
IS 450/IS 650–
Data Communications and Networks

 Course Review
Midterm Exam

 Nirmalya Roy

Department of Information Systems

University of Maryland Baltimore County

www.umbc.edu

Midterm Exam

 When: Tuesday (3/31) 4:30pm - 6:30pm
 Where: In Class

 Closed book, Closed notes
 Computer Networks and the Internet (Chapter 1);

Application Layer (Chapter 2) and Transport Layer
(up to Chapter 3.3)

 Material for preparation:
 Lecture Slides
 Quizzes
 Textbooks

 Computer Networking: A Top Down Approach,

Course Overview

 Computer Networks and the Internet (Chapter 1)

 Packet and circuit switching

 End to End Delay

 Application Layer (Chapter 2)

 Web, HTTP, FTP, SMTP, DNS, Peer-peer and Socket

 Transport Layer (Chapter 3)

 Multiplexing & Demultiplexing

Chapter 1: Computer Networks & Internet

1.1 What is the Internet?

1.2 Network edge

1.3 Network access and physical media

1.4 Network core

1.5 Internet structure and ISPs

1.6 Delay and loss in packet-switched networks

1.7 Protocol layers, service models

1.8 History

Chapter 1: Roadmap

1.1 What is the Internet?

1.2 Network edge

1.3 Network access and physical media

1.4 Network core

1.5 Internet structure and ISPs

1.6 Delay & loss in packet-switched networks

1.7 Protocol layers, service models

1.8 History

The Network Core

 mesh of interconnected
routers

 the fundamental question:
how is data transferred
through net?

 circuit switching:
dedicated circuit per call:
telephone net

 packet-switching: data
sent thru net in discrete
“chunks”

 Forwarding table and
routing protocols

Network Core: Circuit Switching

End-end resources

reserved for “call”

 link bandwidth, switch
capacity

 dedicated resources: no
sharing

 circuit-like (guaranteed)
performance

 call setup required

Network Core: Circuit Switching

Network resources (e.g.,
bandwidth) divided into
“pieces”

 pieces allocated to calls

 resource piece idle if not used
by owning call (no sharing)

 dividing link bandwidth into

“pieces”

 frequency division

 time division

Circuit Switching: FDM and TDM

FDM

frequency

time

TDM

frequency

time

4 users

Example:

FDM vs TDM

 What are the tradeoffs?

 Advantage and disadvantage of dividing frequency ?

 Advantage and disadvantage of dividing time ?

Numerical example

 How long does it take to send a file of 640,000 bits
from host A to host B over a circuit-switched
network?

 All links are 1.536 Mbps

 Each link uses TDM with 24 slots/sec

 500 msec to establish end-to-end circuit

Let’s work it out!

Network Core: Packet Switching

each end-end data stream divided into
packets

 user A, B packets share network
resources

 each packet uses full link
bandwidth

 resources used as needed

resource contention:

 aggregate resource demand can

exceed amount available

 Packets queue up

 store and forward: packets move

one hop at a time

 Node receives complete

packet before forwarding

Bandwidth division into “pieces”

Dedicated allocation

Resource reservation

Packet Switching: Statistical Multiplexing

Sequence of A & B packets does not have fixed pattern, shared on demand
statistical multiplexing.

TDM: each host gets same slot in revolving TDM frame.

A

B

C
100 Mb/s
Ethernet

1.5 Mb/s

D E

statistical multiplexing

queue of packets
waiting for output

link

Packet-switching: store-and-forward

 Takes L/R seconds to
transmit (push out)
packet of L bits on to link
of R bps

 Entire packet must arrive
at router before it can be
transmitted on next link:
store and forward

 delay = 3L/R (assuming
zero propagation delay)

Example:

 L = 7.5 Mbits

 R = 1.5 Mbps

 delay = 15 sec

R R R

L

more on delay shortly …

Packet-switched networks: forwarding

 Goal: move packets through routers from source to dest.
 we’ll study several path selection (routing) algorithms (chap 4)

 datagram network:
 destination address in packet determines next hop

 routes may change during session

 analogy: driving, asking directions

 virtual circuit network:
 packet carries tag (virtual circuit ID), tag determines next hop

 fixed path determined at call setup time, remains fixed thru call

 routers maintain per-call state

 (analogy: air trains in airports)

Compare

Thoughts on tradeoffs between packet switching and circuit
switching?

Which one would you take?

Under what circumstances?

Why?

Packet switching versus Circuit switching

 problem: 1 Mbps link

 each user:
 100 kbps when “active”

 active 10% of time

 circuit-switching:
 10 users

 packet switching (ps):
 with 35 users,

probability > 10 active users is less than 0.0004

Packet switching allows more users to use network!

N users

1 Mbps link

Q: how did we get value 0.0004?
Get performance of circuit switching with 3 times more users in case of PS

Packet switching versus Circuit switching

 Great for absorbing bursty data from individual sources

 resource sharing (due to diversity)

 simpler, no call setup

 Excessive congestion: packet delay and loss

 protocols needed for reliability, congestion control

 Q: How to provide circuit-like behavior?

 bandwidth guarantees needed for audio/video apps

 still unsolved (chapter 7)

Is packet switching a “slam dunk winner?”

Why?

Problem on Circuit and Packet switching

 Suppose users share a 15 Mbps link. Also suppose each
user requires 1 Mbps when transmitting, but each user
transmit only 10% time.

a) When circuit switching is used, how many users can be
supported?

b) Suppose there are 30 users. Find the probability that
any given time, exactly 20 users are transmitting
simultaneously. (Hint: Use the binomial distribution)

 Solve this problem from Quiz 1

where

n = number of trials

r = number of successes among n trials

p = probability of success in any one trial

q = probability of failure in any one trial (q = 1 – p)

Binomial Probability Formula

rnrrnr

r

n qp
rnr

n
ppCrP

)!(!

!
)1()(

 for r = 0, 1, 2, . . ., n

Chapter 1: Roadmap

1.1 What is the Internet?

1.2 Network edge

1.3 Network access and physical media

1.4 Network core

1.5 Internet structure and ISPs

1.6 Delay & loss in packet-switched networks

1.7 Protocol layers, service models

1.8 History

How do loss and delay occur?

packets queue in router buffers

 packet arrival rate to link exceeds output link capacity

 packets queue, wait for turn

A

B

packet being transmitted (delay)

packets queueing (delay)

free (available) buffers: arriving packets
dropped (loss) if no free buffers

Four Sources of Packet Delay

 1. nodal processing:
 check bit errors

 determine output link

A

B

propagation

transmission

nodal
processing queueing

 2. queueing:

 time waiting at output
link for transmission

 depends on congestion
level of router

Delay in packet-switched networks

3. Transmission delay:

 L = packet length (bits)

 R = link bandwidth (bps)

 time to send bits into link
= L/R

4. Propagation delay:

 d = length of physical link

 s = propagation speed in
medium (~2x108 m/sec)

 propagation delay = d/s

A

B

propagation

transmission

nodal
processing queueing

Note: R and s are very different

quantities!

Comparing Transmission & Propagation Delays

 Transmission delay

 Amount of time required to
push out a packet

 Function of the packet’s
length & transmission rate
of the link

 Nothing to do with the
distance between the two
routers

 Propagation delay

 Time it takes a bit to
propagate from one router
to the next

 Function of the distance
between two routers and
propagation speed

 Nothing to do with the
packets’ length or
transmission rate

Nodal delay

 dproc = processing delay
 typically a few microsecs or less

 dqueue = queuing delay
 depends on congestion

 dtrans = transmission delay
 = L/R, significant for low-speed links

 dprop = propagation delay
 a few microsecs to hundreds of msecs

proptransqueueprocnodal ddddd

Chapter 2: Application layer

 2.1 Principles of network
applications

 2.2 Web and HTTP

 2.3 FTP

 2.4 Electronic Mail
 SMTP, POP3, IMAP

 2.5 DNS

 2.6 P2P file sharing

 2.7 Socket programming
with TCP

 2.8 Socket programming
with UDP

 2.9 Building a Web server

Chapter 2: Application layer

 2.1 Principles of network
applications

 2.2 Web and HTTP

 2.3 FTP

 2.4 Electronic Mail
 SMTP, POP3, IMAP

 2.5 DNS

 2.6 P2P file sharing

 2.7 Socket programming
with TCP

 2.8 Socket programming
with UDP

 2.9 Building a Web server

Application architectures

 Client-server

 Peer-to-peer (P2P)

 Hybrid of client-server and P2P

Client-server architecture

server:
 always-on host

 permanent IP address

 server farms for scaling

 data centers

clients:
 communicate with server

 may be intermittently
connected

 may have dynamic IP
addresses

 do not communicate
directly with each other

Pure P2P architecture

 no always-on server

 arbitrary end systems directly
communicate

 peers are intermittently
connected and change IP
addresses

 Major Challenges: ISP friendly,
Security, Incentives

 example: Gnutella (peer-to-peer
file sharing network)

Highly scalable but difficult to manage

Hybrid of client-server and P2P

Skype
 Internet telephony app

 Finding address of remote party: centralized server(s)

 Client-client connection is direct (not through server)

Instant messaging
 Chatting between two users is P2P

 Presence detection/location centralized:

 User registers its IP address with central server when it comes online

 User contacts central server to find IP addresses of buddies

Internet transport protocols services

TCP service:
 connection-oriented: setup

required between client and
server processes

 reliable transport between
sending and receiving process

 flow control: sender won’t
overwhelm receiver

 congestion control: throttle
sender when network
overloaded

 does not provide: timing,
minimum bandwidth guarantees

UDP service:
 unreliable data transfer

between sending and
receiving process

 does not provide: connection
setup, reliability, flow
control, congestion control,
timing, or bandwidth
guarantee

Q: Why bother? Why is there a
UDP?

Internet apps: application, transport protocols

Application

e-mail

remote terminal access

Web

file transfer

streaming multimedia

Internet telephony

Application

layer protocol

SMTP [RFC 2821]

Telnet [RFC 854]

HTTP [RFC 2616]

FTP [RFC 959]

proprietary

(e.g. RealNetworks)

proprietary

(e.g., Vonage,Dialpad)

Underlying

transport protocol

TCP

TCP

TCP

TCP

TCP or UDP

typically UDP

Chapter 2: Application layer

 2.1 Principles of network
applications
 app architectures

 app requirements

 2.2 Web and HTTP

 2.4 Electronic Mail
 SMTP, POP3, IMAP

 2.5 DNS

 2.6 P2P file sharing

 2.7 Socket programming
with TCP

 2.8 Socket programming
with UDP

 2.9 Building a Web server

Web and HTTP

First some jargon

 Web page consists of objects

 Object can be HTML file, JPEG image, Java applet, audio
file,…

 Web page consists of base HTML-file which includes several
referenced objects

 Each object is addressable by a URL

 Example URL:

www.someschool.edu/someDept/pic.gif

host name path name

HTTP overview

HTTP: hypertext transfer
protocol

 Web’s application layer protocol

 client/server model

 client: browser that
requests, receives,
“displays” Web objects

 server: Web server sends
objects in response to
requests

 HTTP 1.0: RFC 1945

 HTTP 1.1: RFC 2068

PC running

Explorer

Server

running

Apache Web

server

Mac running

Navigator

HTTP overview (continued)

Uses TCP:
 client initiates TCP connection

(creates socket) to server, port
80

 server accepts TCP connection
from client

 HTTP messages (application-
layer protocol messages)
exchanged between browser
(HTTP client) and Web server
(HTTP server)

 TCP connection closed

HTTP is “stateless”
 server maintains no

information about past
client requests

Protocols that maintain “state” are

complex!

 past history (state) must be

maintained

 if server/client crashes, their

views of “state” may be

inconsistent, must be

reconciled

aside

HTTP connections

Nonpersistent HTTP

 At most one object is sent
over a TCP connection

 HTTP/1.0 uses
nonpersistent HTTP

Persistent HTTP

 Multiple objects can be
sent over single TCP
connection between client
and server

 HTTP/1.1 uses persistent
connections in default
mode

Non-Persistent HTTP: Response time

Round Trip Time (RTT) = time

to send a small packet to travel

from client to server and back.

Response time:

 one RTT to initiate TCP
connection

 one RTT for HTTP request

 and first few bytes of HTTP
response to return

 file transmission time

total = 2RTT+ <file transmit time>

time to

transmit

file

initiate TCP

connection

RTT

request

file

RTT

file

received

time time

Persistent HTTP

Nonpersistent HTTP issues:

 requires 2 RTTs per object

 OS overhead for each TCP
connection

 browsers often open parallel
TCP connections to fetch
referenced objects

Persistent HTTP

 server leaves connection open
after sending response

 subsequent HTTP messages
between same client/server
sent over open connection

Persistent without pipelining:

 client issues new request only
when previous response has
been received

 one RTT for each referenced
object

Persistent with pipelining:

 default in HTTP/1.1

 client sends requests as soon
as it encounters a referenced
object

 as little as one RTT for all the
referenced objects

DNS: Domain Name System

People: many identifiers:
 SSN, name, passport #

Internet hosts, routers:
 IP address (32 bit) - used for

addressing datagrams

 “name”, e.g.,
www.yahoo.com - used by
humans

Q: map between IP addresses
and name ?

Domain Name System:

 distributed database implemented in
hierarchy of many name servers

 application-layer protocol host,
routers, name servers to
communicate to resolve names
(address/name translation)

 note: core Internet function,
implemented as application-
layer protocol

 complexity at network’s “edge”

DNS

Why not centralize DNS?

 single point of failure

 traffic volume

 distant centralized database

 Maintenance

 doesn’t scale!

DNS services

 Hostname to IP address
translation

 Host aliasing
 Canonical and alias names

 Alias: enterprise.com or
www.enterprise.com

Canonical:relay1.west
coast.enterprise.c

om

 Load distribution
 Replicated Web servers: set

of IP addresses for one
canonical name

http://www.enterprise.com/

Root DNS Servers

com DNS servers org DNS servers edu DNS servers

poly.edu

DNS servers

umass.edu

DNS servers
yahoo.com

DNS servers
amazon.com

DNS servers

pbs.org

DNS servers

Distributed, Hierarchical Database

Client wants IP for www.amazon.com; 1st approx:

 Client queries a root server to find .com DNS server

 Client queries com DNS server to get amazon.com DNS server

 Client queries amazon.com DNS server to get IP address for
www.amazon.com

TLD (Top-level

domain) DNS

Authoritative

DNS servers

DNS records

DNS: distributed db storing resource records (RR)

 Type=NS
 name is domain (e.g.

foo.com)

 value is hostname of
authoritative name server
for this domain (e.g.
dns.foo.com)

RR format: (name, value, type, ttl)

 Type=A

 name is hostname

 value is IP address

 Type=CNAME

 name is alias name for some

“canonical” (the real) name
 www.ibm.com is really
 servereast.backup2.ibm.com

 value is canonical name

 Type=MX

 value is name of mailserver

associated with name (e.g.
foo.com, mail.bar.foo.com, MX)

Inserting records into DNS

 Example: just created startup “Network Utopia”
 Register name networkutopia.com at a registrar (e.g.,

Network Solutions)
 Need to provide registrar with names and IP addresses of your

authoritative name server (primary and secondary)
 Registrar inserts two RRs into the com TLD server:

(networkutopia.com, dns1.networkutopia.com, NS)

(dns1.networkutopia.com, 212.212.212.1, A)

 Put in authoritative server Type A record for

www.networkuptopia.com and Type MX record for
mail.networkutopia.com

 How do people get the IP address of your Web site?

Chapter 3 Outline

 3.1 Transport-layer
services

 3.2 Multiplexing and
demultiplexing

 3.3 Connectionless
transport: UDP

 3.4 Principles of reliable
data transfer

 3.5 Connection-oriented
transport: TCP
 segment structure

 reliable data transfer

 flow control

 connection management

 3.6 Principles of congestion
control

 3.7 TCP congestion control

Transport Layer (Chapter 3)

 Transport Layer

 Multiplexing / Demultiplexing

Multiplexing/demultiplexing

application

transport

network

link

physical

P1 application

transport

network

link

physical

application

transport

network

link

physical

P2 P3 P4 P1

host 1 host 2
host 3

= process = socket

delivering received segments

to correct socket

Demultiplexing at rcv host:
gathering data from multiple

sockets, enveloping data with

header (later used for

demultiplexing)

Multiplexing at send host:

One HTTP process, one FTP process, one Telnet process

More than one socket, each socket has unique identifier

How demultiplexing works

 host receives IP datagrams

 each datagram has source IP
address, destination IP address

 each datagram carries 1
transport-layer segment

 each segment has source,
destination port number

 host uses IP addresses & port
numbers to direct segment to
appropriate socket

source port # dest port #

32 bits

application

data

(message)

other header fields

TCP/UDP segment format

Analogous to car rentals at airports

Shuttles MUX passengers and take them

To rental office -- DeMUX to diff cars

Connectionless demultiplexing

 Create sockets with port
numbers:

DatagramSocket mySocket1 = new

DatagramSocket(99111);

DatagramSocket mySocket2 = new

DatagramSocket(99222);

 UDP socket fully identified by
two-tuple:

 (dest IP address, dest port number)

 When host receives UDP
segment:
 checks destination port

number in segment

 directs UDP segment to
socket with that port
number

 IP datagrams with different
source IP addresses and/or
source port numbers
directed to same socket

Connectionless demux (cont)

DatagramSocket serverSocket = new DatagramSocket(6428);

Client
IP:B

P2

client

 IP: A

P1 P1 P3

server

IP: C

SP: 6428

DP: 9157

SP: 9157

DP: 6428

SP: 6428

DP: 5775

SP: 5775

DP: 6428

SP provides “return address”

Connection-oriented demux

 TCP socket identified by 4-
tuple:
 source IP address

 source port number

 dest IP address

 dest port number

 recv host uses all four
values to direct segment
to appropriate socket

 Server host may support
many simultaneous TCP
sockets:
 each socket identified by its

own 4-tuple

 Web servers have different
sockets for each connecting
client
 non-persistent HTTP will

have different socket for
each request

Connection-oriented demux (cont)

Client
IP:B

P1

client

 IP: A

P1 P2 P4

server

IP: C

SP: 9157

DP: 80

SP: 9157

DP: 80

P5 P6 P3

D-IP:C

S-IP: A

D-IP:C

S-IP: B

SP: 5775

DP: 80

D-IP:C

S-IP: B

Connection-oriented demux:
Threaded Web Server

Client
IP:B

P1

client

 IP: A

P1 P2

server

IP: C

SP: 9157

DP: 80

SP: 9157

DP: 80

P4 P3

D-IP:C

S-IP: A

D-IP:C

S-IP: B

SP: 5775

DP: 80

D-IP:C

S-IP: B

Chapter 3 Outline

 3.1 Transport-layer
services

 3.2 Multiplexing and
demultiplexing

 3.3 Connectionless
transport: UDP

 3.4 Principles of reliable
data transfer

 3.5 Connection-oriented
transport: TCP
 segment structure

 reliable data transfer

 flow control

 connection management

 3.6 Principles of congestion
control

 3.7 TCP congestion control

UDP: User Datagram Protocol [RFC 768]

 “no frills,” “bare bones”
Internet transport protocol

 “best effort” service, UDP
segments may be:

 lost

 delivered out of order to
app

 connectionless:

 no handshaking between
UDP sender, receiver

 each UDP segment handled
independently of others

Why is there a UDP?

 no connection establishment
(which can add delay)

 simple: no connection state at
sender, receiver

 small segment header

 no congestion control: UDP
can blast away as fast as
desired

Tentative Midterm Exam Structure

 Short Multiple Choice Questions = 15 points

 Chapter 1: (packet/circuit switching, 2*15 = 30 points

 Delay calculations etc.)

 Chapter 2: (HTTP, Email, 20 + 10 = 30 points

 DNS etc.)

 Chapter 3: (transport layer) 15 = 15 points

 General Concepts: 10 = 10 points

 When: Tuesday (3/31) 4:30pm – 6:30pm
 Where: In Class

 100 points

Good Luck !

