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O n  t h e  S t a b i l i t y  o f  C e r t a i n  D i f f e r e n c e  S c h e m e s *  

By 

THOMAS I. SEIDMAN** 

The von Neumann stabil i ty criterion is employed in analyzing the stabili ty 
of a class of difference schemes for initial-value problems involving linear parabolic 
partial differential equations, u t = A u. 

I t  is shown that ,  cont rary  to the usual rule of thumb,  there exist completely 
implicit difference schemes which are uncondit ionally unstable. Further ,  it is 
shown that  the stabili ty properties of certain sets of corresponding schemes 
are closely related. 

We consider the linear parabolic partial differential equation for u = u ( m ,  t) 

(I) u s - - A u = O  

where 
92 

(2) A = ~,  aj, ~ ~ j ~ k  + ~' ak ~ + a. 
j,k k 

Let ~3t be an open subset of Euclidean K-space and, to avoid complications, 
assume that  its boundary  0 ~ is"nice".  Equa t ion  (t) is to hold form--  (x 1 . . . . .  xK)C~ 
and 0 < t <  o~. In  addition we specify the initial condition 

(3) ~ (x, o) = ~~ 

and certain (linear homogeneous) boundary  conditions on u(x ,  t) for m in a 
neighborhood of 0~t. The parabolici ty of (1) is equivalent to the positive- 
definiteness of the K •  matr ix  of coefficients llai, kl[ so tha t  

(4) E aj, k ~i ~ >= 0 
L k  

for any (real) vector  r  ~/,'). Also, it is no restriction to assume, as 
we do, tha t  this matr ix is symmetric,  aj, k=ak,  j. 

The usual two-level procedure for the numerical solution of this problem 
m a y  be described as follows: 

For  6 > 0  let ~ 0  be a mesh (i.e., a finite a r ray  of points {x~} in the closure 
of ~l) and represent the initial function u ~ by  a set of values t o ~  {m~,} where 
e~ approximates  u~ A linear operator  Co (depending on the equation (1) 
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202 THOMAS I. SEIDMAN : 

and the par t icular  bounda ry  conditions) can then  be applied to give an approxi-  
mat ion  to1= Co too to u (x~, (5) and, if A does not depend on t, 

(5) t o ' =  c ;  to ~ [ ~  = (co)'] 

should approx imate  the solution; ~o~ ~ u (x~, v (5). 
The scheme is convergent if, as (5---~0, v (5-+t, and x~--~x, one has J , - -~u(x ,  t). 

I t  is stable if the numbers  {ltc;/[} are uniformly bounded  as (5-+0 with 0 < v  (5 ~ T 
(for any  fixed T). Under  appropr ia te  conditions on the na ture  of the boundary  
conditions it is known (see [2] and [4]) t ha t  s tabi l i ty  is equivalent  to convergence. 

Neglecting the  t r ea tmen t  of points near  the  boundary  a~3t, the opera tor  C o 
generally is obta ined from (or, frequently,  de termined implici t ly by) expressions 
of the form 

(6) ( t o v+ l  - - t o ' ) / a  = A ;  to,+1 + A;  to" 

where 

(7) A o =  A+~ + A~ 

is an approximat ion ,  for functions on ~ e ,  to the differential opera tor  A, satis- 
fying the consistency condition ~ 

(8) A 6 u = A u + o ( l )  as ~ 0 .  

C0 is then given b y  

(9) c~ = ( i -  (SA;) ~(i + OA;). 

We shall say tha t  difference schemes {Ce} and {C0}, consistent with the same 

equat ion and each arising as in (6) and (9), correspond if, wha tever  Ag, A~, A; ,  ~i~ 

m a y  be, one has A o = f l  o. We say tha t  a scheme C O is explicit if A~ and 
Ag = 0 so t ha t  "space  differencing" is done ent irely a t  the "o ld"  level and tha t  
it is completely implicit if the "space  differencing" is done entirely at  the " n e w "  
level so A ~ = 0  and A ~ = A  o. 

I f  the mesh 9J~ 0 forms a latt ice with points  {Xm} = { ( X l + m l h l  . . . . .  XK+mKhK)} 
where X =  (X 1 . . . . .  XK) is some fixed point  of the mesh, m =  (m 1 . . . . .  inK) has 
integer entries, and  the {hk} are small posit ive numbers  h k =  h k ((5), then (6) m a y  
be pu t  into the form ~ (for nota t ional  convenience we take  X =  0) 

o v 
(10)  v + l  ~X~ + v + l  (D~n ~_ (5 Z a n ~ , n  (Din+ n O) m - - O ~ _ ~ a m ,  n O ) m + n  = 

n !1 

where ~o m is the component  of the numerical  solution approx imat ing  u at  the 
m e s h p o i n t  X m = m h = ( m l h  1 . . . . .  mKhK). In general the coefficients a ~ , n  and 
a ~ , n  will vanish except  for a compara t ive ly  small  set of {n} indexing the neigh- 

a + bors of the central  point  and we let 92 be the set of n for which the { m,n} and 
o (an, m} do not  bo th  vanish;  we assume 92 m a y  be t aken  independent  of m and 

of (5. 

1 This may  be checked, in general, by expanding the terms of A0u in Taylor 's  
series. 

2 As a mat ter  of practice, of course, the scheme usually originates in this form. 
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I f  the  mesh  9J~ o is such a l a t t i ce  i t  m a y  be  t h a t  t he  s cheme  has  t he  fo l lowing 
p r o p e r t y :  the  indices {m} can  be  o rde red  in such  a w a y  t h a t  w h e n e v e r ,  on  

t h e  l e f t - h a n d  side of ( t0),  t h e  coef f ic ien t  e + n 4 - 0  we h a v e  m + n  ~ m .  Such  
a s cheme  will  be  cal led sweep-exp l i c i t .  This  n a m e  is used  because  in ce r t a in  
cases  - -  d e p e n d i n g  on the  b o u n d a r y  cond i t i ons  a, etc.  - -  (10) now gives  each  

v + l  O)m exp l i c i t l y  in t e r m s  of k n o w n  q u a n t i t i e s  if one  sweeps  t h e  m e s h  t a k i n g  
the  po in t s  in t he  o rder  4 d e t e r m i n e d  by  t h a t  speci f ied  for t he  indices  m .  

To  ana lyze  the  s t ab i l i t y  of d i f fe rence  schemes ,  yon  N e u m a n n  in t roduced ,  
p a r t i c u l a r l y  for e q u a t i o n s  w i t h  c o n s t a n t  coeff ic ients ,  t he  necessa ry  c o n d i t i o n  

whe re  ~ = ~ ( s ,  x ,  6 ) i s  o b t a i n e d  b y  s u b s t i t u t i n g  in to  (10) e x p ( 2 ~ i  s .  x, , , ]  for 

o ~  and  ~ e x p [ 2 ~ i s  �9 Xml for ~,,,~+1. Clearly,  

1 + d E  ~ , , , ,  e 2~i . . . .  h 

(12) i ( S , X ,  6) . . . . .  1 a~,%n, ~ ...... n e Z " i ' s ' m h "  
n 

T h e  cond i t i on  is t h a t  for each  x ~  a n d  T > 0  the re  is to ex is t  a c o n s t a n t  A 

such  t h a t  (1I) ho lds  for  each  s as  6 - > 0 .  F o r  a s ign i f i can t  class of s chemes  th is  
p r o v i d e s  a suff ic ient ,  as wel l  as necessary ,  cond i t i on  for s t ab i l i t y  s and  we hence -  
fo r th  cons ider  on ly  such  classes of d i f fe rence  schemes  t h a t  th is  appl ies .  

I n  t h e  c o n s t r u c t i o n  of d i f fe rence  schemes  the  usua l  t e c h n i q u e  is to rep lace  
each  of t he  d i f f e r en t i a t i ons  in (2) w i th  an a p p r o p r i a t e  d i f fe rence  express ion  on 
t h e  l a t t i ce  ~JJ~6. E.g . ,  one  rep laces  O2u/Ox~ b y  

(13) Eo)m+ k - -  2 0 , m  4- (Urn k]/h~ = (n eO)m --  (r tO)m 

where  bo ld  face k deno te s  t he  v e c t o r  whose  on ly  non-ze ro  c o m p o n e n t  is a 1 
in the  k - th  place.  F o r  t he  m i x e d  second d e r i v a t i v e s  one t r e a t m e n t  is to 

3 The case of periodicity conditions,  which we will be using as an i l lustrat ion for 
s tab i l i ty  analysis, is not  one of these cases but  we will  t rust  tha t  the  schemes which 
are sweep-explici t  have  the same s tabi l i ty  propert ies  as wha t  one would get  by  
modify ing  t h e m  for periodici ty " b o u n d a r y "  conditions while re ta ining the  same 
space differencing as in (10) for inter ior  points  -- i.e., the  yon Neumann  condi t ion 
is sufficient  as well  as necessary for stabil i ty.  

4 I t  should be noted tha t  the  most  convenient  way to t rea t  the boundary  con- 
dit ions m a y  involve reversing the  ordering of g)2 o on a l te rna te  sweeps wi th  a cor- 
responding interchange of A~ and A~. If C a and C~ are the operators  for these a l te rna te  
schemes then  we m a y  consider only every  other  s tep and use (.'~'~ = C~C~ as the  
opera tor  of the " c o m b i n e d "  scheme. Clearly C~'~ will be convergent  if the  von Neumann  
condi t ion (11) applies to each of these schemes since it  follows i m m e d i a t e l y  from 
the  definit ions tha t  

~"(s, x, 2a)=Z' (s ,  x, ~) ~(s, x, a). 

5 In par t icular  if the  coefficients are all constants,  the  region }R is defined by 
inequali t ies  { y k < x ~ < - i k } ,  and if the boundary  condit ions jus t  require per iodic i ty  
wi th  periods (Nk--xk), the  opera tor  Co is, e.g., normal,  t hen  tak ing  Four ie r  trans- 
forms gives an e lementa ry  a rgument  tha t  the yon Neumann  condi t ion is necessary 
and sufficient. See, e.g., Ch. IV of [3]. 

14" 
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in t roduce  a va r i e t y  of difference opera tors  a ~ : a ~ , k  - -  

a) ( O1 00)m = ~(Om+j+k - -  CO,n+j - -  COm+k + C~ 
04)  b) (O2 r = [COm+j - -  com+j- -k  - -  COrn + C~ 

C) ( ~ tO)m : [COm - -  com--k - -  Otm--j  -~- com--j--k~/h] hk; 

d) ( o 4 o a ) m  : [Wm+h - -  corn - -  COm-j+u + COm-j]/hjhk 

and  to replace O*u/Ox i Ox, b y  any  convex  ~ weighted  average of these. S imi lar  
t r e a t m e n t  can be made  of the  first  der iva t ives  bu t  for s impl ic i ty  we analyze  
in de ta i l  only  the  case in which 

02 
(2') A = ~ aj, k 

Ox i Oxk 

with  no lower order  terms.  Using these difference opera tors ,  we obtain ,  to 
replace the  d i f ferent ia l  ope ra to r  A of (2'), the  difference opera to r  7 

j4=k ' i= l  

where the  weights  {cj,,} sa t i s fy  ~, cj, k =  1. 

Once one has  chosen the  form of the  ("space")  difference opera to r  A~ one 
o sti l l  has  f reedom in sp l i t t ing  i t  in to  A~ and A~. In  par t icu la r ,  one can cons t ruc t  

corresponding explicit, completely implicit, and sweep-explicit schemes. The con- 
s t ruc t ion  of the  first  two of these is clear:  - -  

a) win" ,+1  = c o ~  + ~ [ A  6 ta~] �9 
(16) 

b) ,+1 corn = [ (X--  ~ A ~ ) - l ~ ' ] m  

b u t  we mus t  look a b i t  more  closely a t  the  cons t ruc t ion  of the  las t .  If  ~J~t is 
o rdered  lex icographica l ly  then  ok can be spl i t  to  give 

(17) [okto],, =- [com-ko -- C~ + [com+ u - -  com]/h~ 
= [ok ~ + o~ ,o], , ,  

and  we note  t h a t  0 ~ involves  only  " o l d "  po in ts  ( m ' _ < m )  while 0 § involves  only  
" n e w "  poin ts  ( m ' ~ m ) .  Also 0 3 and  0 t involve  only " o l d "  and  " n e w "  poin ts  
respect ive ly .  On the  o ther  hand,  0 2 and  0 t m u s t  be spl i t  in a s imilar  fashion 
to  o :  - -  

a) m = + 
= I [com--k - -  O ) m + j - k ~ / h  i hk + [com+j - -  ~~ hk (J < ]~) 

(~8).  / [COm-k - -  ~  hk -~- [com+j - -  co ,n+j -k ] /h j  hl~ (J > k )"  

(h = Eo :;,o + O]m 
I [co,r,_j -- co,n]/hj h k + [corn+ k - -  c o r n - j +  hi /hj  h/t ( j  < / g )  

t [ o~ , , _ j  - Om-~+k]/hi hk + [co,~+k - -  co,-]/hi h~ ( j  > k ) .  

e If  negative weights are permit ted  then addit ional classes of unstable completely 
implicit  schemes can be constructed (note, e.g., Appendix I). 

The expression (15) by  no means gives the only way of constructing difference 
operators consistent with (2') but  it  is a convenient case for analysis and is most 
frequently encountered in practice. 
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Thus,  if A`5 is given b y  (t 5) we cons t ruc t  the  sweep-expl ic i t  scheme b y  defining 
o 

A`5 and A~ to be 

o o r 2 2, o 3 3 4 4, on 
2tl,5 -~- ~, ak, k Ok @ ~,, aj, k LCj, k ~j,k q- Cj, k ~j, k q- Cj, k t~j, kJ 

(19) k i*k  
+ 1 1 C 2 ~ 2 ,  + 4 4, o] A~ = Y ak, kak + ~ ai, h[ci,ka~,k + j ,k i,k + fi, kai, kJ, 

k jC-k 

so tha t ,  b y  (9), 

(t6) c) v+l ~ , ~  = E ( I -  ~A~)-I  ( I  + O A ; ) ~ ]  m.  

F o r  s impl ic i ty  we analyze  the  case of equat ion  (2') w i th  cons t an t  coefficients 
where ,s)t is t aken  to  be the  uni t  hypercube  in K-space  and  the  b o u n d a r y  con- 
di t ions  are per iod ic i ty  in each var iable .  I t  is known (see [3]) t h a t  if (7`5 is a 
normal  opera to r  8 then  (1t) is necessary and sufficient for s tab i l i ty .  The  same 
sort  of analys is  works,  of course, for any  class of schemes to which the  yon  Neu-  
mann  cr i ter ion is appl icable .  

Note  t h a t  in the  case of cons tan t  coefficients we are now considering,  ;t is 
C i i ndependen t  of x (i.e., of n t ) ,  assuming the { i,k} are t aken  independen t  of ~rt 

(we assume they  are also independen t  of d, for t h a t  mat te r ) .  I t  is eas i ly  seen 
o 

t h a t  the  difference opera to rs  ak are self-adjoint ;  % and  a~ are ad jo in t s  as are 
1 and  3 2o 4,+ 2,+ 4,o a2 4 gi, k gj, k, Oi,'k and ai, k, ai, k and  ai, k, and  i,k and  %,k for i, k = 1 ,  . . . ,  K.  

C 1 - -  C 3 C 2 - -  C 4 Thus,  b y  requir ing  i , k - -  i,k and  i ,k--  i,k (f, k = l  . . . . .  K ) ,  we have  A`5 self- 
ad jo in t  and,  in the  case of a sweep-expl ici t  scheme given b y  (19), A ;  and  A~ 
are  adjoin ts .  F o r  s impl ic i ty  we also assume tha t  all the  {hk} are the  same 
(h k = h =  h(d) for k = t . . . . .  K )  and  let  the  dependence of h on d be such t h a t  
r =  d/h 2 is a p a r a m e t e r  of the  scheme, remaining cons tan t  as d---~0. 

8 Observe that  any pair  of difference operators, li and li '  given by  

[8 ~]'l~n. = Z 0~. O ) m +  . 
n E ~  

[8'tO?m = Y, ~;, O)m+~ 
n E ~  

in which the coefficients depend on the translations {n} but  not  on m will always 
commute (given the periodicity condition) --  

[ 8 ~ ' I L O ] m =  E 0 r  = E Otn 2 ~x;,'c,O(m+n)+n" 
n e l l  n e l l  n 'E~l  

n ,n "  E ~ll 

= Z ~ ; . ' l 'S~Jm+.=ES '8~Jm.  
n 'E~ t  

Now the adjoint  of such an operator  has the same form - -  

ES*~]m = E ~ n  r O m - n  Y, * 
nE~t n 'Eg l*  

where 
~ * = ( - - ~ )  and ~*n,=~n (nE~ so ( - - n ) = n ' E ~ * ) .  

Thus, li and ~* commute when li has the form above (a difference expression with 
"constant  pattern" for an equation with constant coefficients and periodici ty con- 
dition) and ~ is normal. 

Since the operator C o is buil t  up of such commuting normal  operators i t  is itself 
normal. 
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We observe that ,  for the boundary  conditions to apply at all, 6 must  go to 
0 through values such tha t  I/h takes only integer values {Me} and the periodicity 
condition then restricts s to integer components ;  0 ~ s k ~ Mo (k = 1 . . . . .  K). 

Corresponding to each of the difference operators . is an "amplification 
]actor" a (identified by  the same indices) given by  

(20) 

For  example 

where 

Cl = cr ( 8  h )  = e - 2 a i s ' m h  ( h 2 ~ e 2~is" m h )  . 

O ' k ( 8 h  ) = E e2~i ' 'kh- 2 ~-  g 2~ i ' ' (  kh)~ = __ io 1 . 

O~ = 0 ~  (8 h) = (~2 ~ . ~ h _  t) .  

We obtain Ae, A~ and A~ by  subst i tut ing into (15) and (19) the appropriate  
amplification factors for the 'g 's .  Note tha t  Ae=Ae(sh  ) is real (since A e is 
self-adjoint) and is the same for corresponding schemes. For  future reference 
note tha t  for explicit, completely implicit, and sweep-explicit schemes one has, 
by  subst i tut ion into (t6), 

a) 4 = t  + r A ~  

(21) b) ~ = l / ( t - - r A ~ )  

c) ~ = (l +rA~ rA~) 

(explicit), 

(completely implicit), and 

(sweep-explicit). 

We observe the dependence of the amplification factors on b is only through 
the circumstance tha t  the exponents ( 2 ~ m i  s .  m h), etc., give {skh } in the 
{Ok}. Thus  ~ really depends only on s h =  V~/r s but  not  on x or otherwies on d. 

We may,  in the present case, replace (if)  by  

(t 1'/ sup I ~ (8 h/I = 1 
s h  

which is now a necessary and sufficient condition for stability. Tha t  (1t') is 
sufficient for (11) is clear. To show tha t  it is necessary suppose for some s'h' 
one had  [ ;t (s' h')[ = ;t' > 1. Then for any integer H, letting h" = h'/H and s" = 8' H, 
one has both  h" and s" admissible and s " h " = s ' h ' .  Now for any  given A and 
T one can find v" such tha t  (;~')v">A and choose H such tha t  v" 6" =v"(h')2r/H 2 
is less than  T. Then I2(,"h")lv"----(X')~">A and (11) fails also. Thus ( I t ' )  is 
equivalent  to (l l) in the si tuation now under  consideration. We see tha t  as 
b -+0  the admissible values of t = s  h become dense in the unit  hypercube in 
K-space and, as ~ is a continuous function of t, the " sup"  in (1t') may  be 
taken over  all t in this hypercube --  for tha t  matter ,  since s h only enters 
th rough  e x p [ 2 ~ i s  . m h ]  (which is periodic in t) the " sup"  may  be taken 
over all t in K-space. 

T h e o r e m  I. Contrary  to the usual rule of t humb  9 there are completely 
implicit schemes (even for the restrictive case now under  analysis of parabolic 

9 Most analyses have been done for K = I  or 2. In these cases the type of in- 
stability exhibited here can not occur (which would seem to explain why this pheno- 
menon has been heretofore unremarked.) See Appendix I. 



On the Stability of Certain Difference Schemes 207 

equations with constant  coefficients) which are unstable  for all 
o f  ~'. 

Proo/. We consider the parabolic equat ion 

(22) u t = ~(ux. 4- uyy 4- u~.) 4- 2(u.y @ ux~ -r  uy~) 
and let ~~ 

1 1 3 
oj, k = ~(aj,k 4- oi,~) 

in (15) and (16.b) so 

(23) 

and 

(24) 

values 

+ 1 1 01  3 3 3 Ao = A~ = [~- (01 q- 02 4- 03) 4- (O1, 2 4- O1, 3 4- 2, 3) 4- (O1, 2 o2,~)1 -~- 01,3 ~-  

= 0.1 1 0.1 0.3 3 3 A~ [ ~ - ( a l + a 2 + a 3 ) + (  1 , 2 @ 0 " 1 , 3 ~  - 2 , 3 ) @ (  1 ,2@0"1 ,3@0"2 ,3 ) ]  

= [ - -~ (I 0113 q- [ 03] 2 q- [ 0312) 4- (O102 @ ?)ql 03 _t_ ?92 03 ) _~_ 

~-  (L~1192 Jr- /91 ~q3 -~ /92 ~q3) ] '  

Clearly A~ is real and continuous. Equal ly  clearly if we set 0 1 : 9 2 = t 9 3 = 0  
then A 0 = ( - -  ~ I v~12 + 6 Re {0~}) takes  all values between -- t 47/16 and + 6 so 
that ,  for any  r, A~r must  take  values between 0 and 2 which makes  2 (given 
by  (21.b) take  real values greater  than  I in absolute value for the appropr ia te  
choice of v a (i.e., of s). Thus,  the scheme fails to sat isfy (t 1 ') and is uncondit ional ly 
unstable  for every value of r). 

Exhibi t ing a single uncondit ional ly unstable  complete ly  explicit scheme suffices 
to prove  the theorem but  we note that ,  given our choice of the difference ex- 
pressions {a / ,k_  1 _ ~ ( o i ,  k + 1  o~,k)}, to replace the mixed differentiat ions {02/Ox i Ox~} 
throughout ,  the complete ly  explicit scheme is a lways uncondi t ional ly  unstable  
if the coefficient mat r ix  II j, II in (2') satisfies certain ra ther  awkward  conditions, 
the proof being essentially the same as above. 

T h e o r e m  II .  Consider corresponding explicit, complete ly  implicit ,  and sweep- 
explicit  schemes (each paramet r ized  by  the mesh-rat io  r) of the type  considered 
above.  Then the following s ta tements  are equivalent :  --  

a) The explicit scheme is condit ionally stable (i.e., s table for 0 < r < r  0 
for some r 0 >  0). 

(24) b) The complete ly  implicit  scheme is uncondit ional ly  stable (i.e., stable 
for all r >  0). 

c) The  sweep-explicit  scheme is uncondit ional ly stable. 

Pro@ We shall show tha t  each of these s ta tements  is equivalent  to 

(25) A ~ O  (all t). 

F rom (21.a) it is clear tha t  if A~(sh) were ever posi t ive then, for any  r > 0 ,  
2(s  h) would be greater  than  t so, by  (t1'),  (24.a) would fail and the explicit 
scheme would be uncondi t ional ly  unstable.  On the other  hand,  A~ is a con- 
t inuous function of t = s h over  its period, the uni t  hypercube,  which is compact .  

10 Had we taken the weights {c},k} independent of j, k as here but  with c 12 i- c 3 ~c2~ - C 4 
then the scheme would have been stable. See Appendix II .  
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Hence ]Ao] is bounded and, letting 

r o = l/sup {-- Ao (t)}, 

one has, for O< r <  r0, 

which, by (it ') ,  makes the explicit scheme stable for such r and (24.a) 
holds. 

Clearly, substituting (21.b) into (tt ' ) ,  (25) implies stability for all r > 0  and 
(24.b) holds. Conversely, were A~ ever positive (A~( t )=A>O)  then, for 
O < r < l / A ,  we would have ~t(t) = l / ( t - - r A ) > t  so, by (t1'), the scheme would 
be unstable and (24.b) would fail. 

Moreover, since A0 is continuous and A~(0)=0 we would then have in- 
stability for every r -- not only would the completely implicit scheme not be 
unconditionally stable but, as in the example in the previous theorem, it would 
be unconditionally unstable. 

Finally, in the sweep-explicit case, we note that, since A~ and A~ are ad- 
o + o + o ioints, A~ and A~ are conjugate and Ao----A~+A6----2~e{A~}. Putting this in 

(21.c), writing ~ for A~----.4~, gives 

t - - r~  l - - ra  l+r2[~[2--rAo " 

Clearly (25) implies (ll ' )  for any r and hence, (24.c) while the failure of (25) 
implies instability for every r -- as with the completely implicit scheme, the 
sweep-explicit scheme is either unconditionally stable or else unconditionally 
unstable. 

Appendix I 
For K----t the only possibility of the sort we have been considering is 

u t=a  u,~ (a>0)  

for which we take A~ =a  al. The conditional convergence (and hence, by [2], 
the conditional stability) of the explicit scheme goes back to [1] and we may 
then apply Theorem II to show the unconditional stability of the corresponding 
completely implicit scheme. 

For K-----2 we have 

u t - -  a~ u ~ + a  2 uyy+2a  8 u~y 

where ' the  matrix II a~ a3 ] is positive-definite and we take, writing . '  for , '  
a3 a2 1, 2 

(i ----- l ,  . . . ,  4), 
Ao=al  a l + a  ~ a2+2a3  ~, cia i, 

i 

requiring, for the moment, only that c1+ c2+ c3+ c4= t.  Then 
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and 

= - ~ l ) ~ - a ~  ( ~  + ~ )  + 

+ 2 a~ Ec 1 (~ ~ - ~1 ~2) - c~ (~ ~ + ~1 n~) + 

+ c~ (,1 ~ - ~1 ~2) - c~ (,1,2 + ~ n2)~ 

where 0 ~ = ~ + i ~  ( k = l ,  2) and c*=cl--c*+ca--cL From (21.b) we get for 
the completely implicit scheme with this A0 

and the scheme will be stable if and only if 

r ]Ael2--2~v{Ae} 

is always (i.e., for all s) non-negative. Certainly a sufficient condition for this 
is that ~v(A,}  is non-positive; for which it is sufficient that  aac*>--_O or that 
[c*[ ~ 1; which last is certainly true if the weights (c ~} are taken non-negative. 
I t  follows that if we take a convex weighted average of the a [ ,  to replace 
O*/Ox Oy the completely implicit scheme is unconditionally stable. 

Thus we have proved the 

Theorem. For K <  3 all completely implicit schemes obtained in the manner 
specified by (15) and (16.b) are unconditionally stable. 

Appendix II 
Let us choose a number F less than or equal to ~ and take the weights 

{c~,k} to be 
1 8 1 - .  ~ - c ~ , ~ = - ~ ( l - r )  

Cj, k = Ci, k = - g l ,  j , k - -  

Then we wish to show that the completely implicit scheme constructed with 
these weights according to (t 5) and (t6.b) will be unconditionally stable. 

We are thus taking 

-~ r ' -~ r (o~ ,~  + o~,k) + �89 - r ) ( o ~ , k  + o~,k) o] ,k  = o i ,  k - -  

and, from (iS), 
~ 

k i~:k 
N o w  

aj, h = � 89  0k + 0 i 0k) - �89 (f - -  F)  (0j 0k + ~j  0k) 

(Ok: ~k + i ~a for k : 1 . . . . .  K) whence 

A~ = (2 F -  t) 5:, ~;, k ~ / ~  - -  2 (f - -  F)  5:, ~k,~ ~g - -  Y aj, k ~; nk. 
i,k k j,k 

We observe that  each of the sums on the right is non-negative (the first and 
last since the matrix [] aj,k] ] must be positive-definite) and, since F--_< �89 we have 
( 2 F - - t ) ~ 0  and ( I - -F)>=0.  Thus A~--<_0 (for all s) and, as in the proof of 
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Theorem II ,  this is equivalent  to the uncondi t ional  s tabi l i ty  of the completely 
implicit  scheme with this A, .  

Note tha t  we have not  required 3U>~O. The effect of the condit ion F ~ � 8 9  
is just  tha t  in row~tol the weight of w m itself will be non-positive.  j,k j~r~ 
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