
IS 450/IS 650–
Data Communications and Networks

 Course Review
Midterm Exam

 Nirmalya Roy

Department of Information Systems

University of Maryland Baltimore County

www.umbc.edu

Midterm Exam

 When: Tuesday (3/31) 4:30pm - 6:30pm
 Where: In Class

 Closed book, Closed notes
 Computer Networks and the Internet (Chapter 1);

Application Layer (Chapter 2) and Transport Layer
(up to Chapter 3.3)

 Material for preparation:
 Lecture Slides
 Quizzes
 Textbooks

 Computer Networking: A Top Down Approach,

Course Overview

 Computer Networks and the Internet (Chapter 1)

 Packet and circuit switching

 End to End Delay

 Application Layer (Chapter 2)

 Web, HTTP, FTP, SMTP, DNS, Peer-peer and Socket

 Transport Layer (Chapter 3)

 Multiplexing & Demultiplexing

Chapter 1: Computer Networks & Internet

1.1 What is the Internet?

1.2 Network edge

1.3 Network access and physical media

1.4 Network core

1.5 Internet structure and ISPs

1.6 Delay and loss in packet-switched networks

1.7 Protocol layers, service models

1.8 History

Chapter 1: Roadmap

1.1 What is the Internet?

1.2 Network edge

1.3 Network access and physical media

1.4 Network core

1.5 Internet structure and ISPs

1.6 Delay & loss in packet-switched networks

1.7 Protocol layers, service models

1.8 History

The Network Core

 mesh of interconnected
routers

 the fundamental question:
how is data transferred
through net?

 circuit switching:
dedicated circuit per call:
telephone net

 packet-switching: data
sent thru net in discrete
“chunks”

 Forwarding table and
routing protocols

Network Core: Circuit Switching

End-end resources

reserved for “call”

 link bandwidth, switch
capacity

 dedicated resources: no
sharing

 circuit-like (guaranteed)
performance

 call setup required

Network Core: Circuit Switching

Network resources (e.g.,
bandwidth) divided into
“pieces”

 pieces allocated to calls

 resource piece idle if not used
by owning call (no sharing)

 dividing link bandwidth into

“pieces”

 frequency division

 time division

Circuit Switching: FDM and TDM

FDM

frequency

time

TDM

frequency

time

4 users

Example:

FDM vs TDM

 What are the tradeoffs?

 Advantage and disadvantage of dividing frequency ?

 Advantage and disadvantage of dividing time ?

Numerical example

 How long does it take to send a file of 640,000 bits
from host A to host B over a circuit-switched
network?

 All links are 1.536 Mbps

 Each link uses TDM with 24 slots/sec

 500 msec to establish end-to-end circuit

Let’s work it out!

Network Core: Packet Switching

each end-end data stream divided into
packets

 user A, B packets share network
resources

 each packet uses full link
bandwidth

 resources used as needed

resource contention:

 aggregate resource demand can

exceed amount available

 Packets queue up

 store and forward: packets move

one hop at a time

 Node receives complete

packet before forwarding

Bandwidth division into “pieces”

Dedicated allocation

Resource reservation

Packet Switching: Statistical Multiplexing

Sequence of A & B packets does not have fixed pattern, shared on demand
statistical multiplexing.

TDM: each host gets same slot in revolving TDM frame.

A

B

C
100 Mb/s
Ethernet

1.5 Mb/s

D E

statistical multiplexing

queue of packets
waiting for output

link

Packet-switching: store-and-forward

 Takes L/R seconds to
transmit (push out)
packet of L bits on to link
of R bps

 Entire packet must arrive
at router before it can be
transmitted on next link:
store and forward

 delay = 3L/R (assuming
zero propagation delay)

Example:

 L = 7.5 Mbits

 R = 1.5 Mbps

 delay = 15 sec

R R R

L

more on delay shortly …

Packet-switched networks: forwarding

 Goal: move packets through routers from source to dest.
 we’ll study several path selection (routing) algorithms (chap 4)

 datagram network:
 destination address in packet determines next hop

 routes may change during session

 analogy: driving, asking directions

 virtual circuit network:
 packet carries tag (virtual circuit ID), tag determines next hop

 fixed path determined at call setup time, remains fixed thru call

 routers maintain per-call state

 (analogy: air trains in airports)

Compare

Thoughts on tradeoffs between packet switching and circuit
switching?

Which one would you take?

Under what circumstances?

Why?

Packet switching versus Circuit switching

 problem: 1 Mbps link

 each user:
 100 kbps when “active”

 active 10% of time

 circuit-switching:
 10 users

 packet switching (ps):
 with 35 users,

probability > 10 active users is less than 0.0004

Packet switching allows more users to use network!

N users

1 Mbps link

Q: how did we get value 0.0004?
Get performance of circuit switching with 3 times more users in case of PS

Packet switching versus Circuit switching

 Great for absorbing bursty data from individual sources

 resource sharing (due to diversity)

 simpler, no call setup

 Excessive congestion: packet delay and loss

 protocols needed for reliability, congestion control

 Q: How to provide circuit-like behavior?

 bandwidth guarantees needed for audio/video apps

 still unsolved (chapter 7)

Is packet switching a “slam dunk winner?”

Why?

Problem on Circuit and Packet switching

 Suppose users share a 15 Mbps link. Also suppose each
user requires 1 Mbps when transmitting, but each user
transmit only 10% time.

a) When circuit switching is used, how many users can be
supported?

b) Suppose there are 30 users. Find the probability that
any given time, exactly 20 users are transmitting
simultaneously. (Hint: Use the binomial distribution)

 Solve this problem from Quiz 1

where

n = number of trials

r = number of successes among n trials

p = probability of success in any one trial

q = probability of failure in any one trial (q = 1 – p)

Binomial Probability Formula

rnrrnr

r

n qp
rnr

n
ppCrP 




)!(!

!
)1()(

 for r = 0, 1, 2, . . ., n

Chapter 1: Roadmap

1.1 What is the Internet?

1.2 Network edge

1.3 Network access and physical media

1.4 Network core

1.5 Internet structure and ISPs

1.6 Delay & loss in packet-switched networks

1.7 Protocol layers, service models

1.8 History

How do loss and delay occur?

packets queue in router buffers

 packet arrival rate to link exceeds output link capacity

 packets queue, wait for turn

A

B

packet being transmitted (delay)

packets queueing (delay)

free (available) buffers: arriving packets
dropped (loss) if no free buffers

Four Sources of Packet Delay

 1. nodal processing:
 check bit errors

 determine output link

A

B

propagation

transmission

nodal
processing queueing

 2. queueing:

 time waiting at output
link for transmission

 depends on congestion
level of router

Delay in packet-switched networks

3. Transmission delay:

 L = packet length (bits)

 R = link bandwidth (bps)

 time to send bits into link
= L/R

4. Propagation delay:

 d = length of physical link

 s = propagation speed in
medium (~2x108 m/sec)

 propagation delay = d/s

A

B

propagation

transmission

nodal
processing queueing

Note: R and s are very different

quantities!

Comparing Transmission & Propagation Delays

 Transmission delay

 Amount of time required to
push out a packet

 Function of the packet’s
length & transmission rate
of the link

 Nothing to do with the
distance between the two
routers

 Propagation delay

 Time it takes a bit to
propagate from one router
to the next

 Function of the distance
between two routers and
propagation speed

 Nothing to do with the
packets’ length or
transmission rate

Nodal delay

 dproc = processing delay
 typically a few microsecs or less

 dqueue = queuing delay
 depends on congestion

 dtrans = transmission delay
 = L/R, significant for low-speed links

 dprop = propagation delay
 a few microsecs to hundreds of msecs

proptransqueueprocnodal ddddd 

Chapter 2: Application layer

 2.1 Principles of network
applications

 2.2 Web and HTTP

 2.3 FTP

 2.4 Electronic Mail
 SMTP, POP3, IMAP

 2.5 DNS

 2.6 P2P file sharing

 2.7 Socket programming
with TCP

 2.8 Socket programming
with UDP

 2.9 Building a Web server

Chapter 2: Application layer

 2.1 Principles of network
applications

 2.2 Web and HTTP

 2.3 FTP

 2.4 Electronic Mail
 SMTP, POP3, IMAP

 2.5 DNS

 2.6 P2P file sharing

 2.7 Socket programming
with TCP

 2.8 Socket programming
with UDP

 2.9 Building a Web server

Application architectures

 Client-server

 Peer-to-peer (P2P)

 Hybrid of client-server and P2P

Client-server architecture

server:
 always-on host

 permanent IP address

 server farms for scaling

 data centers

clients:
 communicate with server

 may be intermittently
connected

 may have dynamic IP
addresses

 do not communicate
directly with each other

Pure P2P architecture

 no always-on server

 arbitrary end systems directly
communicate

 peers are intermittently
connected and change IP
addresses

 Major Challenges: ISP friendly,
Security, Incentives

 example: Gnutella (peer-to-peer
file sharing network)

Highly scalable but difficult to manage

Hybrid of client-server and P2P

Skype
 Internet telephony app

 Finding address of remote party: centralized server(s)

 Client-client connection is direct (not through server)

Instant messaging
 Chatting between two users is P2P

 Presence detection/location centralized:

 User registers its IP address with central server when it comes online

 User contacts central server to find IP addresses of buddies

Internet transport protocols services

TCP service:
 connection-oriented: setup

required between client and
server processes

 reliable transport between
sending and receiving process

 flow control: sender won’t
overwhelm receiver

 congestion control: throttle
sender when network
overloaded

 does not provide: timing,
minimum bandwidth guarantees

UDP service:
 unreliable data transfer

between sending and
receiving process

 does not provide: connection
setup, reliability, flow
control, congestion control,
timing, or bandwidth
guarantee

Q: Why bother? Why is there a
UDP?

Internet apps: application, transport protocols

Application

e-mail

remote terminal access

Web

file transfer

streaming multimedia

Internet telephony

Application

layer protocol

SMTP [RFC 2821]

Telnet [RFC 854]

HTTP [RFC 2616]

FTP [RFC 959]

proprietary

(e.g. RealNetworks)

proprietary

(e.g., Vonage,Dialpad)

Underlying

transport protocol

TCP

TCP

TCP

TCP

TCP or UDP

typically UDP

Chapter 2: Application layer

 2.1 Principles of network
applications
 app architectures

 app requirements

 2.2 Web and HTTP

 2.4 Electronic Mail
 SMTP, POP3, IMAP

 2.5 DNS

 2.6 P2P file sharing

 2.7 Socket programming
with TCP

 2.8 Socket programming
with UDP

 2.9 Building a Web server

Web and HTTP

First some jargon

 Web page consists of objects

 Object can be HTML file, JPEG image, Java applet, audio
file,…

 Web page consists of base HTML-file which includes several
referenced objects

 Each object is addressable by a URL

 Example URL:

www.someschool.edu/someDept/pic.gif

host name path name

HTTP overview

HTTP: hypertext transfer
protocol

 Web’s application layer protocol

 client/server model

 client: browser that
requests, receives,
“displays” Web objects

 server: Web server sends
objects in response to
requests

 HTTP 1.0: RFC 1945

 HTTP 1.1: RFC 2068

PC running

Explorer

Server

running

Apache Web

server

Mac running

Navigator

HTTP overview (continued)

Uses TCP:
 client initiates TCP connection

(creates socket) to server, port
80

 server accepts TCP connection
from client

 HTTP messages (application-
layer protocol messages)
exchanged between browser
(HTTP client) and Web server
(HTTP server)

 TCP connection closed

HTTP is “stateless”
 server maintains no

information about past
client requests

Protocols that maintain “state” are

complex!

 past history (state) must be

maintained

 if server/client crashes, their

views of “state” may be

inconsistent, must be

reconciled

aside

HTTP connections

Nonpersistent HTTP

 At most one object is sent
over a TCP connection

 HTTP/1.0 uses
nonpersistent HTTP

Persistent HTTP

 Multiple objects can be
sent over single TCP
connection between client
and server

 HTTP/1.1 uses persistent
connections in default
mode

Non-Persistent HTTP: Response time

Round Trip Time (RTT) = time

to send a small packet to travel

from client to server and back.

Response time:

 one RTT to initiate TCP
connection

 one RTT for HTTP request

 and first few bytes of HTTP
response to return

 file transmission time

total = 2RTT+ <file transmit time>

time to

transmit

file

initiate TCP

connection

RTT

request

file

RTT

file

received

time time

Persistent HTTP

Nonpersistent HTTP issues:

 requires 2 RTTs per object

 OS overhead for each TCP
connection

 browsers often open parallel
TCP connections to fetch
referenced objects

Persistent HTTP

 server leaves connection open
after sending response

 subsequent HTTP messages
between same client/server
sent over open connection

Persistent without pipelining:

 client issues new request only
when previous response has
been received

 one RTT for each referenced
object

Persistent with pipelining:

 default in HTTP/1.1

 client sends requests as soon
as it encounters a referenced
object

 as little as one RTT for all the
referenced objects

DNS: Domain Name System

People: many identifiers:
 SSN, name, passport #

Internet hosts, routers:
 IP address (32 bit) - used for

addressing datagrams

 “name”, e.g.,
www.yahoo.com - used by
humans

Q: map between IP addresses
and name ?

Domain Name System:

 distributed database implemented in
hierarchy of many name servers

 application-layer protocol host,
routers, name servers to
communicate to resolve names
(address/name translation)

 note: core Internet function,
implemented as application-
layer protocol

 complexity at network’s “edge”

DNS

Why not centralize DNS?

 single point of failure

 traffic volume

 distant centralized database

 Maintenance

 doesn’t scale!

DNS services

 Hostname to IP address
translation

 Host aliasing
 Canonical and alias names

 Alias: enterprise.com or
www.enterprise.com

Canonical:relay1.west
coast.enterprise.c

om

 Load distribution
 Replicated Web servers: set

of IP addresses for one
canonical name

http://www.enterprise.com/

Root DNS Servers

com DNS servers org DNS servers edu DNS servers

poly.edu

DNS servers

umass.edu

DNS servers
yahoo.com

DNS servers
amazon.com

DNS servers

pbs.org

DNS servers

Distributed, Hierarchical Database

Client wants IP for www.amazon.com; 1st approx:

 Client queries a root server to find .com DNS server

 Client queries com DNS server to get amazon.com DNS server

 Client queries amazon.com DNS server to get IP address for
www.amazon.com

TLD (Top-level

domain) DNS

Authoritative

DNS servers

DNS records

DNS: distributed db storing resource records (RR)

 Type=NS
 name is domain (e.g.

foo.com)

 value is hostname of
authoritative name server
for this domain (e.g.
dns.foo.com)

RR format: (name, value, type, ttl)

 Type=A

 name is hostname

 value is IP address

 Type=CNAME

 name is alias name for some

“canonical” (the real) name
 www.ibm.com is really
 servereast.backup2.ibm.com

 value is canonical name

 Type=MX

 value is name of mailserver

associated with name (e.g.
foo.com, mail.bar.foo.com, MX)

Inserting records into DNS

 Example: just created startup “Network Utopia”
 Register name networkutopia.com at a registrar (e.g.,

Network Solutions)
 Need to provide registrar with names and IP addresses of your

authoritative name server (primary and secondary)
 Registrar inserts two RRs into the com TLD server:

(networkutopia.com, dns1.networkutopia.com, NS)

(dns1.networkutopia.com, 212.212.212.1, A)

 Put in authoritative server Type A record for

www.networkuptopia.com and Type MX record for
mail.networkutopia.com

 How do people get the IP address of your Web site?

Chapter 3 Outline

 3.1 Transport-layer
services

 3.2 Multiplexing and
demultiplexing

 3.3 Connectionless
transport: UDP

 3.4 Principles of reliable
data transfer

 3.5 Connection-oriented
transport: TCP
 segment structure

 reliable data transfer

 flow control

 connection management

 3.6 Principles of congestion
control

 3.7 TCP congestion control

Transport Layer (Chapter 3)

 Transport Layer

 Multiplexing / Demultiplexing

Multiplexing/demultiplexing

application

transport

network

link

physical

P1 application

transport

network

link

physical

application

transport

network

link

physical

P2 P3 P4 P1

host 1 host 2
host 3

= process = socket

delivering received segments

to correct socket

Demultiplexing at rcv host:
gathering data from multiple

sockets, enveloping data with

header (later used for

demultiplexing)

Multiplexing at send host:

One HTTP process, one FTP process, one Telnet process

More than one socket, each socket has unique identifier

How demultiplexing works

 host receives IP datagrams

 each datagram has source IP
address, destination IP address

 each datagram carries 1
transport-layer segment

 each segment has source,
destination port number

 host uses IP addresses & port
numbers to direct segment to
appropriate socket

source port # dest port #

32 bits

application

data

(message)

other header fields

TCP/UDP segment format

Analogous to car rentals at airports

Shuttles MUX passengers and take them

To rental office -- DeMUX to diff cars

Connectionless demultiplexing

 Create sockets with port
numbers:

DatagramSocket mySocket1 = new

DatagramSocket(99111);

DatagramSocket mySocket2 = new

DatagramSocket(99222);

 UDP socket fully identified by
two-tuple:

 (dest IP address, dest port number)

 When host receives UDP
segment:
 checks destination port

number in segment

 directs UDP segment to
socket with that port
number

 IP datagrams with different
source IP addresses and/or
source port numbers
directed to same socket

Connectionless demux (cont)

DatagramSocket serverSocket = new DatagramSocket(6428);

Client
IP:B

P2

client

 IP: A

P1 P1 P3

server

IP: C

SP: 6428

DP: 9157

SP: 9157

DP: 6428

SP: 6428

DP: 5775

SP: 5775

DP: 6428

SP provides “return address”

Connection-oriented demux

 TCP socket identified by 4-
tuple:
 source IP address

 source port number

 dest IP address

 dest port number

 recv host uses all four
values to direct segment
to appropriate socket

 Server host may support
many simultaneous TCP
sockets:
 each socket identified by its

own 4-tuple

 Web servers have different
sockets for each connecting
client
 non-persistent HTTP will

have different socket for
each request

Connection-oriented demux (cont)

Client
IP:B

P1

client

 IP: A

P1 P2 P4

server

IP: C

SP: 9157

DP: 80

SP: 9157

DP: 80

P5 P6 P3

D-IP:C

S-IP: A

D-IP:C

S-IP: B

SP: 5775

DP: 80

D-IP:C

S-IP: B

Connection-oriented demux:
Threaded Web Server

Client
IP:B

P1

client

 IP: A

P1 P2

server

IP: C

SP: 9157

DP: 80

SP: 9157

DP: 80

P4 P3

D-IP:C

S-IP: A

D-IP:C

S-IP: B

SP: 5775

DP: 80

D-IP:C

S-IP: B

Chapter 3 Outline

 3.1 Transport-layer
services

 3.2 Multiplexing and
demultiplexing

 3.3 Connectionless
transport: UDP

 3.4 Principles of reliable
data transfer

 3.5 Connection-oriented
transport: TCP
 segment structure

 reliable data transfer

 flow control

 connection management

 3.6 Principles of congestion
control

 3.7 TCP congestion control

UDP: User Datagram Protocol [RFC 768]

 “no frills,” “bare bones”
Internet transport protocol

 “best effort” service, UDP
segments may be:

 lost

 delivered out of order to
app

 connectionless:

 no handshaking between
UDP sender, receiver

 each UDP segment handled
independently of others

Why is there a UDP?

 no connection establishment
(which can add delay)

 simple: no connection state at
sender, receiver

 small segment header

 no congestion control: UDP
can blast away as fast as
desired

Tentative Midterm Exam Structure

 Short Multiple Choice Questions = 15 points

 Chapter 1: (packet/circuit switching, 2*15 = 30 points

 Delay calculations etc.)

 Chapter 2: (HTTP, Email, 20 + 10 = 30 points

 DNS etc.)

 Chapter 3: (transport layer) 15 = 15 points

 General Concepts: 10 = 10 points

 When: Tuesday (3/31) 4:30pm – 6:30pm
 Where: In Class

 100 points

Good Luck !

