
IS 450/IS 650–
Data Communications and Networks

Transport Layer

Nirmalya Roy

Department of Information Systems

University of Maryland Baltimore County

www.umbc.edu

Chapter 3 Outline

 3.1 Transport-layer
services

 3.2 Multiplexing and
demultiplexing

 3.3 Connectionless
transport: UDP

 3.4 Principles of reliable
data transfer

 3.5 Connection-oriented
transport: TCP
 segment structure

 reliable data transfer

 flow control

 connection management

 3.6 Principles of congestion
control

 3.7 TCP congestion control

Need for Transport Layer

 Network Layer offers connections

 IP (Internet Protocol) service model
 Best-effort delivery service, unreliable service

 Connections not reliable
 Losses, delays due to out-of-order, queue overflow, …

 Transport Layer Goals

 End to end reliability

 In Order delivery

 Performance
 Congestion control

 Flow control

Transport services and protocols

 logical communication between
processes

 transport protocols run in end
systems

 breaks app messages into
segments

 reassembles segments into
messages, passes to app layer

 more than one transport protocol
available to apps

 Internet: TCP and UDP

application

transport

network

data link

physical

application

transport

network

data link

physical

network

data link

physical

network

data link

physical

network

data link

physical

network

data link

physical

network

data link

physical

Transport vs. Network layer

 network layer: logical
communication between
hosts

 transport layer: logical
communication between
processes

 relies on, enhances,
network layer services

12 kids in Ann’s house sending
letters to 12 kids in Bill’s house:

 hosts = houses

 processes = kids

 app messages = letters in
envelopes

 transport protocol = Ann and
Bill who demux to in-house
siblings

 network-layer protocol = postal
service

household analogy:

Transport-layer protocols (TCP, UDP):
 reliable, in-order delivery (TCP)

 congestion control

 flow control

 connection setup

 unreliable, unordered delivery:
UDP
 no-frills extension of “best-effort” IP

 services not available:
 delay guarantees

 bandwidth guarantees

 Host-to-host delivery to process-
to-process delivery
 transport-layer multiplexing

demultiplexing

application

transport

network

data link

physical

application

transport

network

data link

physical

network

data link

physical

network

data link

physical

network

data link

physical

network

data link

physical

network

data link

physical

Agenda

 Transport Layer

 Multiplexing / Demultiplexing

 Reliable Transport

 Stop-and-wait

 Pipelined

 Go back N

 Selective Request

 TCP

 Congestion Control

 Flow Control

Multiplexing/demultiplexing

application

transport

network

link

physical

P1 application

transport

network

link

physical

application

transport

network

link

physical

P2 P3 P4 P1

host 1 host 2
host 3

= process = socket

delivering received segments

to correct socket

Demultiplexing at rcv host:
gathering data from multiple

sockets, enveloping data with

header (later used for

demultiplexing)

Multiplexing at send host:

One HTTP process, one FTP process, one Telnet process

More than one socket, each socket has unique identifier

How demultiplexing works

 host receives IP datagrams

 each datagram has source IP
address, destination IP address

 each datagram carries 1
transport-layer segment

 each segment has source,
destination port number

 host uses IP addresses & port
numbers to direct segment to
appropriate socket

source port # dest port #

32 bits

application

data

(message)

other header fields

TCP/UDP segment format

Analogous to car rentals at airports

Shuttles MUX passengers and take them

To rental office -- DeMUX to diff cars

Connectionless demultiplexing

 Create sockets with port
numbers:

DatagramSocket mySocket1 = new

DatagramSocket(99111);

DatagramSocket mySocket2 = new

DatagramSocket(99222);

 UDP socket fully identified by
two-tuple:

 (dest IP address, dest port number)

 When host receives UDP
segment:
 checks destination port

number in segment

 directs UDP segment to
socket with that port
number

 IP datagrams with different
source IP addresses and/or
source port numbers
directed to same socket

Connectionless demux (cont)

DatagramSocket serverSocket = new DatagramSocket(6428);

Client
IP:B

P2

client

 IP: A

P1 P1 P3

server

IP: C

SP: 6428

DP: 9157

SP: 9157

DP: 6428

SP: 6428

DP: 5775

SP: 5775

DP: 6428

SP provides “return address”

Connection-oriented demux

 TCP socket identified by 4-
tuple:
 source IP address

 source port number

 dest IP address

 dest port number

 recv host uses all four
values to direct segment
to appropriate socket

 Server host may support
many simultaneous TCP
sockets:
 each socket identified by its

own 4-tuple

 Web servers have different
sockets for each connecting
client
 non-persistent HTTP will

have different socket for
each request

Connection-oriented demux (cont)

Client
IP:B

P1

client

 IP: A

P1 P2 P4

server

IP: C

SP: 9157

DP: 80

SP: 9157

DP: 80

P5 P6 P3

D-IP:C

S-IP: A

D-IP:C

S-IP: B

SP: 5775

DP: 80

D-IP:C

S-IP: B

Connection-oriented demux:
Threaded Web Server

Client
IP:B

P1

client

 IP: A

P1 P2

server

IP: C

SP: 9157

DP: 80

SP: 9157

DP: 80

P4 P3

D-IP:C

S-IP: A

D-IP:C

S-IP: B

SP: 5775

DP: 80

D-IP:C

S-IP: B

Chapter 3 Outline

 3.1 Transport-layer
services

 3.2 Multiplexing and
demultiplexing

 3.3 Connectionless
transport: UDP

 3.4 Principles of reliable
data transfer

 3.5 Connection-oriented
transport: TCP
 segment structure

 reliable data transfer

 flow control

 connection management

 3.6 Principles of congestion
control

 3.7 TCP congestion control

UDP: User Datagram Protocol [RFC 768]

 “no frills,” “bare bones”
Internet transport protocol

 “best effort” service, UDP
segments may be:

 lost

 delivered out of order to
app

 connectionless:

 no handshaking between
UDP sender, receiver

 each UDP segment handled
independently of others

Why is there a UDP?

 no connection establishment
(which can add delay)

 simple: no connection state at
sender, receiver

 small segment header

 no congestion control: UDP
can blast away as fast as
desired

UDP: segment header

 often used for streaming
multimedia apps

 loss tolerant

 rate sensitive

 other UDP uses

 DNS

 SNMP

 reliable transfer over UDP:
add reliability at application
layer

 application-specific error
recovery!

source port # dest port #

32 bits

Application

data

(message)

UDP segment format

length checksum

Length, in

bytes of UDP

segment,

including

header

UDP checksum

sender:
 treat segment contents,

including header fields,
as sequence of 16-bit
integers

 checksum: addition
(one’s complement sum)
of segment contents

 sender puts checksum
value into UDP checksum
field

receiver:

 compute checksum of
received segment

 check if computed checksum
equals checksum field value:

 NO - error detected

 YES - no error detected.
But maybe errors
nonetheless? More later
….

Goal: detect “errors” (e.g., flipped bits) in transmitted
segment

Internet checksum: example

example: add two 16-bit integers

1 1 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0
1 1 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1

1 1 0 1 1 1 0 1 1 1 0 1 1 1 0 1 1

1 1 0 1 1 1 0 1 1 1 0 1 1 1 1 0 0
1 0 1 0 0 0 1 0 0 0 1 0 0 0 0 1 1

wraparound

sum

checksum

Note: when adding numbers, a carryout from the most
significant bit needs to be added to the result

Chapter 3 outline

3.1 transport-layer
services

3.2 multiplexing and
demultiplexing

3.3 connectionless
transport: UDP

3.4 principles of reliable
data transfer

3.5 connection-oriented
transport: TCP

 segment structure

 reliable data transfer

 flow control

 connection management

3.6 principles of congestion
control

3.7 TCP congestion control

Principles of reliable data transfer

 important in application, transport, link layers

 top-10 list of important networking topics!

 characteristics of unreliable channel will determine
complexity of reliable data transfer protocol (rdt)

 characteristics of unreliable channel will determine
complexity of reliable data transfer protocol (rdt)

Principles of reliable data transfer

 important in application, transport, link layers

 top-10 list of important networking topics!

 characteristics of unreliable channel will determine
complexity of reliable data transfer protocol (rdt)

 important in application, transport, link layers

 top-10 list of important networking topics!

Principles of reliable data transfer

Reliable data transfer: getting started

send

side
receive

side

rdt_send(): called from above,

(e.g., by app.). Passed data to
deliver to receiver upper layer

udt_send(): called by rdt,

to transfer packet over
unreliable channel to receiver

rdt_rcv(): called when packet

arrives on rcv-side of channel

deliver_data(): called by

rdt to deliver data to upper

We’ll:

 incrementally develop sender, receiver sides of
reliable data transfer protocol (rdt)

 consider only unidirectional data transfer

 but control info will flow on both directions!

 use finite state machines (FSM) to specify sender,
receiver

state
1

state
2

event causing state transition

actions taken on state transition

state: when in this “state”
next state uniquely
determined by next

event
event

actions

Reliable data transfer: getting started

rdt1.0: reliable transfer over a reliable channel

 underlying channel perfectly reliable

 no bit errors

 no loss of packets

 separate FSMs for sender, receiver:

 sender sends data into underlying channel

 receiver reads data from underlying channel

Wait for

call from

above packet = make_pkt(data)

udt_send(packet)

rdt_send(data)

extract (packet,data)

deliver_data(data)

Wait for

call from

below

rdt_rcv(packet)

sender receiver

 underlying channel may flip bits in packet
 checksum to detect bit errors

 the question: how to recover from errors:
 acknowledgements (ACKs): receiver explicitly tells

sender that pkt received OK
 negative acknowledgements (NAKs): receiver explicitly

tells sender that pkt had errors
 sender retransmits pkt on receipt of NAK

 new mechanisms in rdt2.0 (beyond rdt1.0):
 error detection
 receiver feedback: control msgs (ACK,NAK) rcvr-

>sender

rdt2.0: channel with bit errors

How do humans recover from “errors”
during conversation?

 underlying channel may flip bits in packet
 checksum to detect bit errors

 the question: how to recover from errors:

 acknowledgements (ACKs): receiver explicitly tells
sender that pkt received OK

 negative acknowledgements (NAKs): receiver explicitly
tells sender that pkt had errors

 sender retransmits pkt on receipt of NAK

 new mechanisms in rdt2.0 (beyond rdt1.0):
 error detection
 feedback: control msgs (ACK,NAK) from receiver to

sender

rdt2.0: channel with bit errors

rdt2.0: FSM specification

Wait for

call from

above

sndpkt = make_pkt(data, checksum)

udt_send(sndpkt)

extract(rcvpkt,data)

deliver_data(data)

udt_send(ACK)

rdt_rcv(rcvpkt) &&

 notcorrupt(rcvpkt)

rdt_rcv(rcvpkt) && isACK(rcvpkt)

udt_send(sndpkt)

rdt_rcv(rcvpkt) &&

 isNAK(rcvpkt)

udt_send(NAK)

rdt_rcv(rcvpkt) &&

 corrupt(rcvpkt)

Wait for

ACK or

NAK

Wait for

call from

below sender

receiver
rdt_send(data)

L

rdt2.0: operation with no errors

Wait for

call from

above

snkpkt = make_pkt(data, checksum)

udt_send(sndpkt)

extract(rcvpkt,data)

deliver_data(data)

udt_send(ACK)

rdt_rcv(rcvpkt) &&

 notcorrupt(rcvpkt)

rdt_rcv(rcvpkt) && isACK(rcvpkt)

udt_send(sndpkt)

rdt_rcv(rcvpkt) &&

 isNAK(rcvpkt)

udt_send(NAK)

rdt_rcv(rcvpkt) &&

 corrupt(rcvpkt)
Wait for

ACK or

NAK

Wait for

call from

below

rdt_send(data)

L

rdt2.0: error scenario

Wait for

call from

above

snkpkt = make_pkt(data, checksum)

udt_send(sndpkt)

extract(rcvpkt,data)

deliver_data(data)

udt_send(ACK)

rdt_rcv(rcvpkt) &&

 notcorrupt(rcvpkt)

rdt_rcv(rcvpkt) && isACK(rcvpkt)

udt_send(sndpkt)

rdt_rcv(rcvpkt) &&

 isNAK(rcvpkt)

udt_send(NAK)

rdt_rcv(rcvpkt) &&

 corrupt(rcvpkt)

Wait for

ACK or

NAK

Wait for

call from

below

rdt_send(data)

L

rdt2.0 has a fatal flaw!

what happens if
ACK/NAK corrupted?

 sender doesn’t know
what happened at
receiver!

 can’t just retransmit:
possible duplicate

handling duplicates:

 sender retransmits
current pkt if ACK/NAK
corrupted

 sender adds sequence
number to each pkt

 receiver discards (doesnt
deliver up) duplicate pkt

stop and wait
sender sends one packet,
then waits for receiver
response

rdt2.1: sender, handles garbled
ACK/NAKs

Wait for

call 0 from

above

sndpkt = make_pkt(0, data, checksum)

udt_send(sndpkt)

rdt_send(data)

Wait for

ACK or

NAK 0 udt_send(sndpkt)

rdt_rcv(rcvpkt) &&

(corrupt(rcvpkt) ||

isNAK(rcvpkt))

sndpkt = make_pkt(1, data, checksum)

udt_send(sndpkt)

rdt_send(data)

rdt_rcv(rcvpkt)

&& notcorrupt(rcvpkt)

&& isACK(rcvpkt)

udt_send(sndpkt)

rdt_rcv(rcvpkt) &&

(corrupt(rcvpkt) ||

isNAK(rcvpkt))

rdt_rcv(rcvpkt)

&& notcorrupt(rcvpkt)

&& isACK(rcvpkt)

Wait for

call 1 from

above

Wait for

ACK or

NAK 1

L
L

Wait for

0 from

below

sndpkt = make_pkt(NAK, chksum)

udt_send(sndpkt)

rdt_rcv(rcvpkt) &&

 not corrupt(rcvpkt) &&

 has_seq0(rcvpkt)

rdt_rcv(rcvpkt) && notcorrupt(rcvpkt)

 && has_seq1(rcvpkt)

extract(rcvpkt,data)

deliver_data(data)

sndpkt = make_pkt(ACK, chksum)

udt_send(sndpkt)

Wait for

1 from

below

rdt_rcv(rcvpkt) && notcorrupt(rcvpkt)

 && has_seq0(rcvpkt)

extract(rcvpkt,data)

deliver_data(data)

sndpkt = make_pkt(ACK, chksum)

udt_send(sndpkt)

rdt_rcv(rcvpkt) && (corrupt(rcvpkt)

sndpkt = make_pkt(ACK, chksum)

udt_send(sndpkt)

rdt_rcv(rcvpkt) &&

 not corrupt(rcvpkt) &&

 has_seq1(rcvpkt)

rdt_rcv(rcvpkt) && (corrupt(rcvpkt)

sndpkt = make_pkt(ACK, chksum)

udt_send(sndpkt)

sndpkt = make_pkt(NAK, chksum)

udt_send(sndpkt)

rdt2.1: receiver, handles garbled
ACK/NAKs

rdt2.1: discussion

sender:

 seq # added to pkt

 two seq. #’s (0,1) will
suffice. Why?

 must check if received
ACK/NAK corrupted

 twice as many states

 state must
“remember” whether
“expected” pkt should
have seq # of 0 or 1

receiver:

 must check if received
packet is duplicate

 state indicates whether
0 or 1 is expected pkt
seq #

 note: receiver can not
know if its last
ACK/NAK received OK
at sender

rdt2.2: a NAK-free protocol

 same functionality as rdt2.1, using ACKs only

 instead of NAK, receiver sends ACK for last pkt
received OK

 receiver must explicitly include seq # of pkt being ACKed

 duplicate ACK at sender results in same action as
NAK: retransmit current pkt

rdt2.2: sender, receiver fragments

Wait for

call 0 from

above

sndpkt = make_pkt(0, data, checksum)

udt_send(sndpkt)

rdt_send(data)

udt_send(sndpkt)

rdt_rcv(rcvpkt) &&

(corrupt(rcvpkt) ||

 isACK(rcvpkt,1))

rdt_rcv(rcvpkt)

&& notcorrupt(rcvpkt)

&& isACK(rcvpkt,0)

Wait for

ACK

0

sender FSM
fragment

rdt_rcv(rcvpkt) && notcorrupt(rcvpkt)

 && has_seq1(rcvpkt)

extract(rcvpkt,data)

deliver_data(data)

sndpkt = make_pkt(ACK1, chksum)

udt_send(sndpkt)

Wait for

0 from

below

rdt_rcv(rcvpkt) &&

 (corrupt(rcvpkt) ||

 has_seq1(rcvpkt))

udt_send(sndpkt)

receiver FSM
fragment

L

rdt3.0: channels with errors and loss

new assumption:
underlying channel can
also lose packets (data,
ACKs)
 checksum, seq. #,

ACKs, retransmissions
will be of help … but
not enough

approach: sender waits
“reasonable” amount
of time for ACK

 retransmits if no ACK
received in this time

 if pkt (or ACK) just delayed
(not lost):

 retransmission will be
duplicate, but seq. #’s
already handles this

 receiver must specify
seq # of pkt being
ACKed

 requires countdown timer

rdt3.0 sender
sndpkt = make_pkt(0, data, checksum)

udt_send(sndpkt)

start_timer

rdt_send(data)

Wait

for

ACK0

rdt_rcv(rcvpkt) &&

(corrupt(rcvpkt) ||

isACK(rcvpkt,1))

Wait for

call 1 from

above

sndpkt = make_pkt(1, data, checksum)

udt_send(sndpkt)

start_timer

rdt_send(data)

rdt_rcv(rcvpkt)

&& notcorrupt(rcvpkt)

&& isACK(rcvpkt,0)

rdt_rcv(rcvpkt) &&

(corrupt(rcvpkt) ||

isACK(rcvpkt,0))

rdt_rcv(rcvpkt)

&& notcorrupt(rcvpkt)

&& isACK(rcvpkt,1)

stop_timer

stop_timer

udt_send(sndpkt)

start_timer

timeout

udt_send(sndpkt)

start_timer

timeout

rdt_rcv(rcvpkt)

Wait for

call 0from

above

Wait

for

ACK1

L

rdt_rcv(rcvpkt)

L

L

L

sender receiver

rcv pkt1

rcv pkt0

send ack0

send ack1

send ack0

rcv ack0

send pkt0

send pkt1

rcv ack1

send pkt0

rcv pkt0
pkt0

pkt0

pkt1

ack1

ack0

ack0

(a) no loss

sender receiver

rcv pkt1

rcv pkt0

send ack0

send ack1

send ack0

rcv ack0

send pkt0

send pkt1

rcv ack1

send pkt0

rcv pkt0
pkt0

pkt0

ack1

ack0

ack0

(b) packet loss

pkt1
X

loss

pkt1
timeout

resend pkt1

rdt3.0 in action

rdt3.0 in action

rcv pkt1
send ack1

(detect duplicate)

pkt1

sender receiver

rcv pkt1

rcv pkt0

send ack0

send ack1

send ack0

rcv ack0

send pkt0

send pkt1

rcv ack1

send pkt0

rcv pkt0
pkt0

pkt0

ack1

ack0

ack0

(c) ACK loss

ack1
X

loss

pkt1
timeout

resend pkt1

rcv pkt1
send ack1

(detect duplicate)

pkt1

sender receiver

rcv pkt1

send ack0
rcv ack0

send pkt1

send pkt0

rcv pkt0
pkt0

ack0

(d) premature timeout/ delayed ACK

pkt1
timeout

resend pkt1

ack1

send ack1

send pkt0
rcv ack1

pkt0

ack1

ack0

send pkt0
rcv ack1 pkt0

rcv pkt0
send ack0 ack0

rcv pkt0

send ack0
(detect duplicate)

Summary of transmission methods

 Reliable data transfer over a channel with Bit Errors
 Positive acknowledgement (ACK)

 Negative acknowledgement (NAK)

 ARQ (Automatic Repeat reQuest) protocols
 Error detection

 Receiver feedback

 Retransmission

 Stop & Wait

 Pipelined
 Go Back N

 Selective Repeat

Problem: Performance of rdt3.0

 1 Gbps link, 15 ms prop. delay, 8000 bit packet:

 U sender: utilization – fraction of time sender busy sending

U
sender =

.008

30.008
= 0.00027

L / R

RTT + L / R
=

 if RTT=30 msec, 1KB pkt every 30 msec: 33KB/sec thruput
over 1 Gbps link

 1KB = 1000 bytes = 8000 bits

 network protocol limits use of physical resources!

Dtrans =
L
R

 8000 bits

109 bits/sec
= = 8 microsecs

Stop-and-wait operation

first packet bit transmitted, t = 0

sender receiver

RTT

last packet bit transmitted, t = L / R

first packet bit arrives

last packet bit arrives, send ACK

ACK arrives, send next

packet, t = RTT + L / R

U
sender

=
.008

30.008
= 0.00027

microsec
onds

L / R

RTT + L / R
=

Pipelined protocols

Pipelining: sender allows multiple, “in-flight”, yet-to-be-
acknowledged pkts
 range of sequence numbers must be increased

 buffering at sender and/or receiver

 Two generic forms of pipelined protocols: go-Back-N,
selective repeat

Pipelining: increased utilization

first packet bit transmitted, t = 0

sender receiver

RTT

last bit transmitted, t = L / R

first packet bit arrives

last packet bit arrives, send ACK

ACK arrives, send next

packet, t = RTT + L / R

last bit of 2nd packet arrives, send ACK

last bit of 3rd packet arrives, send ACK

U
sender

=
.024

30.008
= 0.0008

microsecon
ds

3 * L / R

RTT + L / R
=

Increase utilization

by a factor of 3!

Agenda

 Transport Layer

 Multiplexing / Demultiplexing

 Reliable Transport

 Stop-and-wait

 Pipelined

 Go back N

 Selective Request

 TCP

 Congestion Control

 Flow Control

Go-Back-N
Sender:
 k-bit seq # in pkt header

 “window” of up to N, consecutive unack’ed pkts allowed

 ACK(n): ACKs all pkts up to, including seq # n - “cumulative ACK”

 may receive duplicate ACKs

 timer for each in-flight pkt

 timeout(n): retransmit pkt n and all higher seq # pkts in window

 N referred to as the window size and GBN as a sliding-window protocol

 Why we limit N? (flow control, TCP congestion control)

GBN in
action

Selective Repeat

 receiver individually acknowledges all correctly
received pkts
 buffers pkts, as needed, for eventual in-order delivery to

upper layer

 sender only resends pkts for which ACK not received
 sender timer for each unACKed pkt

 sender window
 N consecutive seq #’s

 again limits seq #s of sent, unACKed pkts

Selective Request

 Makes sense to transmit only the lost packets
 But this is true under what assumption ?

 GBN suffers from performance problems

 Window size and bandwidth-delay product are both large, many pkts in
pipeline

 Single pkt error cause GBN to retransmit a large # of pkts, many
unnecessarily

 Probability of channel error increases, the pipeline can become filled with
these unnecessary transmissions

 Can you say a case in which Go-BACK-N might be better

 GBN protocol allows the sender to potentially “fill the pipeline” with
packets

 Increase the channel utilization than stop-and-wait protocols

 SR protocols avoid unnecessary retransmissions

 Sender only retransmits pkts that are received in error at receiver
(lost/corrupted)

Selective repeat: sender, receiver
windows

Selective repeat

data from above :

 if next available seq # in window,
send pkt

timeout(n):

 resend pkt n, restart timer

ACK(n) in [sendbase,sendbase+N]:

 mark pkt n as received

 if n smallest unACKed pkt, advance
window base to next unACKed seq #

sender

pkt n in [rcvbase, rcvbase+N-1]

 send ACK(n)

 out-of-order: buffer

 in-order: deliver (also deliver

buffered, in-order pkts),

advance window to next not-

yet-received pkt

pkt n in [rcvbase-N,rcvbase-1]

 ACK(n)

otherwise:
 ignore

receiver

Selective repeat in action

Selective Repeat (SR)

 SR receiver acknowledge a correctly received packet
whether or not it is in order

 Out-of-order pkts are buffered
 If any missing pkts (with lower seq #) are received, a batch of pkts

can be delivered in order to the upper layer.

Selective repeat:
dilemma

Example:

 seq #’s: 0, 1, 2, 3

 window size=3

 receiver sees no difference in two
scenarios!

 incorrectly passes duplicate data as
new in (a)

 No way of distinguishing the
retransmission of the 1st pkt from an
original transmission of the 5th pkt

Q: What relationship between seq # size

and window size?

Ans: window size must be ≤ half the size
of the seq # space for SR protocols.

What if pkts go out of order

Agenda

 Transport Layer

 Multiplexing / Demultiplexing

 Reliable Transport

 Stop-and-wait

 Pipelined

 Go back N

 Selective Request

 TCP

 Congestion Control

 Flow Control

TCP: Overview RFCs: 793, 1122, 1323, 2018, 2581

 full duplex data:
 bi-directional data flow in

same connection

 MSS: maximum segment
size

 connection-oriented:
 handshaking (exchange of

control msgs) init’s sender,
receiver state before data
exchange

 flow controlled:
 sender will not overwhelm

receiver

 point-to-point:
 one sender, one receiver

 reliable, in-order byte
steam:
 no “message boundaries”

 pipelined:
 TCP congestion and flow

control set window size

 send & receive buffers

socket

door

TCP

send buffer

TCP

receive buffer

socket

door

segment

application

writes data
application

reads data

TCP segment structure

source port # dest port #

32 bits

application

data

(variable length)

sequence number

acknowledgement number

Receive window

Urg data pnter checksum

F S R P A U
head

len

not

used

Options (variable length)

URG: urgent data

(generally not used)

ACK: ACK #

valid

PSH: push data now

(generally not used)

RST, SYN, FIN:

connection estab

(setup, teardown

commands)

bytes

rcvr willing

to accept

counting

by bytes

of data

(not segments!)

Internet

checksum

(as in UDP)

TCP: Connection-Oriented Transport

 TCP has 3 main components

 Reliable transmission

 Congestion Control

 Flow Control

Reliable Transmission

 TCP is connection-oriented

 Sender sends control packets (SYN) and receiver replies
(ACK)

 Receiver also opens a similar connection

 Full-duplex service; point-to-point connection

 Sender sends a small burst of packets

 Receiver ACKs: ACK contains the next expected packet
(actually byte)

 Sender receives ACK, and sends a bigger burst

 Called “Self-clocking” behavior

Reliable Transmission

 If train of packets lost

 Sender will not get any ACKs

 Will timeout (gets alarmed)

 Retransmit from first un-ACK-ed packet,

 Drastically reduces window size

 If packet n lost, but (n+1) successful

 Receiver will send Duplicate ACK

 Three DupACKs, Resends (n)

 Fast Retransmit
 Retransmitting the missing segments before that segment’s timer

expires

 Cuts window size by half

Congstion Control

TCP Congestion Control

 Problem Definition

 How much data should I pump into the network to ensure
 Intermediate router queues not filling up

 Fairness achieved among multiple TCP flows

 Why is this problem difficult?

 TCP cannot have information about the network

 Only TCP receiver can give some feedbacks

 Approach: sender limit the rate of sending traffic as a
function of perceived network congestion

 How does a TCP sender limit the rate?

 How does TCP sender perceive that there is congestion?

 What algorithm should the sender use?

The TCP Intuition

Pour

water

Collect

water

The TCP Protocol (in a nutshell)
 T (sender) transmits few packets, waits for ACK

 Called slow start

 R (receiver) acknowledges all packet till seq #i by ACK i
(optimizations possible)

 ACK sent out only on receiving a packet

 Can be Duplicate ACK if expected packet not received

 ACK reaches T indicator of more capacity
 T transmits larger burst of packets (self clocking) … so on

 Burst size increased until packet drops (i.e., DupACK or timeout)

 When T gets DupACK or waits for longer than RTO
(Retransmission TimeOut)
 Assumes congestion reduces burst size (congestion window)

TCP Congestion Control: details

 sender limits transmission:

 cwnd is dynamic, function
of perceived network
congestion

TCP sending rate:

 roughly: send cwnd
bytes, wait RTT for
ACKS, then send
more bytes

last byte
ACKed sent, not-

yet ACKed
(“in-flight”)

last byte
sent

cwnd

LastByteSent-

 LastByteAcked
< cwnd

sender sequence number space

rate ~ ~
cwnd

RTT
bytes/sec

TCP Timeline

Host A

R
T

T

Host B

time

Think of a blind

person trying to

stand up in a low

ceiling room

Objective:

Don’t bang your

head, but stand

up quickly

TCP Congestion Control Algorithm

 A loss segment implies congestion

 TCP sender’s rate should be decreased

 An ACK indicates that network is delivering the
sender’s segment to the receiver

 TCP sender’s rate can be increased

 Bandwidth probing

 TCP sender increases transmission rate to probe when
congestion onset begins

 backs off from that rate and then begins probing to see if
congestion rate has changed

 Jacobson 1988

 Slow start; congestion avoidance; fast recovery

TCP Slow Start

 When connection begins,
increase rate exponentially
until first loss event:
 double CongWin every RTT

 done by incrementing
CongWin for every ACK
received

 Summary: initial rate is
slow but ramps up
exponentially fast

 When this exponential
growth rate should end?

Host A

R
T

T

Host B

time

TCP Slow Start (more)

 If there is a loss event (i.e., congestion) indicated by a
timeout
 TCP sender sets the value of cwnd to 1

 Begin the slow start process anew

 Sets the value of 2nd state variable ssthresh (slow start
threshold) to cwnd/2

 Slow start ends when cwnd = ssthresh

 TCP transitions into congestion avoidance (CA) mode
 TCP increases cwnd more cautiously when in CA mode

 Final end of slow start happens if 3 duplicate ACKs are detected

 TCP performs a fast retransmit

 Enters a fast recovery state

TCP Slow Start (more)

 Congestion avoidance state
 value of cwnd is approx. half its value when congestion was

last detected

 Rather than doubling the value of cwnd every RTT TCP
adopts a more conservative approach

 Increase the value of cwnd by just a single MSS

 TCP performs a fast retransmit

 Enters a fast recovery state

TCP: detecting, reacting to loss

 loss indicated by timeout:

 cwnd set to 1 MSS

 window then grows exponentially (as in slow start) to
threshold, then grows linearly

 loss indicated by 3 duplicate ACKs: TCP RENO (newer version)

 dup ACKs indicate network capable of delivering some
segments

 cwnd is cut in half window then grows linearly

 TCP Tahoe (earlier version) always sets cwnd to 1
(timeout or 3 duplicate acks)

Q: When should the
exponential
increase switch
to linear?

A: When cwnd gets
to 1/2 of its value
before timeout.

Implementation:
 variable ssthresh

 on loss event,
ssthresh is set to 1/2
of cwnd just before loss
event

TCP: switching from slow start to CA

TCP fast retransmit

 time-out period
often relatively long:

 long delay before
resending lost packet

 detect lost segments
via duplicate ACKs.

 sender often sends
many segments back-
to-back

 if segment is lost,
there will likely be
many duplicate ACKs.

if sender receives 3
ACKs for same data

(“triple duplicate ACKs”),
resend unacked
segment with smallest
seq #
 likely that unacked

segment lost, so don’t
wait for timeout

TCP fast retransmit

X

fast retransmit after sender
receipt of triple duplicate ACK

Host B Host A

Seq=92, 8 bytes of data

ACK=100

ti
m

e
o
u
t

ACK=100

ACK=100

ACK=100

TCP fast retransmit

Seq=100, 20 bytes of data

Seq=100, 20 bytes of data

Seq=120, 15 bytes of data

Seq=135, 6 bytes of data

Seq=141, 16 bytes of data

ACK=100

ACK=100

ACK=100

ACK=100

Understanding 3 Duplicate ACKs from GBN

Q: Is TCP Go-Back-N or Selective Repeat?

A: a) TCP implementation buffers

correctly received but out-of-order

segments.

 b) Selective acknowledgement allows a

TCP receiver to acknowledge out-of

order segments selectively rather than

just cumulatively acknowledging the

last correctly received, in-order

segment.

c) Selective retransmission: skipping

the retransmission of segments that

have already been selectively acknowledged by

the receiver

d) TCP is a hybrid GBN and SR protocol

buffered

buffered

buffered

More Example: When waited for > RTO

0

5

10

15

20

25

0 3 6 9 12 15 20 22 25

Time (round trips)

C
o

n
g

es
ti

o
n

 w
in

d
o

w
 (

se
g

m
en

ts
)

ssthresh = 8 ssthresh = 10

cwnd = 20

After RTO timeout

double CongWin every RTT

done by incrementing CongWin

for every ACK received

Understanding RTT (X axis) & cwnd/segments
(Y axis) relationship

 Relation between RTT
(Transmission Round) and
Packets Sequence Number/
MSS (Maximum Segment Size)

 1st RTT: pkt 1

 2nd RTT: pkt 2 & 3

 3rd RTT: pkt 4, 5, 6 & 7

 4th RTT: pkt 8, 9, 10, 11, 12, 13,
14, & 15

 5th RTT: pkt 16 to 31

 6th RTT: pkt 32 to 63

Host A

R
T

T

Host B

time

Next Step

 We talked about the
congestion window

 Setting up the congestion
window size

 What about RTT and
Retransmission
Timeout?

 How to determine the
value of RTT/RTO?

sender receiver

rcv pkt1

rcv pkt0

send ack0

send ack1

send ack0

rcv ack0

send pkt0

send pkt1

rcv ack1

send pkt0

rcv pkt0
pkt0

pkt0

ack1

ack0

ack0

(b) packet loss

pkt1
X

loss

pkt1
timeout

resend pkt1

Timeout -- function of RTT

Q: how to set TCP timeout
value?

 longer than RTT

 but RTT varies

 How much larger?

 too short: premature timeout

 unnecessary
retransmissions

 too long: slow reaction to
segment loss

 How should the RTT be
estimated in first place?

 Should a timer be associated
with each and every
unacknowledged segment?
[TCP work by Jacobson 1988]

Q: how to estimate RTT?
 SampleRTT: measured time from

segment transmission until ACK
receipt

 One of the transmitted but currently
unacknowledged segment

 Vary due to congestion in the routers
and varying load on the end systems

 SampleRTT will vary, want
estimated RTT “smoother”

 average several recent
measurements, not just current
SampleRTT

TCP Round Trip Time

EstimatedRTT = (1-)*EstimatedRTT + *SampleRTT

 Exponential weighted moving average (EWMA)

 influence of past sample decreases exponentially fast
 typical value: = 0.125

Example RTT estimation:
RTT: gaia.cs.umass.edu to fantasia.eurecom.fr

100

150

200

250

300

350

1 8 15 22 29 36 43 50 57 64 71 78 85 92 99 106

time (seconnds)

R
T

T
 (

m
il

li
se

co
n

d
s)

SampleRTT Estimated RTT

Timeout

Setting the timeout

 EstimatedRTT plus “safety margin”

 large variation in EstimatedRTT -> larger safety margin

 first estimate of how much SampleRTT deviates from EstimatedRTT:

TimeoutInterval = EstimatedRTT + 4*DevRTT

DevRTT = (1-)*DevRTT + *|SampleRTT-EstimatedRTT|

(typically, = 0.25)

 Then set timeout interval:

 Interval should be greater than or equal to EstimatedRTT, shouldn’t be
too large

 Unnecessary retransmissions would be sent or TCP would not quickly
retransmit

 EstimatedRTT + Margin

TCP: Connection-Oriented Transport

 TCP has 3 main components

 Reliable transmission

 Congestion Control

 Flow Control

TCP Flow Control

 Problem Definition

 The receiver has limits on buffer

 If many nodes transmitting to same receiver
 Losses may happen at receiver

 Need to avoid such losses

 Solution

 Receiver tells transmitter how much space left

 Transmitter chooses its congestion window accordingly

TCP Flow Control: how it works

(Suppose TCP receiver discards
out-of-order segments)

 spare room in buffer
= RcvWindow

= RcvBuffer-[LastByteRcvd -

LastByteRead]

 Rcvr advertises spare
room by including value
of RcvWindow in
segments

 Sender limits unACKed
data to RcvWindow

 guarantees receive buffer
doesn’t overflow

Chapter 3: Transport Layer Summary

 principles behind transport
layer services:

 multiplexing,
demultiplexing

 reliable data transfer

 flow control

 congestion control

 instantiation, implementation
in the Internet

 UDP

 TCP

next:

 leaving the
network “edge”
(application,
transport layers)

 into the network
“core”

Questions?

…

