2 < s ollsips  N@llsto.a-
When—% < § <0 with % —§ <8 <1, we have
2 25+§§71 572372§ 1—5
||w||5+2.§—23 o SGlell; el 7y and [[@ 5450 < cslloll; e |IY+1 a
Therefore
26+%§7l
Py < csafol; , IlelsH o IIwII Ilwllm o
= Cgotllwll I| IIYH o
Combining Case (a) and Case (b), we have
Py < csellols ol i, (6.20)
Combining (6.19) and (6.20), when —5 < § < 3, it yields that
) A% §+3 5 l
S o
‘(B(u, w), A’e a))‘ =P=P + P =clol;,’ lo IIYH o +Csot||wll o IIYH o O

Proof of Lemma 5.3. Comparing the terms on the right hand side of (5.5), we can expect that

there is a region (when ¢ and X are both small), c; X xHos

two terms on the right hand side.

T is the dominating term among the

4, 4 4
In order to find this specific region, we compare cz X % with c(B)BF-1X I+,

4 4 4 <
If e X'TH > ex(B) 5T X TBT then X < 6752“
(Br) 2
Considering the function
cx
K@) =X(t) — —
(Br) 2
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From (5.5), we observe that X starts with positive initial data and is an increasing function.

3
Moreover, since X oo ast /' Ty, it will intersect the curve 72+1 Therefore, there exists
B
aty such that K(tx) =0and K(¢) <0 when ¢ < tx. Therefore, when 0 < ¢t < tx and we have
ax 4 4
L 2 X TE = X T 6.21)
dt

When 0 <t < tx, we compare X (t) with ¢(¢), where, ¢(t) is the solution of

do 4
= = cip! T (6.22)

with ¢(0) = X (0) and Ty, is the local existence time of ¢.
Applying Lemma 3.6 on (6.21) and (6.22), we have

X (1) < ¢(1), for all 7 € [0, min {rx, Tx, T,,}].

From (6.22), ¢(t) will also intercept with the curve Ci . Denote the interception point
as fy, then t, <ty < Tx. To calculate t,, we have
cx
P(ty) = 7Y2_+1 (6.23)
(Bty) 2
Solving (6.22), we have
9(0) = (p(O) BT — ¢z F (6.24)
Cs
Therefore: (¢(0) +=
After simplification, we obtain: ¢(0)™ T — City = CS,B 2 Therefore
@22 . -
ciPt, + sty = @(0) THE. (6.25)
cs o3
Case (i): when X (0) > PN then, ¢(0) > 2v+1 =) > il . This implies 7, <
B2 Kk B
1, then t(% <y, since B < %, we have
4
(0) THF <51y, (6.26)
this implies: 7, > Lzl Therefore
p(0) %
Ty>ty>—0 =% (6.27)

pOTT  X(O)FF
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Case (ii): when X (0) < — - then, ¢(0) < — s If /(1) > —%r. This implies 7, <
B B "

5

X))
If 9(1) < —25. This implies t, > 1, then t2 > 1y, then (6.25) becomes
(;3) =N

1, same as Case (i), we have: Ty >

0(0) T < cs2, (6.28)

this implies 7, > Lz Therefore
p(0) T
Ty >ty>—0 =% (6.29)
PO)TE X (05

Therefore, in Case (ii), we have

Tx >min{Q, Ql/z},

where Q = Cigzl O
X (0) T+3
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Highlights

e Finding the existence times three-dimensional Navier-Stokes equations in the much
stronger Gevrey norms (i.e. the norms defining the analytic Gevrey classes which quantify
the radius of real-analyticity of solutions) which match the best known persistence times in
Sobolev classes.

e Obtaining the optimal existence times in certain Gevrey norms.

e Obtain sharper estimates of the analyticity radius of solutions by studying the evolution of
Gevrey norms in higher order Sobolev spaces.

e Proving new refined commutator estimates of the nonlinear term in Gevrey classes.

e Providing a new unified treatment of persistence times in a range of Sobolev spaces thus
eliminating some borderline cases in some recent works.
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