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Abstract

Organizations often want to predict some attribute val-
ues collaboratively. However, they are often unwilling or
not allowed to directly share their private data. Thus there
is great need for distributed privacy preserving techniques.
There exists a rich body of work based on Secure Multi-
Party Computation techniques. However, most such tech-
niques are tied to a specific mining algorithm and users
have to run a different protocol for each mining algorithm.
A holistic approach [11] was proposed in which all parties
first use a SMC protocol to generate a synthetic data set and
then share this data for different mining algorithms. How-
ever, this approach has two major drawbacks: 1) it provides
no worst case privacy guarantee, 2) parties involved in the
mining process often know what attribute to predict, but the
holistic approach does not take this into account. In this
paper, we propose a method that addresses these shortcom-
ings. Experimental results demonstrate the benefits of the
proposed solution.
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1 Introduction

Organizations often have their own private data and want
to predict some attribute values collaboratively. For exam-
ple, several credit card companies may wish to collabora-
tively build a mining model to predict credit card fraud.
However, they are often unwilling or not allowed to directly
share their private data. Thus there is great need for dis-
tributed privacy preserving data mining methods.

There exists a rich body of work based on Secure Multi-
Party Computation techniques [12]. However, most such
techniques are tied to a specific mining algorithm and can
not be generalized to other mining algorithms. In practice,
all parties usually know what attribute they want to predict

(e.g., in the above case, whether the use of credit card is le-
gitimate), but may try many different mining algorithms and
then choose the one with the best results. This means that
all parties need to run a different protocol for each mining
algorithm and each such protocol could be quite expensive
because of the communication overhead and also encryp-
tions are often used.

A holistic approach [11] was proposed in which all par-
ties first use a SMC protocol to generate a synthetic data set
and then directly share this data for different mining algo-
rithms. The synthetic data generation is based on the con-
densation approach [1]. This approach first generates size-k
clusters and then generates synthetic data based on statisti-
cal properties of these clusters. This approach has one ma-
jor benefit: data miners only need to sanitize the data once
and then can try many different mining algorithms on the
same sanitized data.

However, the condensation approach has two major
drawbacks. First, it provides no worst case privacy guaran-
tee. Since each cluster contains at least k records, it satisfies
the k-anonymity model [10]. However, this model does not
prevent disclosure of sensitive values. For example, some
records in the synthetic data may have very similar values to
records in the original data. Second, in distributed mining,
all parties often know what attribute to predict, but the con-
densation approach does not take this into account, which
may lead to inferior mining quality.

In this paper, we address these shortcomings and propose
an approach that not only provides worst case privacy guar-
antee, but also takes into account the specific mining objec-
tive (e.g., to predict the value of an attribute). The proposed
method applies when miners know the objective of mining,
but want to try different mining algorithms and then choose
the algorithm with the best results. Using our method, all
parties just need to sanitize the data once for that particular
objective, and then they can directly apply different mining



algorithms on the sanitized data.
The rest of the paper is organized as follows. Section 2

describes the existing literature. Section 3 gives some pre-
liminaries. Section 4 discusses our approach. Section 5
presents the experimental results. Section 6 concludes the
paper.

2 Related Work

There is a rich body of work on privacy preserving data
mining. Surveys can be found in [2] and [12]. Such work
can be divided into those dealing with centralized case (i.e.,
when data is sent to a third party for mining) or distributed
case. For centralized case, the commonly used techniques
include random perturbation [3], generalization [10], and
synthetic data generation [1].

Most work in distributed setting uses secure multi-party
computation and survey articles can be found in [12]. How-
ever, as mentioned in Section 1, most such techniques are
tied to a specific mining algorithm and can not be general-
ized. They also use encryption which could be quite expen-
sive. As mentioned in Section 1, a holistic approach was
proposed in [11] to address this problem. However, it does
not provide worst-base privacy guarantee and also does not
take into account the goal of mining. A perturbation method
for the centralized case was proposed in [9], which provides
worst case privacy guarantee by adding Laplace noise. This
paper extends this method to distributed settings.

There has been recent work on utility aware privacy pre-
serving data mining [6, 8]. However, all such techniques
are for centralized settings while this paper focuses on dis-
tributed settings. Further, most such works use generaliza-
tion rather than synthetic data generation or random pertur-
bation.

3 Preliminaries

This section introduces some preliminaries. Section 3.1
describes the condensation approach and its problems. Sec-
tion 3.2 explains the worst-case privacy framework pro-
posed in [9]. Section 3.3 describes the adversarial model.

3.1 Condensation Approach
Algorithm 1 describes the original condensation ap-

proach [1]. The basic idea is to generate synthetic data
while preserving the statistics of the original data. Step 1 to
3 generate clusters with size at least k. Each cluster is gen-
erated by picking a random seed and then assigning k − 1
records closest to the seed to the cluster. Statistics (includ-
ing mean and covariance) is then computed for each cluster.
Synthetic data is then generated for each cluster based on
the statistics.

One problem of this method is that the group formation
depends not only on selection of seeds but also the order of
which the seeds are considered. To address this problem,
Vaidya proposed an improved condensation approach [11].

It first generates initial groups using K-means clustering. It
then moves records in clusters with fewer than k (k is an
input) records to nearest clusters.

Algorithm 1 Condensation Approach
Input: Dataset D, Group Size k,

1: while D contains at least k points do
2: Select a random data point X from D;
3: Find the closest (k − 1) records to X and add them

to group G
4: Compute statistics for group G
5: Generate synthetic data using statistics of group G
6: Add the resulting synthetic data to output H
7: remove G from D
8: end while
9: Assign each remaining point in D to the closest group

and generate synthetic data as in Step 4-5
10: return H

3.2 Worst-Case Privacy Model
A worst case privacy model was proposed in [4] for cat-

egorical data. Later it was extended to numerical data in
[9]. This model prevents privacy breaches called ρ1-to-ρ2

privacy breach. Let X be a random variable whose values
represent the original data points. The sanitized data is rep-
resented by another random variable Y . Further let VX and
VY represent the set of possible values of X and Y respec-
tively.
Definition 1 A ρ1-to-ρ2 privacy breach with respect to
some property Q(x) of a random variable X is said to oc-
cur if for some y ∈ VY

P [Q(X)] ≤ ρ1 and P [Q(X)|Y = y] ≥ ρ2

Where 0 < ρ1 < ρ2 < 1 and P [Y = y] > 0. In a similar
way a ρ2 − to − ρ1 downward privacy breach occurs if

P [Q(X)] ≥ ρ2 and P [Q(X)|Y = y] ≤ ρ1

Definition 1 captures how much disclosing of a sani-
tized value increases predictability of the original value.
E.g., suppose the original data contains salary of employ-
ees. The probability of having a salary over one million
dollars equals 0.001. Now, suppose we observe a perturbed
salary of a person P , which is ten million dollars. One may
infer that P ′s salary is over one million with 0.99 probabil-
ity. This is a 0.001 to 0.99 privacy breach.

A perturbation method was proposed in [9] to prevent
such privacy breaches. The perturbation method first decor-
relates data by applying Principal Component Analysis. It
then adds noise following Laplace distribution to the prin-
cipal components. Let Di

P be the i-th column of the princi-
pal component matrix, bi be the range of that column, i.e.,
bi = b · (max{Di

P } − min{Di
P }), where b is a param-

eter. The noise added to the i-th column follows Laplace
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Figure 1. Example of moving records be-
tween clusters

distribution with mean zero and standard deviation b i. [9]
also proves that this perturbation method gives the follow-
ing privacy guarantee.
Theorem 1 The perturbation method proposed in [9] will
neither cause an upward ρ1-to-ρ2 nor a downward ρ2-to-
ρ1 privacy breach with respect to any property of X if the
following is satisfied

ρ2

ρ1

(1 − ρ1)
(1 − ρ2)

> e1/b

For example, in the above example, suppose b = 0.2 and
the probability of P having over 1 million dollar salary is
0.001 (ρ1). After seeing the sanitized data, using Theorem 1
we can infer that the probability of P having over 1 million
dollar salary (ρ2) will not exceed 0.13.

3.3 Adversarial Model
In distributed settings, each party has only a portion of

data and all parties want to collaboratively compute some
output without revealing their own data to other parties. We
use the semi-honest adversarial model [12] where parties
follow the protocol faithfully, but may try to infer private
information of the other parties from the messages they see
during the execution of the protocol. Under semi-honest
model, parties will not collude.

A useful technique to prove the security of a SMC pro-
tocol is the composition theorem [12].
Theorem 2 If a protocol is shown to be secure except
for several invocations of sub-protocols, and if the sub-
protocols are proved to be secure, then the entire protocol
is secure.

4 Our Approach

We consider two cases: the data is either horizontally
partitioned such that each party Pl contains a subset of
records or vertically partitioned such that each party con-
tains a subset of columns of the same set of records.

Algorithm 2 describes the method to generate a sanitized
data set H . All parties can then directly share this data set
for mining. The algorithm can be divided into 2 phases: 1)
group generation (step 1 to 11), 2) perturbation (step 12 to
28). The next two subsections describe the details.

4.1 Group Generation
In the first phase, the algorithm generates g groups each

containing at least �|D|/g� records. Similar to the holistic
approach, we use secure K-means clustering [7] (step 4) to
generate g initial clusters. For horizontally partitioned data,
we also use secure sum protocol to compute total data size
|D| to determine the group size constraint.

We propose two enhancements over the holistic ap-
proach in the first phase: 1) we use a weighted distance
function to take into account the attribute that we want
to predict, 2) we move records from a larger cluster to a
smaller cluster to satisfy the group size constraint.
Weighted distance function: Suppose the goal of mining is
to predict an attribute Av . We call it response variable. Let
m be the number of attributes, riv be the value of attribute
Av in record ri, and w, 0 ≤ w ≤ 1 be a weight parameter
decided by user. The weighted distance between records r i

and rj equals

d2
ij = w(riv − rjv)2 +

∑

1≤l≤m,l �=v

(1 − w)(ril − rjl)2

m − 1
(1)

We can now assign a higher weight to the response vari-
able so that records with similar response variable values
are grouped together.
Moving records between clusters: Some clusters may
have too few records (less than �|D|/g�). In [11], the au-
thor suggests to move records from these small clusters to
other clusters. However, we consider a different approach
to move records from larger clusters to smaller clusters.

The insight is shown in Figure 1. Figure 1(a) shows the
initial groups generated after K-means clustering. Cluster 1
contains 6 points and cluster 2 contains only 2 points. Each
final group should have 4 points. If we follow the approach
in [11], records in cluster 2 will be moved to cluster 1 so
we end up with only one group. This often leads to worse
prediction accuracy because the group contains records with
very different values. Of course, one can create more initial
clusters (i.e., choose K > g), but it becomes quite difficult
to predict the final number of groups.

Instead we move records from larger clusters to the
smaller one. The question is which records to move. Fig-
ure 1(b) shows an example when some random records are
moved to cluster 2. Cluster 2 becomes too scattered and too
much distortion is introduced after sanitization. Instead, we
move records in larger clusters that are closest to the center
of the smaller cluster. Figure 1(c) displays the result. Now
cluster 2 is much less scattered.

Let Ci be a cluster which does not contain enough
records. We need to move records from other clusters to C i.
Clearly, it does not make sense to move records to a clus-
ter Cj that is even smaller than Ci because then we need to
move more records to Cj . Thus in line 5 we sort the clusters
in ascending order of their sizes. In line 6-11, we securely
select �|D|/g�− |Ci| records in larger clusters to move. We



use the SMC protocol which finds the closest cluster center
to a data point x in [7]. Since this protocol essentially finds
the nearest neighbor of point x from a set of points (i.e., the
cluster centers), here we use it to find records in larger clus-
ters that are closest to cluster center ci and move them to
Ci.

4.2 Secure Perturbation
From line 13 to 28, we use the perturbation method de-

scribed in Section 3.2 to provide worst-case privacy guaran-
tee. The challenge is that the original method is for central-
ized case only. Thus we need to design a SMC protocol to
securely compute it in a distributed setting.

The original perturbation method consists of 3 steps:
1) transforming data using PCA, 2) adding Laplace noise
scaled to the range of each column in the principal compo-
nent matrix, 3) applying a reverse PCA to map data back
to original dimensions. The PCA transform matrix M can
be inferred from the covariance matrix. Thus in line 13 the
algorithm computes group statistics using the same SMC
protocol as in the holistic approach [11] and then infer M .
Next we describe the details of remaining steps for horizon-
tally and vertically partitioned cases.
Horizontally partitioned case: When data is horizontally
partitioned, the perturbation process can be largely done lo-
cally. Let Dl be party Pl’s data. In line 16, each party
Pl can locally transform their data by directly computing
DPl = DlM . The result will be still stored at party Pl. In
line 18, all parties can use secure comparison [12] to com-
pute the ranges of each column in the PCA component ma-
trix without revealing their local data. In line 19, each party
adds Laplace noise scaled to these ranges to their local prin-
cipal components. Each party knows the noise added to its
local data. However, they do not know the noise added to
other party’s data. Line 20 does a reverse PCA to map per-
turbed data back to original dimensions. This can be done
by directly multiplying M T (transpose of M ) to perturbed
local data (D′

pl).
Vertically partitioned case: When data is vertically parti-
tioned, each party stores a subset of the columns of the same
set of records. The main challenge is that now a data record
is no longer locally owned by a single party.

PCA can be done using secure sum protocol as follows.
The PCA transform matrix M can be divided into a num-
ber of smaller matrices M1, . . . Mr where Ml corresponds
to columns in party Pl. Each party Pl multiplies its local
Dl to Ml (line 21). Note that

∑r
l=1 DlMl = DM . Thus

all parties can use a secure sum protocol [12] to compute∑r
l=1 DlMl (line 22). The result will be stored as two

random shares DP1 = R at party P1 where R is a ran-
dom matrix and DP2 =

∑r
l=1 DlMl − R at Pr. Clearly,

DP1 +DP2 =
∑r

l=1 DlMl. Note that P1 and Pr each has a
random share of the principal components thus they can not
infer the principal components without collusion. In line

23, P1 and Pr compute ranges of each column in the PCA
component matrix using secure comparison protocol.

Now the question is how to generate Laplace noise. We
can not let any party to generate noise directly because then
later that party can infer the original data from the sanitized
data. Instead, we use the following property of Laplace
noise. Suppose two independent and identically distributed
random variables X1, X2 follows exponential distribution
with parameter λ, then X1 − X2 follows Laplace distribu-
tion with b = 1/λ. Thus P1 and Pr can independently gen-
erate two random noise matrices R1 and R2, each follow-
ing the exponential distribution with λ = 1/bj for column
j, and then they can use secure sum protocol to add up R 1,
−R2, DP1, and DP2. Note that P1 (or Pr) only knows a
random share of the noise and principal components, thus
they can not infer the noise or data without collusion.
Security Analysis: Line 1 to 3 use secure sum so only the
global data size is leaked. In line 4, the cluster membership
and cluster sizes, as well as the cluster centers are revealed.
In line 9, since secure minimal distance cluster protocol is
used, the actual distance is not leaked. Parties only learn
the IDs of records that are closest to ci. In line 12 to 28, the
group statistics as well as the ranges of principal compo-
nents are revealed. Since secure comparison is used in line
17 and 23, and secure sum protocol is used in line 22 and
25, no additional information is leaked. In line 24, Party P 1

and Pr also only have random shares of the Laplace noise.
Since each sub-protocol is secure, we can prove that the
whole protocol is secure by the composition theorem. The
formal proof is omitted due to lack of space.
Communication Cost: Let n be the number of records, m
be the number of attributes, g be the number of groups, r be
the number of parties, and rk be the number of iterations in
K-means clustering. When data is horizontally partitioned,
most computation can be done locally and the communica-
tion cost is O(mgrrk + m2r) because it costs O(mgrrk)
for secure clustering, O(m2r) for computing group statis-
tics, and O(mgr) to compute bj . When data is vertically
partitioned, secure clustering takes O(mngrrk) and com-
puting group statistics takes O(m2nr). The perturbation
method costs O(mnr). Thus total communication cost is
O(mngrrk + m2nr).

5 Experiments

5.1 Experiment Setup
The experiments were conducted on a machine with Pen-

tium Dual Core, 2.0 GHz CPU, 3.0 GB of RAM, and run-
ning Windows Vista. All algorithms were implemented us-
ing Matlab 7.0 and Weka 3.6.
Datasets: We have used two data sets from UCI Machine
Learning Repository [5]. One is the ‘Concrete Compres-
sive Strength’ data set which has nine attributes and 1030
instances. The response variable is ‘concrete compressive



strength’. The other data set is the ‘Housing’ data which
contains 506 instances and 14 attributes with house price
attribute as response variable. All attributes are numerical.
Algorithms: We implemented our approach (Algorithm 2).
We set b = 0.2 in our approach. We also implemented
an improved version of the condensation approach to use
weighted distance. We call it “weighted condensation”. We
also implemented two improved versions of the holistic ap-
proach proposed in [11]. Both versions use weighted dis-
tance. One of them generates synthetic data and is called
“weighted holistic” and the other uses the same perturba-
tion method as our approach and is called “weighted holistic
with guarantee”.
Metrics: We measure both average privacy and quality of
mining. The mining quality is measured as follows. We ran
the M5P regression tree in WEKA 3.6 with 10 fold cross
validation on the sanitized data and reported the correlation
coefficient. The average privacy was measured using the
95% confidence interval metric proposed in [3]. The results
reported were the average of 5 runs.

5.2 Results
We varied the weight on the response variable. Figure 2

shows the correlation coefficient of sanitized Concrete data
when the weight w equals 1/m where m is number of at-
tributes (i.e. equal weight to all attributes), 0.3, 0.5, 0.8,
and 1. Figure 3 shows the results for Housing. In both data
sets we have kept the group size greater than or equal to 100
and implemented all methods to have the same number of
groups.

The results show that our approach leads to significantly
better mining quality than other methods. The improvement
over the original methods (without weighted distance) is
even larger. For example, the highest correlation coefficient
of our method is around 0.81 for both data sets. The corre-
lation coefficient of the original condensation (with equal
weight) is 0.41 for both data sets and the coefficient for
original holistic approach (with equal weight) is 0.48 for
Concrete and 0.42 for Housing.

All methods also generally perform better as weight in-
creases because putting higher weight on response variable
will put records with similar response variable values into
the same group and thus improve the prediction accuracy. In
practice, we can set default weight to 0.8 (about the optimal
for all methods) and adjust it if necessary.

Figure 4 and Figure 5 show the tradeoff between aver-
age privacy (in terms of confidence interval) and correla-
tion coefficient for our method and the original holistic ap-
proach. Our method uses the optimal weight while conden-
sation uses equal weight. The X-axis is the privacy values
for various number of groups (indicated as g) and Y-axis
gives the corresponding correlation coefficients. Clearly,
our method has better correlation coefficient than the holis-
tic approach when they have similar average privacy. When
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g is smaller, group size becomes larger, so privacy increases
and correlation coefficient generally decreases for the holis-
tic approach. However, for our method when g is very large
(meaning group size is very small), the correlation coeffi-
cient of our method does not decrease as g decreases, prob-
ably because random noise introduces more error on smaller
groups than on larger groups. This actually favors our ap-
proach because larger groups have better privacy.

6 Conclusion

In this paper we have proposed a distributed privacy-
preserving method that allows data miners to sanitize the
data only once for the same mining objective (e.g., to pre-
dict a certain attribute). Data miners can run different min-
ing algorithms on the sanitized data. Unlike the holistic ap-
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proach, our method also provides worst case privacy guar-
antee. Interestingly, by modifying the group generation
process, our method also achieves better mining quality
than the holistic approach. Our method is of course more
expensive than the holistic approach due to more careful
movement of records from larger clusters to smaller clusters
(which requires nearest neighbor search). As future work
we will investigate more efficient algorithms.
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Algorithm 2 Utility Aware Sanitization Algorithm
Input: Data D (n rows m columns) distributed at parties
P1, . . . , Pr, # of groups g, response variable Av , weight w,
noise level b.

1: if D is horizontally partitioned then
2: all parties use secure sum to compute |D|
3: end if
4: All parties run secure K-Means clustering [7] on D

with K = g and with weighted distance function.
5: Sorts the clusters in ascending order of cluster size. If

the data is horizontally partitioned then the parties need
to first use a secure sum protocol to compute the num-
ber of points in each cluster.

6: for each cluster center ci, i = 1, . . . , g do
7: Add all points in cluster Ci to group Gi

8: if |Ci| < �|D|/g� then
9: Use the protocol to find the closest cluster [7] to

find �|D|/g� − |Ci| points in
⋃

Cj , j > i that are
closest to ci, and move them to group Gi.

10: end if
11: end for
12: for each Group Gi do
13: Use SMC protocol in [11] to compute group statistics
14: Infer PCA transform matrix M from statistics
15: if D is horizontally partitioned then
16: Each party Pl locally computes DPl = DlM

where Dl is its local data.
17: All parties use secure comparison protocol to se-

curely compute the range of each column as b j =
b · (max{Dj

P}−min{Dj
P }) where Dj

P is the j-th
column in the PCA component matrix

18: Each party Pl locally adds Laplace noise with zero
mean and standard deviation bj to the j-th column
in DPl to get D′

Pl

19: Each party Pl computes D′
PlM

T where MT is
transpose of M and adds the results to output H

20: else if D is vertically partitioned then
21: Each party Pl computes DlMi where Mi is the

columns in M that correspond to columns in P l.
22: Use secure sum protocol [12] to compute∑r

l=1 DlMi and store the results as two random
shares as DP1 at P1 and DP2 at Pr

23: P1 and Pr use secure comparison protocol to com-
pute bj = b · (max{Dj

P } − min{Dj
P })

24: P1 (Pr) generates n× m random noise matrix R1

(R2), which follows exponential distribution with
λ = 1/bj for the j-th column.

25: P1 and Pr use secure sum to compute DPN =
(DP1 + R1 + DP2 − R2)

26: adds DPNMT to output H .
27: end if
28: end for
29: Return H


