NNNNNNNNNNNNNNNNNNNNNNNNNNNN

IS 450/IS 650-
Data Communications and Networks

Transport Layer

Nirmalya Roy
Department of Information Systems
University of Maryland Baltimore County

www.umbc.edu

Chapter 3 Outline

3.1 Transport-layer
services

3.2 Multiplexing and
demultiplexing

3.3 Connectionless
transport: UDP

3.4 Principles of reliable
data transfer

3.5 Connection-oriented
transport: TCP

O segment structure

o reliable data transfer

o flow control

O connection management

3.6 Principles of congestion
control

3.7 TCP congestion control

Need for Transport Layer

m Network Layer offers connections
o IP (Internet Protocol) service model

m Best-effort delivery service, unreliable service
o Connections not reliable
m Losses, delays due to out-of-order, queue overflow, ...
m Transport Layer Goals
o End to end reliability
o In Order delivery
o Performance

m Congestion control
m Flow control

Transport services and protocols

logical communication between
application
processes transport

network
data link
physical

transport protocols run in end
network

systems o

O breaks app messages into
segments

O reassembles segments into
messages, passes to app layer

data link
physical

more than one transport protocol
available to apps

o Internet: TCP and UDP

Transport vs. Network layer

network layer: logical
communication between
hosts

transport layer: logical
communication between
processes

o relies on, enhances,
network layer services

- household analogy:

12 kids in Ann’s house sending
letters to 12 kids in Bill’s house:

m hosts = houses
m processes = kids

B app messages = letters in
envelopes

m transport protocol = Ann and
Bill who demux to in-house
siblings

m network-layer protocol = postal
service

Transport-layer protocols (TCP, UDP):

reliable, in-order delivery (TCP)
o congestion control

o flow control

O connection setup

unreliable, unordered delivery:
UDP

o no-frills extension of “best-effort” IP

services not available:
o delay guarantees
o bandwidth guarantees

Host-to-host delivery to process-
to-process delivery

o transport-layer multiplexing
demultiplexing

application
transport

network
data link
physical

network
data link

physical

data link
physical

Agenda

m Transport Layer
m Multiplexing / Demultiplexing

m Reliable Transport
o Stop-and-wait
o Pipelined
m GobackN
m Selective Request

m TJCP
o Congestion Control
o Flow Control

Multiplexing/demultiplexing

Demultiplexing at rcv host:

delivering received segments
to correct socket

[] =socket Q = process

Multiplexing at send host: __

gathering data from multiple
sockets, enveloping data with
header (later used for
demultiplexing)

application application application
L S|
transport Ms»pﬁv transport
network nefwork network
link link link
physical physicat physical
host 1 host 2 host 3

One HTTP process, one FTP process, one Telnet process
More than one socket, each socket has unique identifier

How demultiplexing works

m host receives IP datagrams

o each datagram has source IP
address, destination IP address

o each datagram carries 1
transport-layer segment

o each segment has source,
destination port number

m host uses IP addresses & port
numbers to direct segment to
appropriate socket

Analogous to car rentals at airports

Shuttles MUX passengers and take them
To rental office -- DeMUX to diff cars

source port # dest port #

other header fields

application
data
(message)

TCP/UDP segment format

Connectionless demultiplexing

m Create sockets with port = When host receives UDP

numbers:
segment:

DatagramSocket mySocketl = new o

DatagramSocket (99111) ; o checks destination port
DatagramSocket mySocket? = new number in segment

DatagramSocket (99222) ; o directs UDP segment to
= UDP socket fully identified by socket with that port

number
two-tuple:

m |P datagrams with different
source IP addresses and/or
source port numbers
directed to same socket

(dest IP address, dest port number)

Connectionless demux (cont)

DatagramSocket serverSocket = new DatagramSocket (6428);

SP: 6428
DP: 9157

SP: 6428

DP: 5775

SP: 9157
C”ent DP: 6428

IP: A

SP provides “return address”

server
IP: C

SP: 5775

DP: 6428

Client
IP:B

Connection-oriented demux

m TCP socket identified by 4- m Server host may support
tuple: many simultaneous TCP
o source IP address sockets:
O source port number o each socket identified by its
o dest IP address own 4-tuple
o dest port number

m Web servers have different

m recv host uses all four sockets for each COnneCting
values to direct segment client
to appropriate socket O non-persistent HTTP will

have different socket for
each request

Connection-oriented demux (cont)

ﬂ

client
IP: A

SP: 9157

DP: 80

S-IP: A

D-IP:C

server
IP: C

SP: 5775
DP: 80
S-IP: B
D-1P:C
N
SP: 9157
DP: 80
S-IP: B
D-1P:C

Client
IP:B

Connection-oriented demux:
Threaded Web Server

——
L H L, K
SP: 5775
DP: 80
S-IP: B
D-IP:C
L
SP: 9157 SP: 9157
client DP: 80 server DP: 80 Client
IP: A S-IP: A P C S-IP: B IP:B
D-IP:C D-IP:C

Chapter 3 Outline

3.1 Transport-layer
services

3.2 Multiplexing and
demultiplexing

3.3 Connectionless
transport: UDP

3.4 Principles of reliable
data transfer

3.5 Connection-oriented
transport: TCP

O segment structure

o reliable data transfer

o flow control

O connection management

3.6 Principles of congestion
control

3.7 TCP congestion control

UDP: User Datagram Protocol [RFC 768]

“no frills,” “bare bones”
Internet transport protocol

“best effort” service, UDP
segments may be:

o lost

o delivered out of order to
app

connectionless:

o no handshaking between
UDP sender, receiver

o each UDP segment handled
independently of others

Why is there a UDP?

no connection establishment
(which can add delay)

simple: no connection state at
sender, receiver

small segment header

no congestion control: UDP
can blast away as fast as
desired

UDP: segment header

often used for streaming
multimedia apps

O loss tolerant Length, in | source port# | destport#

O rate sensitive bytes of UDP [length checksum
segment,

other UDP uses including

o DNS header

© SNMP Application

reliable transfer over UDP: data

add reliability at application (message)

layer

o application-specific error UDP segment format

recovery!

UDP checksum

Goal: detect “errors” (e.g., flipped bits) in transmitted

segment

sender:

treat segment contents,
including header fields,
as sequence of 16-bit
integers

chec!<sum: addition
(one’ s complement sum)
of segment contents

sender puts checksum
value into UDP checksum
field

receiver:

compute checksum of
received segment

check if computed checksum
equals checksum field value:

o NO - error detected

o YES - no error detected.
But maybe errors
nonetheless? More later

Internet checksum: example

example: add two 16-bit integers

11100110011 00110
1101010101 O01O01O01

wraparound@lOl1101110111011

sum

1011101110111 100
checksum 0100010001 0O0O0OO011

Note: when adding numbers, a carryout from the most
significant bit needs to be added to the result

Chapter 3 outline

3.1 transport-layer
services

3.2 multiplexing and
demultiplexing

3.3 connectionless
transport: UDP

3.4 principles of reliable
data transfer

3.5 connection-oriented
transport: TCP
Segment structure
reliable data transfer
flow control
connection management

3.6 principles of congestion
control

3.7 TCP congestion control

Principles of reliable data transfer

<« important in application, transport, link layers

top-10 list of important networking topics!

sending receiver I
process I process
| 1

L()relioble c:hcmnel)j

application
layer

transport
layer

() provided service

characteristics of unreliable channel will determine
complexity of reliable data transfer protocol (rdt)

Principles of reliable data transfer

<« important in application, transport, link layers

top-10 list of important networking topics!

senalngl receiver I
process process

| B4 [aata] 1

application
layer

L()relioble c:hcmnel)j

transport
layer

Junreliable c:hcmnel)ik

(a) provided service (b) service implementation

<« characteristics of unreliable channel will determine
complexity of reliable data transfer protocol (rdt)

Principles of reliable data transfer

<« important in application, transport, link layers

top-10 list of important networking topics!

senalngl receiver I
Process process
! 1

. rdt send()
L()relloble c:hcmnel)j =

application
layer

deliver data()

=

S5 reliable data reliable data

@ > fransfer protocol transfer protocol

% O (sending side) (receiving side)

+ udt_ send ()i [packet | [packet| I rdt rev()

Junreliable c:hcmnel)ik

(a) provided service (b) service implementation

<« characteristics of unreliable channel will determine
complexity of reliable data transfer protocol (rdt)

Reliable data transfer: getting started

rdt send() : called from above,

(e.g., by app.). Passed data to
deliver to receiver upper layer

\ rdt send()

reliable data
fransfer protocol
(sending side]

send
side

deliver data() : called by
rdt to deliver data to upper

/

data Tdeliver_data ()

reliable data receive
transfer protocol .
(receiving side) side

udt_send ()} [packel

packet Irdt_rcv ()

T—»()unrelicible channel)<T

udt send () : called by rdt,
to transfer packet over
unreliable channel to receiver

rdt rcv () : called when packet
arrives on rcv-side of channel

Reliable data transfer: getting started

We’ |l:
m incrementally develop sender, receiver sides of
reliable data transfer protocol (rdt)

m consider only unidirectional data transfer

o but control info will flow on both directions!

m use finite state machines (FSM) to specify sender,
receiver event causing state transition
actions taken on state transition

state: when in this “state”
next state uniquely
determined by next
event

rdt1.0: reliable transfer over a reliable channel

<« underlying channel perfectly reliable
no bit errors
no loss of packets

<« separate FSMs for sender, receiver:
sender sends data into underlying channel
receiver reads data from underlying channel

“*ANait for “*ANait for
call from call from
above below

sender receiver

rdt_send(data)

rdt rcv(packet)

extract (packet,data)
deliver_data(data)

packet = make pkt(data)
udt_send(packet)

rdt2.0: channel with bit errors

» underlying channel may flip bits in packet
checksum to detect bit errors

» the question: how to recover from errors:

»”

How do humans recover from ‘errors
during conversation?

rdt2.0: channel with bit errors

<« underlying channel may flip bits in packet
checksum to detect bit errors

<« the question: how to recover from errors:

acknowledgements (ACKs): receiver explicitly tells
sender that pkt received OK

negative acknowledgements (NAKs): receiver explicitly
tells sender that pkt had errors

sender retransmits pkt on receipt of NAK

<« new mechanisms in rdt2.0 (beyond rdtl1.0):
error detection

feedback: control msgs (ACK,NAK) from receiver to
sender

rdt2.0: FSM specification

rdt_send(data)

sndpkt = make_pkt(data, checksum)
udt_send(sndpkt)

rdt_rcv(rcvpkt) &&
ISNAK((rcvpkt)

Wait for
call from
above

udt_send(sndpkt)

rdt_rcv(rcvpkt) && isACK(rcvpkt)
A

sender

receiver

rdt_rcv(rcvpkt) &&
corrupt(rcvpkt)

udt_send(NAK)

Wait for
call from

rdt_rcv(rcvpkt) &&
notcorrupt(rcvpkt)
extract(rcvpkt,data)

deliver_data(data)
udt_send(ACK)

rdt2.0: operation with no errors

rdt_send(data)

snkpkt = make_pkt(data, checksum)
udt send(sndpkt

rdt_rcv(rcvpkt) &&
ISNAK((rcvpkt)

Wait for
call from
above

rdt_rcv(rcvpkt) &&
udt_send(sndpkt) corrupt(rcvpkt)

udt_send(NAK)

rdt_rcv(rcvpkt) && isACK(rcvpkt)
=
A

notcorrupt(rcvpkt)

extract(rcvpkt,data)
deliver_data(data)
udt_send(ACK)

rdt2.0: error scenario

rdt_send(data)

snkpkt = make_pkt(data, checksum)
udt send(sndpkt)

dt rev(

£

rcvpkt) &&

Wait for
call from
above

rdt_rcv(rcvpkt) &&
corrupt(rcvpkt)

dt send(NAK

udt_send(sndpkt)

rdt_rcv(rcvpkt) && isACK(rcvpkt) s
=
A

Wait for
call from
below

rdt_rcv(rcvpkt) &&
notcorrupt(rcvpkt)
extract(rcvpkt,data)

deliver_data(data)
udt_send(ACK)

rdt2.0 has a fatal flaw!

what happens if

ACK/NAK corrupted?

sender doesn’t know
what happened at
receiver!

can’ tjust retransmit:
possible duplicate

handling duplicates:

m sender retransmits
current pkt if ACK/NAK
corrupted

m sender adds sequence
number to each pkt

m receiver discards (doesnt
deliver up) duplicate pkt

— stop and wait

sender sends one packet,

then waits for receiver
response

rdt2.1: sender, handles garbled
ACK/NAKSs

rdt_send(data)

sndpkt = make_pkt(0, data, checksum)
udt_send(sndpkt)

rdt_rcv(rcvpkt) &&
(corrupt(rcvpkt) ||
ISNAK(rcvpkt))

udt_send(sndpkt)

Wait for
ACK or
NAK O

rdt_rcv(rcvpkt)
&& notcorrupt(rcvpkt)
&& iISACK(rcvpkt)

A

rdt_rcv(rcvpkt)
&& notcorrupt(rcvpkt)
&& iIsSACK(rcvpkt)

A

rdt_rcv(rcvpkt) &&

(corrupt(rcvpkt) ||

iSNAK (rcvpkt)) rdt_send(data)

udt_send(sndpkt) sndpkt = make_pkt(1, data, checksum)
- udt_send(sndpkt)

rdt2.1: receiver, handles garbled
ACK/NAKSs

rdt_rcv(rcvpkt) && notcorrupt(rcvpkt)
&& has_seqO(rcvpkt)

extract(rcvpkt,data)
deliver_data(data)

sndpkt = make_pkt(ACK, chksum)
udt_send(sndpkt)

\
\

rdt_rcv(rcvpkt) && (corrupt(rcvpkt) \\

rdt_rcv(rcvpkt) && (corrupt(rcvpkt)

sndpkt = make_pkt(NAK, chksum)
udt_send(sndpkt)

sndpkt = make_pkt(NAK, chksum) \

udt_send(sndpkt) Q

rdt_rcv(rcvpkt) &&
not corrupt(rcvpkt) && (
has_seql(rcvpkt)

sndpkt = make_pkt(ACK, chksum)

udt_send(sndpkt)

rdt_rcv(rcvpkt) &&
not corrupt(rcvpkt) &&
has seqO(rcvpkt)

sndpkt = make_pkt(ACK, chksum)
udt_send(sndpkt)

rdt_rcv(rcvpkt) && notcorrupt(rcvpkt)
&& has_seql(rcvpkt)

extract(rcvpkt,data)
deliver_data(data)

sndpkt = make_pkt(ACK, chksum)
udt_send(sndpkt)

rdt2.1: discussion

sender:

a
d

seq # added to pkt

two seq. # s (0,1) will
suffice. Why?

must check if received
ACK/NAK corrupted

twice as many states

o state must
“remember” whether
“expected” pkt should
have seq#ofOor1

receiver:

d

must check if received
packet is duplicate

state indicates whether
O or 1is expected pkt
seq #
note: receiver can not
know if its last
ACK/NAK received OK

at sender

rdt2.2: a NAK-free protocol

0 same functionality as rdt2.1, using ACKs only

0 instead of NAK, receiver sends ACK for last pkt
received OK

0 receiver must explicitly include seq # of pkt being ACKed

0 duplicate ACK at sender results in same action as
NAK: retransmit current pkt

rdt2.2: sender, receiver fragments

rdt_send(data)
sndpkt = make_pkt(0, data, checksum)

. udtﬂ(sndpkt)\‘ rdt_rcv(rcvpkt) &&
~ S st for (_corrupt(rcvpkt) |
...................... el ACK ISACK(rcvpkt,1))
.................................... 2bove 0 udt_send(sndpkt)
... sender FSM
... fragment rdt_rcv(rcvpkt)
..................................... && notcorrupt(rcvpkt)
ook g e && iIsACK(rcvpkt,0)
(corrupt(revpkt) [| o~ el A
has_seql(rcvpkt)) receiver FSM T
T —— fragment ...
9 T

rdt_rcv(rcvpkt) && notcorrupt(rcvpkt)
&& has_seql(rcvpkt)

extract(rcvpkt,data)
deliver_data(data)

sndpkt = make_pkt(ACK1, chksum)
udt_send(sndpkt)

rdt3.0: channels with errors and loss

new assumption: approach: sender waits
underlying channel can “reasonable” amount
also lose packets (data, of time for ACK
ACKs) m retransmits if no ACK

received in this time

o checksum, seq. #, m if pkt (or ACK) just delayed

ACKs, retransmissions (not lost):
will be of help ... but t o .
not enough O retransmission will be

duplicate, but seq. # s
already handles this

O receiver must specify
seq # of pkt being
ACKed

B requires countdown timer

rdt3.0 sender

rdt_send(data)

rdt_rcv(rcvpkt) &&

\ sndpkt = make_pkt(0, data, checksum)
\ udt_send(sndpkt)
\ start_timer

rdt_rcv(rcvpkt)
A

Wait for

rdt_rcv(rcvpkt)
&& notcorrupt(rcvpkt)
&& iIsACK(rcvpkt,1)

stop_timer

timeout
udt_send(sndpkt) C
start_timer (_/

rdt_rcv(rcvpkt) &&
(corrupt(rcvpkt) ||
ISACK(rcvpkt,0))

A

(corrupt(rcvpkt) ||
ISACK(rcvpkt,1))

A

timeout
udt_send(sndpkt)
start_timer

rdt_rcv(rcvpkt)
&& notcorrupt(rcvpkt)
&& iIsACK(rcvpkt,0)

stop_timer

rdt_rcv(rcvpkt)
A

rdt_send(data)

sndpkt = make_pkt(1, data, checksum)
udt_send(sndpkt)
start_timer

rdt3.0 in action

sender recelver
send pkt0 ktO
\\ Frcv pkto
ack send ackO
rcv ack0
send pktl \Wl\‘
rcv pktl
A}k/ send ackl
rcv ackl
send pkt0 \NO\‘
rcv pktO
ack send ackO
(a) no loss

sender receiver
send pktO ktO
\\ rcv pkto
ack send ack0
rC\C/I acl:(kcl) 1
sen t
p \kx

timeout_

resend pktl ktl

f o

rcv pktl
cK send ackl
rcv ackl

send pkt0 ktO
rcv pkt0
ack send ackO

A

(b) packet loss

rdt3.0 in action

sender recelver
send pkt0 ktO
\\ Frcv pkto
ack send ackO
rcv ackO
send pktl_ \k
rcv pktl
yockl—" send ack1

loss
. t/meout_
resend L =B rov pkt
e S
rcv ackl
send pkt0 \!to\‘
rcv pktO

ack send ackO

(c) ACK loss

sender receiver
send pkt0
\\ rcv pkt0
send ackO
rcv ackO /
send pktl_ \\
rcv pktl

send ackl
ackl
‘ t/meou
resend pktl rcv pktl
rcv ackl (detect du |cate)

send pktoﬁ< send ack
rev ackl rcv pkt0

send pkt0 send ackO
rcv pktO

/ (detect duplicate)
send ackO

(d) premature timeout/ delayed ACK

Summary of transmission methods

m Reliable data transfer over a channel with Bit Errors

o Positive acknowledgement (ACK)
o Negative acknowledgement (NAK)
o ARQ (Automatic Repeat reQuest) protocols

O Error detection
o Receiver feedback
o Retransmission

m Stop & Wait
m Pipelined
o GoBackN

o Selective Repeat

Problem: Performance of rdt3.0

<« 1 Gbps link, 15 ms prop. delay, 8000 bit packet:

L 8000 bits :
Diyans = B = 10P bits/sec = 8 mICrosecs
= U 4o utilization — fraction of time sender busy sending
L/R .008
U = = — = 0.00027

sender — RTT+L/R 30.008

= if RTT=30 msec, 1KB pkt every 30 msec: 33KB/sec thruput
over 1 Gbps link

= 1KB = 1000 bytes = 8000 bits

+ network protocol limits use of physical resources!

Stop-and-wait operation

sender receiver

first packet bit transmitted, t = 0 —g-------------ooooeeo
last packet bit transmitted, t =L/ R 17

first packet bit arrives

RTT —last packet bit arrives, send ACK

ACK arrives, send next,
packet, t =RTT+L/R

y -_ L/R _ .08

dor™ = = 0.00027
sender RTT+L/R 30008

Pipelined protocols

Pipelining: sender allows multiple, “in-flight”, yet-to-be-
acknowledged pkts
o range of sequence numbers must be increased
o buffering at sender and/or receiver

data pqcke’r—»

<+— ACK packets

(a) a stop-and-wait protocol in operation (b) a pipelined protocol in operation

m Two generic forms of pipelined protocols: go-Back-N,
selective repeat

Pipelining: increased utilization

sender receiver

first packet bit transmitted, t = 0 —x-------- -
last bit transmitted, t =L/ R 3

first packet bit arrives
last packet bit arrives, send ACK

last bit of 2" packet arrives, send ACK
last bit of 3™ packet arrives, send ACK

RTT

ACK arrives, send next|
packet, t=RTT+L/R |

.................. Increase utilization
................ Y / by a factor of 3!

= - 0.0008

Agenda

m Transport Layer
m Multiplexing / Demultiplexing

m Reliable Transport
o Stop-and-wait
o Pipelined
m GobackN
m Selective Request

m TJCP
o Congestion Control
o Flow Control

Go-Back-N

Sender:
m k-bit seq # in pkt header
] “window” of up to N, consecutive unack’ed pkts allowed

send_base nhexfsegnum dlready Usable. nof
i i ack’ed yet sent
I VETEHTITO000000 | sceta [rores
+ __ window size —*%
N

ACK(n): ACKs all pkts up to, including seq # n - “cumulative ACK”
= may receive duplicate ACKs
timer for each in-flight pkt
timeout(n): retransmit pkt n and all higher seq # pkts in window
N referred to as the window size and GBN as a sliding-window protocol
Why we limit N? (flow control, TCP congestion control)

GBN in
action

sender receiver
send pktO \
rcv pkto
send pkf | sencEl)ACKO
> sendpki2 —_ (Ioss) Sord ACK]
send pktd
(wait) rcv pkt3, discard
A/ send ACKT
rcv ACKO
send pkt4
rcv ACKT rcv pkifd, discard
send pkfd \ sendlﬁr\élg g
rcv iscar
— okt2 firneout / sena ACK]
send pkt2 \
send pkt3 \ rcv pki2, deliver
send pkt4 send ACK2
send pktd rcv ij)lgr\% l%elwer
sen

T

Selective Repeat

m receiver individually acknowledges all correctly
received pkts

o buffers pkts, as needed, for eventual in-order delivery to
upper layer

m sender only resends pkts for which ACK not received

o sender timer for each unACKed pkt

m sender window
o N consecutive seq #'s
o again limits seq #s of sent, unACKed pkts

Selective Request

m Makes sense to transmit only the lost packets
O But this is true under what assumption ?

m GBN suffers from performance problems

O Window size and bandwidth-delay product are both large, many pkts in
pipeline

O Single pkt error cause GBN to retransmit a large # of pkts, many
unnecessarily

O Probability of channel error increases, the pipeline can become filled with
these unnecessary transmissions

o Canyou say a case in which Go-BACK-N might be better

m GBN protocol allows the sender to potentially “fill the pipeline” with
packets

O Increase the channel utilization than stop-and-wait protocols
O SR protocols avoid unnecessary retransmissions

m Sender only retransmits pkts that are received in error at receiver
(lost/corrupted)

Selective repeat: sender, receiver
windows

send_base hextsegnum dlready Lsable. not
L ¢ ack’ed yet sent
T | s e
- window size —4
i N

(a) sender view of sequence numbers
n

out of order

acceptable
(buffered) but R (\ithin window)
already ack’ed

ﬂﬂﬂﬂﬂﬂﬂﬂﬂl||||||||||||||]|]|] |ogecregaet [o

t _ window size—#4

1 N

rcv_base

(b) receiver view of sequence numbers

Selective repeat

— sender

data from above :

m if next available seq # in window,
send pkt

timeout(n):

m resend pkt n, restart timer

ACK(n) in [sendbase,sendbase+N]:

m mark pkt n as received

m if n smallest unACKed pkt, advance

window base to next unACKed seq #

— receiver

PKt N IN [revbase, revbase+N-1]

B send ACK(n)

B out-of-order: buffer

B in-order: deliver (also deliver
buffered, in-order pkts),
advance window to next not-
yet-received pkt

pkt nin [rcvbase-N,rcvbase-1]
B ACK(n)

otherwise:

M ignore

Selective repeat in action

pktl =ent
01234567879 ﬂq__kﬁﬂ—__h%ﬁﬁ__“““'-pktD rovd, deliwvered., ACKD =ent
pktl =ent 01 2 3 4({5 6 7 8 9

0123456783 pktl rocwd, delivered. ACKl =ent

pktZ =ent o 1({2 3 4 5(e 7 89
— |01 2 3|4 56 789 W
(loss)

pkt3 =ent. window full
o012 31456 789

pktd rovd., buffered. ACKI sent
nifz2z 3 4 5|6 7 849

ACKD rowd, pktd =e=nt
nj1 2 3 4|56 7 8 9

pktd rcwd, buffered. ACK4 =ent
ACK]l rowd, pkth ==nt n 1|2 3 4 5|6 7 8 9

012 3 456 7889

pktt rovd, buffered. ACKS =ent
012 3 4 5|6 7 8 9

—— pkt2 TIMEOUT, pkt2 resent
D12 3 4 5e 7 829

pkt? rowd, pkt?. pkt3d, pltd plth
delivered, ACKZ? =e=nt

ACKZ rowd, nothing sent 012345k 7849
0n1|2 245 7 879

Selective Repeat (SR)

m SRreceiver acknowledge a correctly received packet
whether or not it is in order

m Out-of-order pkts are buffered

o If any missing pkts (with lower seq #) are received, a batch of pkts
can be delivered in order to the upper layer.

Selective repeat:
dilemma

Example:

m seq#'s:0,1,2,3

m window size=3

m receiver sees no difference in two
scenarios!

m incorrectly passes duplicate data as
new in (a)

m No way of distinguishing the

retransmission of the 15t pkt from an
original transmission of the 5t pkt

Q: What relationship between seq # size

and window size?

Ans: window size must be < half the size

of the seq # space for SR protocols.

receiver window
(after receipt)

sender window
(after receipt)

pktO

012130172 ol1 23101 2

0121301 0112301 2

0123012 01 2130 112

timeout
retransmit pktQ

0123015)“O

—p receive packet
with seq number O

(a)

receiver window
(after receipt)

sender window
(after receipt)

ktO
01230149

Ofl 2 3J0 1 2

012|301 01123 0]1 2

012|301 2 012130 1l2
ACK2

Ofl1 2 3|01

012 301

receive packet
with seq number O

(b)
What if pkts go out of order

Agenda

m Transport Layer
m Multiplexing / Demultiplexing

m Reliable Transport
o Stop-and-wait
o Pipelined
m GobackN
m Selective Request

m TJCP
o Congestion Control
o Flow Control

TCP: Overview

point-to-point: O

O one sender, one receiver

reliable, in-order byte
steam:

o no “message boundaries”
pipelined:

o TCP congestion and flow
control set window size

send & receive buffers

socket

door

TCP
receive buffer

() segment] —» ()

TCP
send buffer

RFCs: 793, 1122,1323,2018, 2581

full duplex data:

o bi-directional data flow in
same connection

o MSS: maximum segment
size
connection-oriented:

o handshaking (exchange of
control msgs) init’s sender,
receiver state before data
exchange

flow controlled:

o sender will not overwhelm
receiver

TCP segment structure

<
<«

URG: urgent data
(generally not used)\

ACK: ACK #
valid

source port # dest port #

v

32 hits

counting

. Ssequence number

by bytes
of data

cknowledgement number

(not segments!)

PSH: push data now
(generally not used)— |

head| not

| len—fUSed

 cheeksun

bytes

rcvr willing

KI—PLRS F| Receive window
sum, Urg data pnter

RST, SYN, FIN— |

/

Optjgns (variable length)

to accept

connection estab
(setup, teardown
commands)

Intern(;/
checksu

(as in UDP)

N\

application
data
(variable length)

TCP: Connection-Oriented Transport

m TCP has 3 main components
o Reliable transmission
o Congestion Control
o Flow Control

Reliable Transmission

m TCPis connection-oriented

O

Sender sends control packets (SYN) and receiver replies
(ACK)

Receiver also opens a similar connection
Full-duplex service; point-to-point connection

m Sender sends a small burst of packets

O

Receiver ACKs: ACK contains the next expected packet
(actually byte)

Sender receives ACK, and sends a bigger burst
Called “Self-clocking” behavior

Reliable Transmission

m [f train of packets lost
o Sender will not get any ACKs
o Will timeout (gets alarmed)
o Retransmit from first un-ACK-ed packet,
o Drastically reduces window size

m |f packet n lost, but (n+1) successful

o Receiver will send Duplicate ACK
o Three DupACKs, Resends (n)

O Fast Retransmit

m Retransmitting the missing segments before that segment’s timer
expires

o Cuts window size by half

Congstion Control

TCP Congestion Control

m Problem Definition

0 How much data should | pump into the network to ensure
m Intermediate router queues not filling up
m Fairness achieved among multiple TCP flows

m Why is this problem difficult?
o TCP cannot have information about the network
o Only TCP receiver can give some feedbacks

m Approach: sender limit the rate of sending traffic as a
function of perceived network congestion
0 How does a TCP sender limit the rate?
o How does TCP sender perceive that there is congestion?
o What algorithm should the sender use?

The TCP Intuition

! \u\\\\ﬂ -

71_ H lll I ' ﬁ “‘l[
v ,1,'1 H-
{ w! .

o £ L

)‘ Fff Collect

f water
r.
N

!
= .}

The TCP Protocol (in a nutshell)

m T (sender) transmits few packets, waits for ACK
o Called slow start

m R (receiver) acknowledges all packet till seq #i by ACK i

o ACK sent out only on receiving a packet
o Can be Duplicate ACK if expected packet not received

m ACK reaches T = indicator of more capacity
o T transmits larger burst of packets (self clocking) ... so on
O Burst size increased until packet drops (i.e., DupACK or timeout)

B When T gets DupACK or waits for longer than RTO
(Retransmission TimeOut)

o Assumes congestion = reduces burst size (congestion window)

TCP Congestion Control: details

sender sequence number space
= cwnd —>|

last byte ‘ last byte

yet ACKed
(“in-flight”)

% sender limits transmission:

LastByteSent- < cwnd
LastByteAcked

« cwnd is dynamic, function
of perceived network
congestion

TCP sending rate:

<« roughly: send cwnd
bytes, wait RTT for
ACKS, then send

more bytes

rate ~

cwnd

bytes/sec

TCP Timeline

Think of a blind
person trying to
stand up in a low
ceiling room

Objective:
Don’t bang your
head, but stand
up quickly

TCP Congestion Control Algorithm

m Aloss segment implies congestion
o TCP sender’s rate should be decreased

m An ACK indicates that network is delivering the
sender’s segment to the receiver
o TCP sender’s rate can be increased

m Bandwidth probing

o TCP sender increases transmission rate to probe when
congestion onset begins

O backs off from that rate and then begins probing to see if
congestion rate has changed

m Jacobson 1988

o Slow start; congestion avoidance; fast recovery

TCP Slow Start

When connection begins,
increase rate exponentially
until first loss event:

o double CongWin every RTT

o done by incrementing
CongWin for every ACK

received
Summary: initial rate is
slow but ramps up
exponentially fast

When this exponential
growth rate should end?

TCP Slow Start (more)

If there is a loss event (i.e., congestion) indicated by a
timeout

O

O

O

O

TCP sender sets the value of cwnd to 1

Begin the slow start process anew

Sets the value of 2"d state variable ssthresh (slow start
threshold) to cwnd/2

Slow start ends when cwnd = ssthresh

TCP transitions into congestion avoidance (CA) mode

O

O
O
O

TCP increases cwnd more cautiously when in CA mode

Final end of slow start happens if 3 duplicate ACKs are detected
TCP performs a fast retransmit

Enters a fast recovery state

TCP Slow Start (more)

m Congestion avoidance state

o value of cwnd is approx. half its value when congestion was
last detected

o Rather than doubling the value of cwnd every RTT TCP
adopts a more conservative approach

O Increase the value of cwnd by just a single MSS

m TCP performs a fast retransmit
o Enters a fast recovery state

TCP: detecting, reacting to loss

« loss indicated by timeout:
cwnd set to 1 MSS

window then grows exponentially (as in slow start) to
threshold, then grows linearly

» loss indicated by 3 duplicate ACKs: TCP RENO (newer version)

dup ACKs indicate network capable of delivering some
segments

cwnd is cut in half window then grows linearly

» TCP Tahoe (earlier version) always sets cwnd to 1
(timeout or 3 duplicate acks)

TCP: switching from slow start to CA

Q: When should the
exponential
increase switch 1P Reno
to linear?

o
|

— —
o N
l l

ssthresh

A: When cwnd gets
to 1/2 of its value
before timeout. 5

ssthresh

Congestion window
(in segments)

TCP Tahoe

: 0
Implementatlon: 0 1 23456 7 8 910111213 1415

Transmission round

< variable ssthresh

L)

» on loss event,
ssthreshissetto 1/2
of cwnd just before loss
event

TCP fast retransmit

< time-out period

often relatively long: - TCP fast retransmit

if sender receives 3
ACKs for same data

(“triple duplicate ACKs”),
resend unacked

long delay before
resending lost packet

+ detect lost segments

via duplicate ACKs. segment with smallest
sender often sends seq #
many segments back- " |ikely that unacked
to-back segment lost, so don’t

wait for timeout

if segment is lost,
there will likely be
many duplicate ACKs.

TCP fast retransmit

Host A Host B

timeout

A A

~ Seq=92, 8 bytes of data

~~Seq=100, es of data
=120,“1~5~b;@s‘

eq=135,"6bytes of data

o=

\

/ACKZIOO
TSeq=100, 20 bytes of data

™

ACK=100

ACK=100

¥ ACK=100

ACK=100

fast retransmit after sender
receipt of triple duplicate ACK

Understanding 3 Duplicate ACKs from GBN

sender receiver Q: Is TCP Go-Back-N or Selective Repeat?
send pid T okl A: a) TCP implementation buffers
send pki] send ACKO

i correctly received but out-of-order
> send pki2 \(|§SS) [cvp ACK]

send segments.
Sem?\,%(ﬁ% b) Selective acknowledgement allows a
'eV KIS, puffered _
¥ sond ACK] TCP receiver to acknowledge out-of
rcy ACKO i
sond Dkt order segments selectively rather than
rev ACK] rcy DkT4 Puﬁered just cumulatively acknowledging the

send pkt5 send A
? \ oy pkﬁ)”buﬁgred last correctly received, in-order

=pkt2 timeout send ACK|
segment.

c) Selective retransmission: skipping

the retransmission of segments that

have already been selectively acknowledged by
the receiver

d) TCP is a hybrid GBN and SR protocol

More Example: When waited for > RTO

After RTO timeout

% 25 -

S cwnd = 20

9;',’ 20 -

2 15 /

@)

=

= 10 A

,5 5 ssthresh = 8 ssthresh = 10

= i

(@)]

§ O [[| [[| [[[| [[| [[|
S \(" N ARNE

Time (round trips)
double CongWin every RTT

done by incrementing CongWin
for every ACK received

Understanding RTT (X axis) & cwnd/segments
(Y axis) relationship

m Relation between RTT
(Transmission Round) and
Packets Sequence Number/
MSS (Maximum Segment Size)

O 15tRTT: pkt 1

o 2nd RTT: pkt 2&3 Ur segments

o 39RTT: pkt 4,5,6 &7

o 4hRTT: pkt 8,9, 10, 11, 12, 13,
14, & 15 |
5th RTT: pkt 16 to 31 | e

6t RTT: pkt 32 to 63

Next Step

m We talked about the
congestion window

o Setting up the congestion

window size

m What about RTT and
Retransmission
Timeout?

o How to determine the
value of RTT/RTO?

sender receiver
send pkt0 ktO
\ rcv pkto
ack send ackO
rcv ackO
send pktl_ ktl
X
loss
timeout
resend pktl ktl
ack send ackl
rcv ackl
send pkt0 \Eto\‘
rcv pktO
ack send ackO

(b) packet loss

Timeout -- function of RTT

Q: how to set TCP timeout Q: how to estimate RTT?

value? m SampleRTT: measured time from
m longer than RTT segment transmission until ACK

O but RTT varies receipt

o How much larger? m One of the transmitted but currently

m too short: premature timeout unacknowledged segment

m Vary due to congestion in the routers

O unnecessary .
and varying load on the end systems

retransmissions

m too long: slow reaction to
segment loss

m How should the RTT be m SampleRTT will vary, want
estimated in first place? estimated RTT “smoother”

m Should a timer be associated O average several recent
with each and every measurements, not just current
unacknowledged segment? SampleRTT

[TCP work by Jacobson 1988]

TCP Round Trip Time

EstimatedRTT = (1- o) *EstimatedRTT + oa*SampleRTT

B Exponential weighted moving average (EWMA)
B influence of past sample decreases exponentially fast
B typical value: a =0.125

Example RTT estimation:

RTT (milliseconds)

350 +

RTT: gaia.cs.umass.edu to fantasia.eurecom.fr

300

250

200 -

150

100

15

22 29 36 43 50 57 64 71 78 85 92
time (seconnds)

—o— SampleRTT —&— Estimated RTT

99

106

Timeout

Setting the timeout

m EstimatedRTT plus “safety margin”
o large variation in EstimatedRTT -> larger safety margin

m first estimate of how much SampleRTT deviates from EstimatedRTT:

DevRTT = (1-PB)*DevRTT + [B*|SampleRTT-EstimatedRTT |

(typically, B = 0.25)
Then set timeout interval:

m Interval should be greater than or equal to EstimatedRTT, shouldn’t be
too large

m Unnecessary retransmissions would be sent or TCP would not quickly
retransmit

m EstimatedRTT + Margin
TimeoutInterval = EstimatedRTT + 4*DevRTT

TCP: Connection-Oriented Transport

m TCP has 3 main components
O

O

o Flow Control

TCP Flow Control

m Problem Definition
o The receiver has limits on buffer
o If many nodes transmitting to same receiver

m Losses may happen at receiver

o Need to avoid such losses

m Solution
o Receiver tells transmitter how much space left

o Transmitter chooses its congestion window accordingly

TCP Flow Control;: how it works

data from

IP

k— RevWindow —f

7
/ 3 / _Papplicatinn

/ process
////
'|l— RevBuffer —I‘*

(Suppose TCP receiver discards

out-of-order segments)
spare room in buffer

RcvWindow

RcvBuffer-[LastByteRcvd -
LastByteRead]

Revr advertises spare
room by including value
of ReviWindow in

segments
Sender limits unACKed
data to RevWindow

O guarantees receive buffer
doesn’t overflow

Chapter 3: Transport Layer Summary

» principles behind transport
layer services:

multiplexing,
demultiplexing

reliable data transfer
flow control
congestion control

» instantiation, implementation
in the Internet
UDP
TCP

next:

leaving the
network “edge”
(application,
transport layers)
into the network
“core”

Questions?

