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On the Stability of Certain Difference Schemes*

By
THOMAS I. SEIDMAN **

The von Neumann stability criterion is employed in analyzing the stability
of a class of difference schemes for initial-value problems involving linear parabolic
partial differential equations, %, = A u.

It is shown that, contrary to the usual rule of thumb, there exist completely
implicit difference schemes which are unconditionally unstable. Further, it is
shown that the stability properties of certain sets of corresponding schemes
are closely related.

We consider the linear parabolic partial differential equation for u=u(x, {)

(1) u,— Au=0
where
B o2 8
(2) A‘jZkai,k ox; ox + ;dkiax_k +a.

Let % be an open subset of Euclidean K-space and, to avoid complications,
assume that its boundary 0 % is“‘nice”’. Equation (1) is to hold fore = (x,, ..., x¢)eN
and 0<t<Coco. In addition we specify the initial condition

3) u (e, 0) =u"(x)

and certain (linear homogeneous) boundary conditions on #(x,f) for ® in a
neighborhood of 0. The parabolicity of (1) is equivalent to the positive-
definiteness of the K x K matrix of coefficients |a; 4| so that

(4) %aj,kfjszo
1

for any (real) vector §= (&, ..., &). Also, it is no restriction to assume, as
we do, that this matrix is symmetric, a; ,=a, ;.

The usual two-level procedure for the numerical solution of this problem
may be described as follows:

For >0 let M, be a mesh (ie., a finite array of points {ad} in the closure

of R} and represent the initial function #° by a set of values w’={w,} where
8

o, approximates #°(xj). A linear operator C, (depending on the equation (1)
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and the particular boundary conditions) can then be applied to give an approxi-
mation w'=C; w° to «(x;, 8 and, if A does not depend on ¢,

(5) w=Ciw"  [Cy=(Cy)]

should approximate the solution; w} ~u (®], » 8).

The scheme is convergent if, as § -0, v § ¢, and ®} —x, one has w},—>u(x, t).
It is stable if the numbers {||C}[} are uniformly bounded as 6 -0 witho<y 6 =T
(for any fixed T). Under appropriate conditions on the nature of the boundary
conditions it is known (see [2] and [4]) that stability is equivalent to convergence.

Neglecting the treatment of points near the boundary o9, the operator C,
generally is obtained from (or, frequently, determined implicitly by) expressions
of the form

(6) (w”“——w”}/é:A} A w’
where
(7) A= A5 + 45

is an approximation, for functions on Iy, to the differential operator A4, satis-
fying the comsistency condition?

(8) Aju=Au-+o(1) as 6-—0.
C; is then given by
9) Cy=(I— 045 (I+04;).

We shall say that difference schemes {€C,} and {66}, consistent with the same
equation and each arising as in (6) and (9), correspond if, whatever A, A5, N;, A~§
may be, one has A;=A4;. We say that a scheme C, is explicst if Ay=A, and
A5 =0 so that “‘space differencing’’ is done entirely at the “old”’ level and that
it is completely implicit if the “‘space differencing’’ is done entirely at the “‘new’
level so A5=0 and A} =A;.

If the mesh M, forms a lattice with points {&,,} = {(X;+m Ay, ..., Xic+my ) }
where X=(X,, ..., Xx) is some fixed point of the mesh, m=(m,, ..., my) has
integer entries, and the {A,} are small positive numbers A,= %, (0), then (6) may
be put into the form? (for notational convenience we take X=0)

(10) w:rtI‘6Za:n,nw:rtin:w:n+62a:n,nwzn+n

n n
where w,, is the component of the numerical solution approximating # at the
mesh point &,,=mh=(mh,, ..., mghy). In general the coefficients a,,, and
%, n Will vanish except for a comparatively small set of {n} indexing the neigh-
bors of the central point and we let R be the set of n for which the {«5, ,,} and

{otn,m} do not both vanish; we assume R may be taken independent of m and
of ¢.

1 This may be checked, in general, by expanding the terms of Az« in Taylor’s
series.
2 As a matter of practice, of course, the scheme usually originates in this form.
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If the mesh K, is such a lattice it may be that the scheme has the following
property: — the indices {m} can be ordered in such a way that whenever, on
the left-hand side of {10), the coefficient «,,, , 90 we have m +n <m. Such
a scheme will be called sweep-explicit. This name is used because in certain
cases — depending on the boundary conditions?®, etc. — (10) now gives each
it explicitly in terms of known quantities if one sweeps the mesh taking
the points in the order? determined by that specified for the indices m.

To analyze the stability of difference schemes, von Neumann introduced,
particularly for equations with constant coefficients, the necessary condition

(11) |i(s, ®, 0)|<A  (wo=<T)

where 1=A(s, x, §) is obtained by substituting into (10) exp{2aw¢s-x,,] for

o, and lexp[2nis-x,,] for ot Clearly,

1 (Sza:n "eZnis-rnh
n

(12) A(s,x, 0) = 762a7+;”’;32nis-nlh :
n ’

The condition is that for each x¢% and 7>0 there is to exist a constant A
such that {11) holds for each s as § >0. For a significant class of schemes this
provides a sufficient, as well as necessary, condition for stability® and we hence-
forth consider only such classes of difference schemes that this applies.

In the construction of difference schemes the usual technique is to replace
cach of the differentiations in (2} with an appropriate difference expression on
the lattice M;. E.g., one replaces d2u/ox} by

(13) (Wi ge — 204, + (Umfk]/hzk = (0 W),), = (0, W)y,

where bold face k denotes the vector whose only non-zero component is a 1
in the k-th place. For the mixed second derivatives one treatment is to

8 The case of periodicity conditions, which we will be using as an illustration for
stability analysis, is not one of these cases but we will trust that the schemes which
are sweep-explicit have the same stability properties as what one would get by
modifying them for periodicity ‘“‘boundary” conditions while retaining the same
space differencing as in (10) for interior points — i.e., the von Neumann condition
is sufficient as well as necessary for stability.

4 It should be noted that the most convenient way to treat the boundary con-
ditions may involve reversing the ordering of 9%; on alternate sweeps with a cor-
responding interchange of A5 and Aj. If €5 and Cj are the operators for these alternate
schemes then we may consider only every other step and use C35=C5Cs as the
operator of the ‘‘combined”” scheme. Clearly Csswill be convergent if the von Neumann
condition {11) applies to each of these schemes since it follows immediately from
the definitions that
M'(s, &, 20)=A"(s, ®, 0) A(s, x, 0).

5 In particular if the coefficients are all constants, the region R is defined by
inequalities {x,<x,<*,}, and if the boundary conditions just require periodicity
with periods (¥,—%;), the operator Cy is, e.g., normal, then taking Fourier trans-
forms gives an elementary argument that the von Neumann condition is necessary
and sufficient. See, e.g., Ch. IV of [3].

14%
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introduce a variety of difference operators oi:cf B

a) (o = [wm+j+k — Ot j— Oma ke T Omllhi g,
(14) b) (o? )m: [wm+j_ wm+j—k_wm+wm—k]/hjhk;
c) (0‘ W), = [wm_wm—k—‘wm—j"l’wm—j—k]/hjhk;
d) (o* )mz[wm+k_wm_‘wm~j+k+wm—j]/hjhk

and to replace 0%u/0x; dx, by any convex® weighted average of these. Similar
treatment can be made of the first derivatives but for simplicity we analyze
in detail only the case in which

, . o
2" A_Zaf'k_—ax,-éﬂ:;
ik
with no lower order terms. Using these difference operators, we obtain, to
replace the differential operator 4 of (2), the difference operator?

1

(15) Aa:Z“k,k“k +_Z a;‘,k[zc;,ko!,k]
% ik i1

where the weights {c} ,} satisfy X ¢f,=1.

11
Once one has chosen the form of the (“‘space’) difference operator A one
still has freedom in splitting it into A and A5. In particular, one can construct
corresponding explicit, completely implicit, and sweep-explicit schemes. The con-
struction of the first two of these is clear: —

a) opt'=wn+ 0[d,w’];

b) wpt=[I—~04)" 0],

but we must look a bit more closely at the construction of the last. If M, is
ordered lexicographically then @, can be split to give

(04 ] =[Ok — wm]/h?a + [wm+k - wm]/hlze

=[oy 0 + of W],n
and we note that ¢° involves only “‘old”’ points (m’<m) while 6* involves only
“new’’ points (m'Z=m). Also ¢® and ¢! involve only ‘‘old”’ and “‘new’” points
respectively. On the other hand, 62 and &* must be split in a similar fashion
too: —

(16)

(17)

a) [6]40]m=[0]5 @ + &} O]
N {[wm—k — Oyt j—1e )i e+ (O j— OB by (G <K)
[Wpe—te — wm]/hi hy, + [wm+j - me,k]/h,- by, (i>Fk);
(b [0fs00]m=[0]} @ + 0§ @]y,
. {[wm—j - wm]/h;' b+ [Omy e — wm—j+k]/hj by, (<K
N (O j— O jr ) [P B+ (O ke — O] [Bi By (> E).
¢ If negati;_e weights are permitted then additional classes of unstable completely
implicit schemes can be constructed (note, e.g., Appendix I).
7 The expression (15) by no means gives the only way of constructing difference

operators consistent with (2’) but it is a convenient case for analysis and is most
frequently encountered in practice.

(18) .
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Thus, if A4 is given by (15) we construct the sweep-explicit scheme by defining
Ay and 4§ to be

A5= ; A o) “|‘,§k“;', k [C?,k"?]; + Cg,k"?,k + C}‘l,k "?,';]
(19) ’ - ]
A= Zk %, k% #%,fﬂ ACAT AR AT At A
1
so that, by (9),
(16) c) wp!=[I— 343 I+ 645 & .

For simplicity we analyze the case of equation (2’) with constant coefficients
where 9 is taken to be the unit hypercube in K-space and the boundary con-
ditions are periodicity in each variable. It is known (see [8]) that if C, is a
normal operator® then (11) is necessary and sufficient for stability. The same
sort of analysis works, of course, for any class of schemes to which the von Neu-
mann criterion is applicable.

Note that in the case of constant coefficients we are now considering, 4 is
independent of @ (i.e,, of m), assuming the {c} ,} are taken independent of m
(we assume they are also independent of §, for that matter). It is easily seen
that the difference operators o, are self-adjoint; 6, and o; are adjoints as are
6}, and o}, o}y and o}}, oy and o}, and o}, and o}, for j, k=1, ..., K.
Thus, by requiring ¢} ,=c}, and ¢ ,=cf, (j, k=1, ..., K), we have A4, self-
adjoint and, in the case of a sweep-explicit scheme given by (19), 4; and A4}
are adjoints. For simplicity we also assume that all the {#,} are the same
(le=h=h(0) for k=1, ..., K) and let the dependence of & on § be such that
r=40/h? is a parameter of the scheme, remaining constant as d —0.

8 Observe that any pair of difference operators, § and §” given by
[Sw]m =2 on Om+n
neRn
[s,w]m = Z 0‘;1 Omin
nefn

in which the coefficients depend on the translations {n} but not on m will always
commute (given the periodicity condition) —

[Ss,w]m_—‘ 2 “n[s,‘»"]m+n= z ) Z °‘In’w(m+n)+n’
nch nciht neRN

’
= 2 dnlpy O ntn
nwCN +

= 2 a8 Wlhnin=16"8wln.
nwen

Now the adjoint of such an operator has the same form —

[s*wjm = D Uy Wgp—p = 2w Om+n’
neh neEN
where

Re=(—N) and oy =8, (RER s0 (—n)=n"ERN*).

Thus, § and §* commute when § has the form above (a difference expression with
“constant pattern”’ for an equation with constant coefficients and periodicity con-
dition) and § is normal.

Since the operator Cj is built up of such commuting normal operators it is itself
normal.
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We observe that, for the boundary conditions to apply at all, 4 must go to
0 through values such that 1/A takes only integer values {M,} and the periodicity
condition then restricts s to integer components; 0<s, <M, (k =1, ..., K).

Corresponding to each of the difference operators ¢ is an “‘amplification
factor” o (identified by the same indices) given by

(20) o=0(sh)= g mis-mi (h*c 627tis~mh) .

For example
oy (sh) = [62nis~kh 2 anis-(fkh)] — Iﬁklz
where
By=20, (s h) = (2™} 1),

We obtain 44, 44, and 4] by substituting into (15) and (19) the appropriate
amplification factors for the ‘e’s. Note that A,=A,(s4) is real (since A; is
self-adjoint) and is the same for corresponding schemes. For future reference
note that for explicit, completely implicit, and sweep-explicit schemes one has,
by substitution into (16),

a) A=1+rd, (explicit),
(21) b) A=1/(1 —r4,) (completely implicit), and
¢) A=(1+rAg)/(1t—rA5)  (sweep-explicit).

We observe the dependence of the amplification factors on § is only through

the circumstance that the exponents (2mmis-mh), etc, give {s,4} in the

{8,}. Thus 4 really depends only on sk=1Jr s but not on @ or otherwies on é.
We may, in the present case, replace (11) by

(119 sup | A(sh)| =1
8h

which is now a necessary and sufficient condition for stability. That (11) is
sufficient for (11) is clear. To show that it is necessary suppose for some s’/
one had | A(s'A’)| = A'>1. Then for any integer H, letting #"'=h'/[H and 8" =s'H,
one has both A" and 8"’ admissible and 8" 4"'=s"A’. Now for any given A and
T one can find v’ such that (1')"">A and choose H such that v” & =»""(h'}2r/H?
is less than 7. Then |A(s”%")]"'=(1)"">A and (11) fails also. Thus (11') is
equivalent to (11) in the situation now under consideration. We see that as
0—0 the admissible values of #=s/ become dense in the unit hypercube in
K-space and, as A is a continuous function of &, the “sup” in (11') may be
taken over all ¢ in this hypercube — for that matter, since s /% only enters
through exp[2n¢s-m k] (which is periodic in #) the “sup’” may be taken
over all ¢ in K-space.

Theorem I. Contrary to the usual rule of thumb? there are completely
implicit schemes (even for the restrictive case now under analysis of parabolic

? Most analyses have been done for =1 or 2. In these cases the type of in-
stability exhibited here can not occur (which would seem to explain why this pheno-
menon has been heretofore unremarked.) See Appendix I.
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equations with constant coefficients) which are unstable for all values
of 7.

Proof. We consider the parabolic equation

(22) Uy = %(Mxx ‘F %yy + %zz) + 2 (uxy + Uy oy + Myz)
and let!?

n (15) and (16.b) so

(23) A,=4;= (3(0, + 0, +a3) + (oi,z +°},3 +°§,3) + (“:;,2 +°'?,3 +Ug,3)]
and
=[3(0y + 05+ 03) + (01,2 + 07, 3+0;,3) + (03 +U§,3 +0’§,3)]

(24) =[= 31112+ 19212 + 10513 + (010 + 0,0, + 920y) +
+ (319 + G195+ 9,09)].

Clearly A4, is real and continuous. Equally clearly if we set &, =0,=1;=1
then A,=(—% +6 Re{9?}) takes all values between —147/16 and +6 so
that, for any 7, 4,7 must take values between 0 and 2 which makes 1 (given
by (21.b) take real values greater than 1 in absolute value for the appropriate
choice of & (i.e., of 8). Thus, the scheme fails to satisfy (11) and is unconditionally
unstable for every value of 7).

Exhibiting a single unconditionally unstable completely explicit scheme suffices
to prove the theorem but we note that, given our choice of the difference ex-
pressions {6, ,=%(6] ,+67,)} to replace the mixed differentiations {#?/9x; &x,}
throughout, the completely explicit scheme is always unconditionally unstable
if the coefficient matrix ||a; 4| in (2) satisfies certain rather awkward conditions,
the proof being essentially the same as above.

Theorem II. Consider corresponding explicit, completely implicit, and sweep-
explicit schemes (each parametrized by the mesh-ratio 7) of the type considered
above. Then the following statements are equivalent: —

a) The explicit scheme is conditionally stable (i.e., stable for 0<7<Cr,
for some 7,>0).
{(24) b) The completely implicit scheme is unconditionally stable (i.e., stable
for all »>0).

¢) The sweep-explicit scheme is unconditionally stable.
Proof. We shall show that each of these statements is equivalent to

(25) 4,0 (all#).

From (21.a) it is clear that if A;(sA) were ever positive then, for any >0,
A(s %) would be greater than 1 so, by (11'), (24.a) would fail and the explicit
scheme would be unconditionally unstable. On the other hand, 4; is a con-
tinuous function of #=s % over its period, the unit hypercube, which is compact.

RS Had we taken the weights {c} ;} independent ofj, % as here but with ¢ 4¢3 <¢?+¢*
then the scheme would have been stable. See Appendix II.
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Hence |4,] is bounded and, letting

1= 1/52P{—Aa(t)}:

one has, for 0<7<<7,,
—A<1+rds=251

which, by (11'), makes the explicit scheme stable for such » and (24.a)
holds.

Clearly, substituting (21.b) into (11’), (25) implies stability for all >0 and
(24.b) holds. Conversely, were A, ever positive (A,(t)=A>0) then, for
0<r<<1/A, we would have A(f) =1/(1—7rA) >1 so, by (11'), the scheme would
be unstable and (24.b) would fail.

Moreover, since A4; is continuous and A,(0)=0 we would then have in-
stability for every » — not only would the completely implicit scheme not be
unconditionally stable but, as in the example in the previous theorem, it would
be unconditionally unstable.

Finally, in the sweep-explicit case, we note that, since A; and A; are ad-
joints, A5 and A; are conjugate and A,=A;+ A;=2R{A;}. Putting this in
(21.c), writing « for A3=A4;, gives

|A2=27= 1+rva  1+rE  1+r2|al2trds

1—r& 1—ro 1+ a2—rAs "

Clearly (25) implies (11’) for any » and hence, (24.c}) while the failure of (25)
implies instability for every » — as with the completely implicit scheme, the
sweep-explicit scheme is either unconditionally stable or else unconditionally
unstable.

Appendix 1

For K =1 the only possibility of the sort we have been considering is
w=au, (2>0)

for which we take A;=aa;. The conditional convergence (and hence, by [2],
the conditional stability) of the explicit scheme goes back to [I] and we may
then apply Theorem II to show the unconditional stability of the corresponding
completely implicit scheme.

For K=2 we have

Uy == Gy Uy + By Uy + 203 4,

where the matrix is positive-definite and we take, writing o' for o,

a3y

(i=1,...,4), o

Ay=a,0,+ 050,124, 2. ¢ &,
i

requiring, for the moment, only that c'-¢2+4 ¢34 c*=1. Then
Ay=— “1|"91]2 - azl'ﬂzlz + 2a5[A Py — 2Dy + 03511—92 - 0451792]
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and
Re{ds) = —a (& + i —ay (& +n3) -+

F2a5[c (& & —mmy) — (516 ) +

+ (G —mm) — A& &+ mns)]

= —[m 7} +aumi +2a3mn,] — [0 E1 4 0y 85+ 285 0% £, &,]
where #,=&, 447, (k=1,2) and c*=c'—c?+3—c* From (21.b) we get for
the completely implicit scheme with this A,
[A|2= (1472|442 —27 Re{ds})?

and the scheme will be stable if and only if

r|As|2—2 Re{As}

is always (i.e., for all s) non-negative. Certainly a sufficient condition for this
is that #e{4,} is non-positive; for which it is sufficient that a;c*=0 or that
|c*| <1; which last is certainly true if the weights {¢’} are taken non-negative.
It follows that if we take a convex weighted average of the @;, to replace
0%/ox 8y the completely implicit scheme is unconditionally stable.

Thus we have proved the

Theorem. For K < 3 all completely implicit schemes obtained in the manner
specified by (15) and (16.b) are unconditionally stable.

Appendix I1
Let us choose a number I” less than or equal to 1 and take the weights
{¢; 4} to be
le,k:C?,k:%Fi 7k—0}1 =3(1-1).
Then we wish to show that the completely implicit scheme constructed with
these weights according to (15) and (16.b) will be unconditionally stable.
We are thus taking
o =0=31(0],+0}4) + 31 —T) (6} 1 +0in)
and, from (15),
As= @ , O+ 2 ik 01(,12
2 ik
Now _
0 x=30(0; 9 +9; %) —F(1—1) (0; 9+ ;)
=Q2I'—1) & &—n;m
(Op=E&,+ 17 m, for k=1, ..., K) whence

Ag=(2I—1) Za €& — Zakkfk Za,»,knmk'

We observe that each of the sums on the right is non-negative (the first and
last since the matrix ||a; ,| must be positive-definite) and, since I'< §, we have
(2I'—1)£0 and 1—1I")=0. Thus 4,<0 (for all s) and, as in the proof of
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Theorem II, this is equivalent to the unconditional stability of the completely
implicit scheme with this 4.

Note that we have not required I'=0. The effect of the condition '}
is just that in [c}f;} w],,, the weight of w,, itself will be non-positive.
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