4 The Network Layer

4.1 Introduction

$>$ The primary purpose of the network layer: to interconnect nodes, possibly at a distance.
$>$ Interconnecting networks to make internetworks.

4.1.1 Forwarding and Routing

$>$ Forwarding is based on the destination address next-hop forwarding.
$>$ The destination network is given by the highest (left-most) bits in an address (like a phone number).
$>$ Forwarding tables are used to look up next hops based on desired destinations.
$>$ Routing is the process of building forwarding tables.

4.1.2 Network Service Models

> Internet: Best Effort

4.2 Virtual Circuit and Datagram Networks

$>$ Virtual circuit (VC) networks provide connections.
$>$ Datagram networks provide connectionless service.

4.2.1 Virtual Circuit Networks

> Virtual circuit tables, virtual circuit identifiers
> Connection setup time
$>$ Smaller headers than datagram services
$>$ complexity inside network

4.2.2 Datagram Networks

$>$ Forwarding tables
> No connection, so no connection setup time
$>$ Larger headers than VC networks
$>$ packets forwarded using destination host address
$>$ simple inside network, complexity at "edge"

4.3 What's Inside a Router?

$>$ run routing algorithms/protocols
$>$ forwarding datagrams from incoming to outgoing link

4.4 IP: Forwarding and Addressing on the Internet

IP service model:
> Makes very few assumptions about underlying link layer(s)
$>$ Provides no timing assurances
$>$ Best effort

4.4.1 Datagram Format (IPv4)

IPv4 Header

$>$ Version
$>$ TTL (time to live-called hop limit in IPv6)
$>$ protocol (called next header in IPv6)
> checksum
$>$ source \& destination addresses (32b each; 128b each in IPv6)

Payload

$>$ Theoretical maximum size of the IP datagram is based on 16 bits; 65,535 bytes
$>$ Usually much smaller to avoid fragmentation
> Payload contents identified by the payload header field (usually TCP or UDP)
$>$ fragmentation and reassembly
> "reassembled" only at final destination

4.4.2 IPv4 Addressing

> 32-bit identifier for host, router interface
$>$ subnet part (high order bits)
$>$ host part (low order bits)
$>$ single prefix to advertise multiple networks, referred as address/route aggregation
$>$ longest address prefix matching

- A field of n bits has 2^{n} different values.
- So how many bits are needed to enumerate n subnets?
- How many subnets are supported by n bits?
- How many bits are needed for n addresses per subnet?
- How many addresses are provided by an n-bit host portion?

Dynamic Host Configuration Protocol (DHCP):

$>$ Hosts need:

- IP address
- Subnet mask
- IP address of default router
- IP address of one or more DNS servers
$>$ Prefer to distribute these things automatically, not manually.
$>\operatorname{In} \operatorname{IPv} 4$, the request is broadcast, and the response is unicast.
$>$ 255.255.255.255 is broadcast.

Network Address Translation (NAT):

> There are no IPv4 addresses left, so we share.
$>$ Private address blocks: 10.0.0.0/8, 172.16.0.0/12, 192.168.0.0/16 etc.
$>$ A NAT router shares its IP address with clients.
$>$ A NAT router rewrites IP addresses and port numbers as datagrams enter and leave a network.

Peer-to-peer and NAT Traversal Problem:

$>$ Universal Plug and Play (UPnP) Internet Gateway Device (IGD) Protocol.
> What's a Skype relay?
$>$ Why does Skype need these things?

4.4.3 ICMP

The Internet Control Message Protocol provides diagnostics and other information.

4.4.4 IPv6

$>$ Why is IPv6 needed?
$>$ 128bit addresses
$>$ fixed-length 40 byte header
$>$ no fragmentation allowed
$>$ checksum: removed entirely to reduce processing time at each hop
$>$ Flow labels-traffic management, load balancing, and simulated virtual circuits.
$>$ Subnetting is fundamentally the same as in IPv4
$>$ No broadcast: use multicast
$>$ Routers do not do fragmentation: they discard. Reassembly may still be needed on the receiving end.

Transition from IPv4

$>\operatorname{IPv} 4$ addresses can be expressed in IPv6 (but not vice-versa)

$>$ Tunneling

$>$ Why is it more important to tunnel IPv6 over IPv4 than vice-versa?

