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SPACE AND TIME ANALYTICITY FOR INVISCID EQUATIONS

OF FLUID DYNAMICS

ANIMIKH BISWAS AND JOSHUA HUDSON

Abstract. In this article, we examine the temporal regularity of inviscid fluid
flow on a torus as viewed in Eulerian variables. We consider several models for
inviscid flow, and in each case show that when the initial condition is Gevrey
regular (a stronger condition than real analytic), there exists a complex neigh-
bourhood, R, of the initial time over which there is a unique holomorphic (in
time) solution of the complexified version of the governing system, which re-
mains Gevrey regular (in space) at each complex time in R. In addition, we
obtain explicit estimates on the region R, and therefore on the persistence time
of solutions in the analytic Gevrey class.

Our proof technique is based on the seminal work of Foias and Temam (1989),
where they introduced the so-called analytic Gevrey class technique for the
Navier–Stokes equations. Our arguments are general enough to apply to vari-
ous models for inviscid flow. In particular, we demonstrate the full analysis with
the Euler equations, and extend our results to the inviscid forms of the surface
quasi-geostrophic equation (SQG), the Boussinesq equations and the magneto-
hydrodynamic equations (MHD), as well as to scalar equations with an analytic
nonlinearity.

1. Introduction

It is well-known that solutions to a large class of dissipative equations are an-
alytic in space and time [2, 9, 10, 24–26, 29, 41, 42]. In fluid dynamics, the space
analyticity radius has a physical interpretation: it denotes a length scale below
which the viscous effects dominate and the Fourier spectrum decays exponentially,
while above it, the inertial effects dominate [21]. This fact concerning exponential
decay can be used to show that the Galerkin approximation converges exponen-
tially to the exact solution [20]. Other applications of analyticity radius occur in
establishing sharp temporal decay rates of solutions in higher Sobolev norms [8,42],
establishing geometric regularity criteria for solutions, and in measuring the spatial
complexity of fluid flows [28,32]. Likewise, time analyticity also has several impor-
tant applications, including establishing backward uniqueness of trajectories [14],
parameterization of turbulent flows by finitely many space-time points [33], and
numerical determination of the attractor [27].

Space and time analyticity of inviscid equations, particularly the Euler equations,
has received considerable attention recently (as well as in the past). Space analytic-
ity for Euler, in the Eulerian variables, was considered for instance in [3,4,34,35,38],
while in [1,22,37] real analyticity in the time (and space) variable is established us-
ing harmonic analysis tools. In the above mentioned works, the initial data are
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taken to be analytic in the space variable. By contrast, in a recent work [17], it
is shown that the Lagrangian trajectories are real analytic (in time), even though
the initial velocity fields are slightly more regular than Lipschitz in the space vari-
able. Similar results also appear elsewhere; see for instance in [46, 48, 50] and the
references therein. Additionally, the contrast between the analytic properties in the
Eulerian and Lagrangian variables has been considered recently in [15].

In this paper, we show that solutions of the Euler, as well as the inviscid versions
of the SQG, Boussinesq, MHD, and similar equations with an analytic nonlinearity,
when given analytic initial data, extend as holomorphic solutions of the complex-
ified versions of the equations taking values in a suitable analytic Gevrey class of
functions of the space variable. Belonging to an analytic Gevrey class is sufficient
for a function to be analytic, and so this immediately establishes that the solutions
extend as analytic functions of time and space. In contrast to, for instance, the
results in [1, 22], where the authors show the real time-analyticity in a region de-
fined implicitly by the flow map generated by the solutions, we obtain holomorphic
extensions and obtain explicit estimates on the domain of (time) analyticity. Our
approach follows [26], in which the desired results are obtained for the Navier–Stokes
equations. We also make use of the ideas introduced in [38] and [34].

Note that unlike their “real” counterparts, the complexified inviscid models are
not known to conserve “energy”, due to the fact that the complexified nonlinear
terms do not in general possess equivalent cancellation properties. However, as
in [38], we observe a mild dissipation due to working in an analytic Gevrey class
setting, which is enough for the local existence of the complexified versions of these
inviscid models.

The paper is organized as follows. In Section 2 we introduce the notation and
definitions we will use and state some of the associated classical results that we will
use. In the following sections, we apply our analysis first on the Euler equations,
followed by the inviscid surface quasi-geostrophic equations, the inviscid Boussinesq
equations, the inviscid magnetohydrodynamic equations and an equation with an
analytic nonlinearity.

2. Preliminaries

We will consider several different evolutionary equations, and in each case, we
will study the flow on a d-dimensional torus; i.e. we take the space domain to be
Ω = [0, l]d, d ∈ N, supplemented with periodic boundary conditions (with period l).
For notational simplicity, fix

l = 2π, and therefore, κ0 :=
2π

l
= 1.

We denote the inner product on L2(Ω) :=
{
u : Ω → Rd,

∫
Ω |u(x)|2dx < ∞

}
by

⟨· , ·⟩ and the corresponding L2−norm by ∥ · ∥. As usual, the Euclidean length of a
vector in Rd( orCd) is denoted by | · |.

For a function u : Ω → Rd( orCd), its Fourier coefficients are defined by

û(k) =
1

(2π)d

∫
Ω
u(x)e−iκ0k·xdx (k ∈ Zd).
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By the Parseval identity,

∥u∥2 = (2π)d
∑
k∈Zd

|û(k)|2.

As usual, we define the Sobolev spaces Hs(Ω) for s ∈ R by

Hs(Ω) = {u ∈ L2(Ω) : ∥u∥Hs(Ω) :=
∑
k∈Zd

(1 + |k|2)s|û(k)|2 < ∞}.

For each model we consider, if the space average of the initial data is zero, then
the space average of the solution will remain zero at all future times. Therefore, we
will always make the assumption that the elements of the phase space have space
average zero. In terms of the Fourier coefficients this amounts to the condition
û(0) = 0 (which is then preserved under the evolution).

We denote

L̇2(Ω) =

{
u ∈ L2(Ω) :

∫
Ω
u(x) dx = 0, or equivalently, û(k) = 0

}
.

As we are considering incompressible flows, we will define the phase space, H, as

H =
{
u ∈ L̇2(Ω), ∇ · u = 0

}
,

where the derivative is understood in the distributional sense. H can alternatively
be characterized by

H = {u ∈ L2(Ω), û(0) = 0, k · û(k) = 0, û(−k) = û(k)}.
Note that the space (−∆)(H ∩ H2(Ω)) ⊂ H. The Stoke’s operator, A, with

domain D(A) = H ∩H2(Ω), is defined to be

A = (−∆)|D(A).

We will now briefly review some standard results. The Stoke’s operator A is
positive and self adjoint with a compact inverse. It therefore admits a unique,
positive square root, denoted A1/2, with domain V characterized by

V = {u ∈ H : ∥A1/2u∥2 = (2π)d
∑
k∈Żd

|k|2|û(k)|2 < ∞},

where Żd = Zd \ {0}. The set of eigenvectors, {ei}∞i=1, of A form an orthonormal
basis ofH, and the corresponding eigenvalues, 1 = λ1 ≤ λ2 ≤ λ3 ≤ . . . , are elements
of {|k|2 : k ∈ Żd}. We denote HN = span{e1, . . . , en}.

The dual of V can be characterized as

V ′ = {v ∈ D : v̂(k) = v̂(−k), v̂(0) = 0,
∑
k∈Żd

|v̂(k)|2

|k|2
< ∞},

where D denotes the space of distributions. The duality bracket between V and V ′

is given by

V ⟨u,v⟩V ′ =
∑
k∈Żd

û(k) · v̂(k), u ∈ V,v ∈ V ′.

When a ≤ Cb for some constant C which is independent of a and b and may
depend only on l or d, we will write a ≲ b. When a ≲ b and b ≲ a, we write a ∼ b.
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Note that for any s ∈ R,

∥As/2u∥2 = (2π)d
∑
k∈Żd

|k|2s|û(k)|2 for u ∈ D(As/2) = L̇2(Ω) ∩Hs(Ω).

It is well known that ∥As/2 · ∥ ∼ ∥ · ∥Hs(Ω) on D(As/2), and the Poincaré inequality
holds, i.e.,

(2.1) ∥As/2u∥ ∼ ∥u∥Hs(Ω) and ∥As/2u∥ ≥ κs0∥u∥, u ∈ L̇2(Ω) ∩Hs(Ω).

Using the Sobolev and interpolation inequalities, we also have

(2.2) ∥u∥Lp ≲ ∥As/2u∥ ≤ ∥u∥1−s∥A1/2u∥s, p =
2d

d− 2s
.

We will find it useful to define the so-called Wiener algebra,

(2.3) W := {u ∈ H : ∥u∥W :=
∑
k

|û(k)| < ∞}.

Clearly, from the expression of u in terms of its Fourier series, u(x) =∑
k∈Żd û(k)eik·x, it immediately follows that

∥u∥L∞ ≤ ∥u∥W .

In addition, we have the elementary inequality

(2.4) ∥u∥L∞ ≤ ∥u∥W ≤ 2πd−1

ld
2s−d+1
2s−d ∥As/2u∥, s >

d

2
.

We will be using (2.4) with s = r − 1
2 for a number r > d

2 + 1
2 . For readability, let

cr =
2πd−1

ld
2(r− 1

2
)−d+1

2(r− 1
2
)−d

= 1
π2d−1

2r−d
2r−1−d .

Note that for the SQG and the Boussinesq, we will be interested in the evolution
of a scalar valued field, η. We make no distinction in the notation for these cases,
but it should be clear through the context that d = 1 in the above definitions when
considering a scalar field. Furthermore, the phase space for an evolving scalar field
is simply L̇2(Ω).

2.1. Analytic Gevrey Classes. For the remainder of this paper, let r > d+1
2 be

arbitrary but fixed. For any 0 < β < ∞ denote the Gevrey norm by

∥f∥β = ∥Ar/2eβA
1/2

f∥.

Although the Gevrey norm depends on r and β, we are mainly concerned with the
β dependence (hence we let r be fixed).

The Gevrey norm controls the decay rate of higher order derivatives, namely, if
∥f∥β < ∞ for some β > 0, then we have the higher derivative estimates

∥f∥Hr+n(Ω) ≤
(
n!

βn

)
∥f∥β where n ∈ N.(2.5)

In particular, f in (2.5) is analytic with (uniform) analyticity radius β. See Theorem
4 in [38] and Theorem 5 in [42] for these and other facts about the Gevrey norm.
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2.2. Complexification. In order to extend our evolution equations to complex
times we will need to complexify the codomains of our function spaces and extend
the definitions of our operators to these complexified spaces. Accordingly, let L
be an arbitrary, real, separable Hilbert space with (real) inner-product ⟨· , ·⟩. The
complexified Hilbert space LC and the associated inner-product is given by

LC = {u = u1 + iu2 : u1,u2 ∈ L},
and for u,v ∈ LC with u = u1 + iu2,v = v1 + iv2, the complex inner-product is
given by

⟨u,v⟩C = ⟨u1,v1⟩+ ⟨u2,v2⟩+ i[⟨u2,v1⟩ − ⟨u1,v2⟩].
Observe that the complex inner-product ⟨· , ·⟩C is linear in the first argument while
it is conjugate linear in the second argument. If A is a linear operator on L with
domain D(A), we extend it to a linear operator AC with domain D(AC) = D(A) +
iD(A) by

AC(u1 + iu2) = Au1 + iAu2,u1,u2 ∈ D(A).

Henceforth, we will drop the subscript notation from the complexified operators
and inner-products and denote AC and ⟨· , ·⟩C respectively as A and ⟨· , ·⟩, but will
retain the subscript in the notation of the complexified Hilbert spaces.

3. Incompressible Euler Equations

The incompressible Euler equations, on a spatial domain Ω = [0, 2π]d, d = 2or 3,
are given by

∂tu+ (u · ∇)u+∇p = 0, in Ω× R+,(3.1a)

∇ · u = 0, in Ω× R+,(3.1b)

u(x, 0) = u0(x), in Ω,(3.1c)

where u = u(x, t) denotes the fluid velocity at a location x ∈ Ω and time t ∈
R+ := [0,∞) and p = p(x, t) is the fluid pressure. Since its introduction in [23],
it has been the subject of extensive research both in analysis and mathematical
physics; see [6, 40] for a survey of recent results. As discussed in Section 2, we
supplement (3.1) with the space periodic boundary condition with space period 2π,
i.e., we require that the functions u and p be periodic with period 2π in all spatial
directions.

We will apply the Leray-Helmholtz orthogonal projection operator, P : L̇2(Ω) →
H (which maps L̇2(Ω) onto the closed subspace H of L̇2(Ω)), to the Euler equations.
As ∇·u = 0, formally we have ∇·∂tu = ∂t∇·u = 0, so P ∂tu = ∂tu. Also, P∇p = 0.
For the quadratic term, we define the operator

(3.2) B(u,v) = P (u · ∇v) = P∇ · (u⊗ v),

From (2.2), it readily follows that if u,v ∈ V , then ∥u⊗ v∥ < ∞ and consequently,
B(u,v) ∈ V ′.

After applying the Leray-Helmholtz projection, we obtain the functional form of
the incompressible Euler equations:

(3.3)
d

dt
u+B(u,u) = 0.
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We will be considering the complexified version of the functional form, which is
given by

(3.4)
du

dζ
+BC(u,u) = 0,u(0) = u0,

where, for u = u1 + iu2,v = v1 + iv2 ∈ HC, the complexified nonlinear term is
given by

BC(u,v) := B(u1,v1)−B(u2,v2) + i[B(u1,v2) +B(u2,v1)].

As before, we will drop the subscript and write B = BC.

Theorem 3.1. Let β0 > 0 be fixed, and let u0 be such that ∥u0∥β0 < ∞. Then the
complexified Euler equation (3.4) admits a unique classical solution u ∈ Hol(R;HC),
with

(3.5) R =

{
ζ = seiθ : θ ∈ [0, 2π), 0 < s <

Cβ0
2rcr∥u0∥β0

}
.

Furthermore, u(ζ) is Gevrey regular for all ζ ∈ R (i.e. ∥u(ζ)∥β < ∞ for some
β > 0).

For the Euler equations in the real setting, it is well known (see [3, 7, 34, 35, 38])

that if the Beale-Kato-Majda condition,
∫ T
0 ∥∇×u∥L∞ < ∞, is satisfied, and there

exists β0 such that ∥Ar/2eβ0A1/2
u0∥ < ∞, then there exists a positive continuous

function β : [0, T ] → (0,∞) such that

sup
[0,T ]

∥Ar/2eβ(t)A
1/2

u(t)∥ < ∞.

In this case, u extends as a holomorphic function solving (3.4) in a neighborhood
of [0, T ] in C. More precisely we have the following:

Corollary 3.2. Let u ∈ C1([0, T ];H) be a classical solution of (3.3) and suppose
that there exists a continuous function β(·) > 0 on [0, T ] such that

(3.6) M := sup
t∈[0,T ]

∥u(t)∥β(t) < ∞.

Then u(·) extends as a holomorphic function uC ∈ Hol(R,HC) solving (3.4), where
R is a complex neighborhood of (0, T ).

Proof. Let β0 = mint∈[0,T ] β(t) > 0. Then by Theorem 3.1, u extends as a holomor-

phic function in a complex neighborhood of (0, ε), with ε = Cβ0

2rcrM
. The proof follows

by reapplying Theorem 3.1 with u0 = u(t0), for each t0 ∈ { ε
2 ,

2ε
2 ,

3ε
2 , . . . } ∩ [0, T ].

□
Remark 3.3. The domain of analyticity given in Theorem 3.1 may not be optimal.
One may be able to obtain a larger domain by letting s depend on θ and then
optimizing for s with respect to θ. Moreover, it would also be of interest to connect
the shape of the domain dynamically with the space analyticity radius of the solution
at time t, and possibly express it explicitly in terms of ∥∇×u∥L∞ , as has been done
in case of the space analyticity radius in [34, 38]. We leave these issues for future
consideration.
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Before proceeding with the proof of the theorem, we will need the following
estimate of the nonlinear term.

Proposition 3.4. Let u ∈ HC with ∥A1/4u∥β < ∞. Then,

(3.7) |⟨B(u,u), Are2βA
1/2

u⟩| ≲ 2rcr∥u∥β∥A1/4u∥2β .

Proof. Observe that for k = h+ j, h, j,k ∈ Żd, we have

|k|r ≤ 2r−1(|h|r + |j|r).
Thus,

|⟨B(u,v), Are2βA
1/2

w⟩|
≤

∑
h+j−k=0

|û(h)||j||v̂(j)||k|2r|ŵ(k)|e2β|k|

≤ 2r−1
∑

h+j−k=0

|h|r|û(h)||j||v̂(j)||k|r|ŵ(k)|e2β|k|

+ 2r−1
∑

h+j−k=0

|û(h)||j||j|r|v̂(j)||k|r|ŵ(k)|e2β|k|.(3.8)

Because j,h,k ̸= 0, we have min{|j|, |h|, |k|} ≥ 1 and therefore,

(3.9) |j| ≤ |h|+ |k| ≤ 2|h||k| which implies |j|
1
2 ≲ |h|

1
2 |k|

1
2 .

From (3.8) and (3.9), we have

|⟨B(u,v), Are2βA
1/2

w⟩|
≤ 2r−1/2

∑
h+j−k=0

eβ|h||h|r+
1
2 |û(h)|eβ|j||j|

1
2 |v̂(j)||k|r+

1
2 |ŵ(k)|eβ|k|

+ 2r−1/2
∑

h+j−k=0

eβ|h||h|
1
2 |û(h)|eβ|j||j|r+

1
2 |v̂(j)||k|r+

1
2 |ŵ(k)|eβ|k|,

≲ 2r
(
∥A

1
4 eβA

1/2
v∥W∥A

1
4u∥β∥A

1
4w∥β + ∥A

1
4 eβA

1/2
u∥W∥A

1
4v∥β∥A

1
4w∥β

)
,

≲ 2rcr

(
∥v∥β∥A

1
4u∥β∥A

1
4w∥β + ∥u∥β∥A

1
4v∥β∥A

1
4w∥β

)
,(3.10)

where to obtain (3.10) we used (2.4) with s := r − 1
2 > d

2 . We readily obtain

(3.11) |⟨B(u,u), Are2βA
1/2

u⟩| ≲ 2rcr∥u∥β∥A1/4u∥2β .
□

3.1. Proof of Theorem 3.1.

Proof. Recall that for each N ∈ N, HN = span{e1, . . . , en} ⊂ HC, where {ei}∞i=1
is the complete, orthonormal system (in HC) of eigenvectors of A. Denote the
orthogonal projection on HN by PN . The Galerkin system corresponding to (3.4)
is given by

(3.12)
dv

dζ
+ PNB(v,v) = 0, v(0) = PNu0, v(ζ) ∈ HN .
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The Galerkin system is an ODE with a quadratic nonlinerity. Therefore it admits
a unique classical solution in a neighborhood of the origin in C. We will obtain a
priori estimates on the Galerkin system in R (defined in (3.5)) independent of N .
This will show that the for each N , the solution of the Galerkin system exists and
is holomorphic on all of R, and the set of Galerkin solutions forms a normal family
on the domain R. We can then pass to the limit through a subsequence by Montel’s
theorem to obtain a solution of (3.4) in R.

Let N ∈ N. Fix θ ∈ [0, 2π), and let

ζ = seiθ, s > 0.

We assume that the initial data u0 satisfies ∥u0∥β0 < ∞ for some β0 > 0. Fix δ > 0,
to be chosen later and define the time-varying norm

||u(ζ)|| = ∥u(ζ)∥β0−δs.

The corresponding (time-varying) inner product will be denoted by ((, )), i.e.,

((u,v))

= ⟨Ar/2e(β0−δs)A1/2
u, Ar/2e(β0−δs)A1/2

v⟩

= ⟨u, Are2(β0−δs)A1/2
v⟩.

Taking the inner-product of (3.12) (in HC) with Are2(β0−δs)A1/2
v, then multiplying

by eiθ, and finally taking the real part of the resulting equation, we readily obtain

1

2

d

ds
||v(ζ)||2+δ ||A1/4v(ζ)||2 = −Re

(
eiθ((B(v(ζ),v(ζ)),v(ζ)))

)
≤ |((B(v(ζ),v(ζ)),v(ζ)))|.

For s < β0

δ , using Proposition 3.4, we obtain

(3.13)
1

2

d

ds
||v||2 + δ ||A1/4v||2 ≲ 2rcr||v||||A1/4v||2.

Now choose
δ = C2rcr∥u0∥β0 .

From (3.13), we see that ||v|| is non-increasing and

||v(ζ)|| ≤ ∥u0∥β0 ∀ ζ = seiθ, 0 < s <
β0
δ
.

In particular, this means

sup
ζ∈R

∥Ar/2v(ζ)∥ ≤ ∥u0∥β0 .

As remarked above, the proof is now complete by invoking Montel’s theorem. □

4. Surface Quasi-geostrophic Equations

We consider the inviscid, two-dimensional (surface) quasi-gesotrophic equation
(henceforth SQG) on Ω = [0, 2π]2, given by

∂tη + u · ∇η = 0, in Ω× R+,(4.1)

u = [−R2η,R1η]
T , in Ω× R+,(4.2)

η(0) = η0, in Ω.(4.3)
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Here u is the velocity field, η is the temperature, the operator Λ = (−∆)1/2 (with
∆ denoting the Laplacian) and the operators Ri = ∂iΛ

−1, i = 1, 2, are the usual
Riesz transforms.

Observe that by the definition of u, it is divergence-free. Also, without loss of
generality, we will take u and η to be mean-free, i.e.,∫

Ω
u = 0,

∫
Ω
η = 0.

The SQG was introduced in [16] and variants of it arises in geophysics and me-
teorology (see, for instance [43]). Moreover, the critical SQG is the dimensional
analogue of the three dimensional Navier–Stokes equations. Existence and regular-
ity issues for the viscous and inviscid cases were first extensively examined in [44].
This equation, particularly the dissipative case with various fractional orders of dis-
sipation, has received considerable attention recently; see [11, 18, 30, 31], and the
references therein. As in section 3, our focus here is time analyticity of the inviscid
SQG, with values in an appropriate analytic Gevrey class.

As before, for r > 3
2 , β > 0, we define

∥η∥β = ∥ΛreβΛη∥ and ∥u∥β = ∥Ar/2eβA
1/2

u∥.
Note that because u is the Riesz transform of η, we have ∥η∥β ∼ ∥u∥β .

Theorem 4.1. Let η0 be such that ∥η0∥β0 < ∞ for some β0 > 0. Then the com-
plexified inviscid SQG equation

(4.4)
dη

dζ
+B(u, η) = 0, η(0) = η0, where B(u, η) = u · ∇η,

admits a unique classical solution in Hol(R, L̇2
C(Ω)), with

(4.5) R =

{
ζ = seiθ : θ ∈ [0, 2π), 0 < s <

Cβ0
2rcr∥η0∥β0

}
.

Proof. Proceeding in a similar manner as in Proposition 3.4, we obtain

(4.6) |⟨B(u, η),Λ2re2βΛη⟩| ≲ 2rcr

(
∥η∥β∥A1/4u∥β∥Λ1/2η∥β + ∥u∥β∥Λ1/2η∥2β

)
≲ 2rcr∥η∥β∥Λ1/2η∥2β ,

where the last inequality follows by noting that u is the Riesz transform of η.
Fix θ ∈ [0, 2π). Let

ζ = seiθ, s > 0.

The initial data η0 satisfies ∥η0∥β0 < ∞ for some β0 > 0. Fix δ > 0, to be specified
later, and define the time-varying norm

||η|| = ∥η(ζ)∥β0−δs,

and the corresponding (time-varying) inner product, ((, )), as we did in the proof
of Theorem 3.1.

Taking the inner-product of (4.4) (in HC) with Λ2re2(β0−δs)Λη, multiplying by eiθ

and taking the real part, we obtain

1

2

d

ds
||η(ζ)||2 + δ ||Λ1/2η(ζ)||2 = Re

(
−eiθ((B(u(ζ), η(ζ)), η(ζ)))

)
.
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Using (4.6), we deduce

(4.7)
1

2

d

ds
||η||2 + δ ||Λ1/2η||2 ≲ 2rcr||η|| ||Λ1/2η||2.

Now choose
δ = C2rcr∥η0∥β0 .

From (4.7), we see that ||η|| is non-increasing and

||η(ζ)|| ≤ ∥η0∥β0 ∀ ζ = seiθ, 0 < s <
β0
δ
.

In particular, this means
sup
z∈R

∥η(z)∥ ≤ ∥η0∥β0 .

This establishes a uniform bound on the Galerkin system and the proof is complete
by invoking Montel’s theorem as before. □

5. Inviscid Boussinesq Equations

The inviscid Boussinesq system (without rotation) in the periodic domain Ω :=
[0, 2π]d, d = 2, 3, for time t ≥ 0 is given by

∂tu+ (u · ∇)u+∇p = η ge, in Ω× R+,(5.1a)

∂tη + (u · ∇)η = 0, in Ω× R+,(5.1b)

∇ · u = 0, in Ω× R+,(5.1c)

u(0) = u0, η(0) = η0, in Ω,(5.1d)

equipped with periodic boundary conditions in space. Here e denotes the unit vector
in Rd pointing upward and g denotes the (scalar) acceleration due to gravity. The
unknowns are the fluid velocity field u, the fluid pressure p, and the function η,
which may be interpreted physically as the temperature. The Boussinesq system
arises in the study of atmospheric, oceanic and astrophysical turbulence, particularly
where rotation and stratification play a dominant role [43, 45]. We will follow the
notation for the norms as in Section 3 and Section 4

Theorem 5.1. Let (u0, η0) be such that ∥(u0, η0)∥β0 < ∞ for some β0 > 0, where
∥(u0, η0)∥2β0

= ∥u0∥2β0
+ ∥η0∥2β0

. The complexified inviscid Boussinesq equations

(5.1) admit a unique solution (u, η) ∈ Hol(R,HC)×Hol(R, L̇2
C(Ω)), where

R =
{
ζ = seiθ : θ ∈ [0, 2π), 0 < s < min

{
Cβ0

2rcr∥(u0, η0)∥β0

,
2 ln 2

g

} }
.(5.2)

Proof. We proceed as in Section 3 and Section 4 by taking the inner product of the

complexified versions of (5.1a) and (5.1b) with Are2(β0−δs)A1/2
u and Λ2re2(β0−δs)Λη

respectively, then multiplying by eiθ and taking the real part. Using (3.7) and (4.6)
and adding the results, for (u(ζ), η(ζ)), ζ = seiθ, we obtain

1

2

d

ds
(||u||2 + ||η||2) + δ(||Λ1/2u||2 + ||Λ1/2η||2)

≲ 2rcr(||u||+ ||η||)(||Λ1/2u||2 + ||Λ1/2η||2) + g||η||||u||

≤ 2rcr(||u||+ ||η||)(||Λ1/2u||2 + ||Λ1/2η||2) + g

2
(||u||2 + ||η||2).(5.3)
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Thus, as long as

(5.4) (||u||+ ||η||) ≲ δ

2rcr
,

by the Gronwall inequality, we have

(5.5) ||u||2 + ||η||2 ≤ eTg(∥u0∥2β0
+ ∥η0∥2β0

), 0 < s ≤ T.

Using the fact that (a+b) ≤
√

2(a2 + b2), as long as (5.4) holds, from (5.5) we have

(5.6) (||u||+ ||η||) ≤ e
Tg
2

√
2∥(u0, η0)∥β0 .

Now choose

δ = C2rcr∥(u0, η0)∥β0 .

For all 0 < s < T = min{β0

δ ,
2 ln 2
g }, (5.4) is satisfied and consequently, (5.6) holds.

□

6. Inviscid Magnetohydrodynamic Equations

The inviscid incompressible magnetohydrodynamic system in the periodic domain
Ω := [0, 2π]d, d = 2, 3, for time t ≥ 0 is given by the following system

∂tu+ (u · ∇)u− 1
S (b · ∇)b+∇( 1

ρ0
p+ |b|2

2S ) = 0, in Ω× R+,(6.1a)

∂tb+ (u · ∇)b− (b · ∇)u = 0, in Ω× R+,(6.1b)

∇ · u = 0, ∇ · b = 0, in Ω× R+,(6.1c)

u(0) = u0, b(0) = b0, in Ω,(6.1d)

equipped with periodic boundary conditions in space. Here, u represents the fluid
velocity field, b the magnetic field and p the fluid pressure. The constant ρ0 is the
fluid density, and S = ρ0µ0, where µ0 is the permeability of free space.

The magnetohydrodynamic equations (MHD) govern the evolution of an electri-
cally conductive fluid under the influence of a magnetic field, and so are useful in
the design of fusion reactors, or the study of solar storms and other natural phenom-
enon. See [19] for more on the derivation of (6.1), and [39,49] for some applications
of the magnetohydrodynamic equations. The existence and uniqueness of solutions
to the incompressible MHD has been studied for the viscous case in [36, 47], for
example, and in [5, 12] for the inviscid case (which we consider in this paper). The
space analyticity of solutions of (6.1) is discussed in [13], whereas in the present
work we give criteria for solutions to be holomorphic functions of both the time and
space variables.

By rewriting the equations in terms of the Elsässer variables (which are defined
via the transformations v = u + 1√

S
b, w = u − 1√

S
b), we obtain the equivalent

system

∂tv + (w · ∇)v +∇P = 0, in Ω× R+,(6.2a)

∂tw + (v · ∇)w +∇P = 0, in Ω× R+,(6.2b)

∇ · v = 0, ∇ ·w = 0, in Ω× R+,(6.2c)

v(0) = v0, w(0) = w0, in Ω,(6.2d)
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where P = 1
ρ0
p+ |v−w|2

8 .

Theorem 6.1. Let (v0,w0) be such that ∥(v0,w0)∥β0 < ∞ for some β0 > 0. The
complexified inviscid magnetohydrodynamic equations (6.2) admit a unique classical
solution (v,w) ∈ Hol(R,HC)×Hol(R,HC) with

R =

{
ζ = seiθ : θ ∈ [0, 2π), 0 < s <

Cβ0
2rcr∥(v0,w0)∥β0

}
.

Proof. Proceeding as in the previous sections and using (3.7), for a fixed θ ∈ [0, 2π),
for (v(ζ),w(ζ)), ζ = seiθ, we obtain

1

2

d

ds
{||v||2 + ||w||2}+ δ(||Λ1/2v||2 + ||Λ1/2w||2)

≲ 2rcr(||v||+ ||w||)(||Λ1/2v||2 + ||Λ1/2w||2)
≲ 2rcr||(v,w)||(||Λ1/2v||2 + ||Λ1/2w||2).(6.3)

Now choose

δ = C2rcr∥(v0,w0)∥β0 .

From (6.3), we see that ||(v,w)||2 is non-increasing and

||(v(ζ),w(ζ))|| ≤ ∥(v0,w0)∥β0 ∀ ζ = seiθ, 0 < s <
β0
δ
.

In particular, this means

sup
z∈R

∥(v(z),w(z))∥ ≤ ∥(v0,w0)∥β0 .

This finishes the proof.
□

7. Analytic Nonlinearity

In this section, we consider the more general case of an analytic nonlinearity on
our basic spatial domain Ω := [0, 2π]d. Again, we consider an equation without
viscous effects (see [24] for the dissipative version). For simplicity of exposition, we
only consider the case of a scalar equation here. A vector-valued version, i.e. the
case of a system, can be handled in precisely the same way, although notationally
it becomes more cumbersome. Let

F (z) =

∞∑
n=1

anz
n

be a real analytic function in a neighborhood of the origin. The “majorizing
function” for F is defined to be

(7.1) FM (s) =

∞∑
n=1

|an|sn, s < ∞.

The functions F and FM are clearly analytic in the open balls (in Rd and R respec-
tively) with center zero and radius

(7.2) RM = sup {s : FM (s) < ∞} .
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We assume that RM > 0. The derivative of the function FM , denoted by F ′
M , is

also analytic in the ball of radius RM . Therefore, for any fixed r > 0, the function

F̃ , defined by

(7.3) F̃ (s) =

∞∑
n=1

|an|nr+ 3
2 (cr)

n−1sn−1, s ∈ R,

is analytic in the ball of radius RM/cr. Moreover,

(7.4) F̃ (s) ≥ 0 for s ≥ 0 and F̃ (s1) < F̃ (s2) for 0 ≤ s1 < s2.

We will consider an inviscid equation of the form

(7.5) ∂tu = TF (u), u(0) = u0,

where T is given by

T̂ u(k) = mT (k)û(k), |mT (k)| ≤ C|k|,k ∈ Żd.

We will assume that (7.5) preserves the mean free condition under evolution. Here,

d = 1 and the phase space H = L̇2(Ω) and A = (−∆)|H . As before, we fix r > d+1
2

and define

∥u∥β = ∥A
r
2 eβA

1/2
u∥.

The following proposition is elementary.

Proposition 7.1. For x1, . . . , xn ∈ R+ and any r > 0, we have

(x1 + · · ·+ xn)
r ≤ nr(xr1 + · · ·+ xrn).

Proof. Without loss of generality, assume x1 = max{x1, . . . , xn} > 0. Let ξi =
xi
x1

and note that 0 ≤ ξi ≤ 1. Then,

(
n∑

i=1

xi)
r = xr1(

n∑
i=1

ξi)
r ≤ xr1(

n∑
i=1

1)r = nrxr1 ≤ nr
n∑

i=1

xri .

□

We will need the following estimate of the nonlinear term to proceed.

Proposition 7.2. Let u ∈ HC with ∥A1/4u∥β < ∞. Then

(7.6) |⟨TF (u), Are2βA
1/2

u⟩| ≲ F̃ (∥u∥β)∥A1/4u∥2β .

Proof. Observe that for h1 + · · · + hn + k = 0, hi,k ∈ Żd, by triangle inequality
and Proposition 7.1, we have

(7.7) |k|r ≤ nr(|h1|r + · · ·+ |hn|r).

Denote

I ⊂ Żd+1, I = {(h1, . . . ,hn,k) : h1 + · · ·+ hn + k = 0,hi,k ∈ Żd}.
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Thus,

|⟨Tun, Are2βA
1/2

u⟩|
≲
∑
I

|u(h1)| . . . |u(hn)||u(k)||k|2r+1e2β|k|

≲ nr

(∑
I

|h1|reβ|h1||u(h1)| . . . eβ|hn||u(hn)||u(k)||k|r+1eβ|k|

+ · · ·+
∑
I

eβ|h1||u(h1)| . . . |hn|reβ|hn||u(hn)||u(k)||k|r+1eβ|k|

)
,(7.8)

where to obtain (7.8), we used (7.7) as well as the triangle inequality |k| ≤
∑

i |hi|.
Because min{|h1|, . . . , |hn|, |k|} ≥ 1, we have

|k| ≤
∑
i

|hi| ≤ n|h1| . . . |hn|, which implies |k|
1
2 ≲ n1/2|h1|

1
2 . . . |hn|

1
2 .

Consequently, from (7.8), we conclude

|⟨Tun, Are2βA
1/2

u⟩|

≲ nr+ 1
2

(∑
I

|h1|r+
1
2 eβ|h1||u(h1)| . . . eβ|hn||hn|

1
2 |u(hn)||u(k)||k|r+

1
2 eβ|k|

+ · · ·+
∑
I

eβ|h1||h1|
1
2 |u(h1)| . . . eβ|hn||hn|r+

1
2 |u(hn)||u(k)||k|r+

1
2 eβ|k|

)
≲ nr+ 3

2 (cr)
n−1∥A

1
4u∥2β∥u∥n−1

β ,(7.9)

where the last inequality follows exactly as in the proof of (3.10). This immediately
yields (7.6). □
Theorem 7.3. Let r > d+1

2 and β0 > 0 be fixed and u0 be such that ∥u0∥β0 <
∞. Then, the complexified equation (7.5) admits a unique classical solution in

Hol(R, L̇2
C(Ω)) with

R =

{
z = seiθ : θ ∈ [0, 2π), 0 < s <

Cβ0

F̃ (∥u0∥β0)

}
.

Proof. Fix δ > 0, to be chosen later and, as before, define the time-varying norm

||u(ζ)|| = ∥u(ζ)∥β0−δs.

Recall that the corresponding (time-varying) inner product is denoted by ((, )), i.e.,

((u, v)) = ⟨Ar/2e(β0−δs)A1/2
u,Ar/2e(β0−δs)A1/2

v⟩

= ⟨u,Are2(β0−δs)A1/2
v⟩.

Multiplying (7.5) by eiθ, taking the real part and then the inner-product with

Are2(β0−δs)A1/2
u, we readily obtain

1

2

d

ds
||u(ζ)||2 + δ ||A1/4u(ζ)||2 = −(( Re(eiθF (u(ζ))), u(ζ) )), ζ = seiθ.
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Using Proposition 7.2, we obtain

(7.10)
1

2

d

ds
||u||2 + δ ||A1/4u||2 ≲ F̃ (||u||)||A1/4u||2.

Now choose

δ = CF̃ (∥u0∥β0).

From (7.10), and the fact that F̃ (·) is strictly increasing (7.4), we see that ||u|| is
non-increasing and

||u(ζ)|| ≤ ∥u0∥β0 ∀ ζ = seiθ, 0 < s <
β0
δ
.

In particular, this means

sup
z∈R

∥u(z)∥ ≤ ∥u0∥β0 .

As before, the proof is now complete by invoking Montel’s theorem.
□

Remark 7.4. One can extend the method of this section to handle a nonlinearity
of the form

F (u) = T0G(T1u, . . . , Tnu),

where G is an analytic function of n-variables and Ti are Fourier multipliers with
symbol mi satisfying

|mi(k)| ≲ |k|αi ∀ k ∈ Żd, 0 ≤ i ≤ n,

n∑
i=0

αi ≤ 1.

Using the exact same technique, one can in fact also consider the case of systems,
in which case Theorem 3.1 becomes a special case.
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d’Euler, Arch. Ration. Mech. Anal. 92 (1986), 287–296.

[2] H. Bae and A. Biswas, Gevrey regularity for a class of dissipative equations with analytic
nonlinearity, Methods and Applications of Analysis 22 (2015), 377–408.

[3] C. Bardos and S. Benachour, Domaine d’analycité des solutions de l’équation d’Euler dans un
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