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Need for Transport Layer 

 Network Layer offers connections 

 IP (Internet Protocol) service model 
 Best-effort delivery service, unreliable service 

 Connections not reliable 
 Losses, delays due to out-of-order, queue overflow, … 

 Transport Layer Goals 

 End to end reliability 

 In Order delivery 

 Performance 
 Congestion control 

 Flow control 



Transport services and protocols 

 logical communication between 
processes  

 

 transport protocols run in end 
systems  

 breaks app messages into 
segments 

 reassembles segments into 
messages,  passes to app layer 

 

 more than one transport protocol 
available to apps 

 Internet: TCP and UDP 
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Transport vs. Network layer 

 network layer: logical 
communication between 
hosts 

 

 transport layer: logical 
communication between 
processes  

 relies on, enhances, 
network layer services 

 

12 kids in Ann’s house sending 
letters to 12 kids in Bill’s house: 

 hosts = houses 

 processes = kids 

 app messages = letters in 
envelopes 

 transport protocol = Ann and 
Bill who demux to in-house 
siblings 

 network-layer protocol = postal 
service 

 

household analogy: 



Transport-layer protocols (TCP, UDP): 
 reliable, in-order delivery (TCP) 

 congestion control  

 flow control 

 connection setup 

 unreliable, unordered delivery: 
UDP 
 no-frills extension of “best-effort” IP 

 services not available:  
 delay guarantees 

 bandwidth guarantees 

 Host-to-host delivery to process-
to-process delivery 
 transport-layer multiplexing 

demultiplexing 
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Agenda 

 Transport Layer 

 Multiplexing / Demultiplexing 
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Multiplexing/demultiplexing 

application 

transport 

network 

link 

physical 

P1 application 

transport 

network 

link 

physical 

application 

transport 

network 

link 

physical 

P2 P3 P4 P1 

host 1 host 2 
host 3 

= process = socket 

delivering received segments 

to correct socket 

Demultiplexing at rcv host: 
gathering data from multiple 

sockets, enveloping data with  

header (later used for  

demultiplexing) 

Multiplexing at send host: 

One HTTP process, one FTP process, one Telnet process 

More than one socket, each socket has unique identifier 



How demultiplexing works 

 host receives IP datagrams 

 each datagram has source IP 
address, destination IP address 

 each datagram carries 1 
transport-layer segment 

 each segment has source, 
destination port number  

 

 

 host uses IP addresses & port 
numbers to direct segment to 
appropriate socket 

source port # dest port # 

32 bits 

application 

data  

(message) 

other header fields 

TCP/UDP segment format 

Analogous to car rentals at airports 

 

Shuttles MUX passengers and take them 

To rental office -- DeMUX to diff cars 



Connectionless demultiplexing 

 Create sockets with port 
numbers: 

DatagramSocket mySocket1 = new 

DatagramSocket(99111); 

DatagramSocket mySocket2 = new 

DatagramSocket(99222); 

 UDP socket fully identified by  
two-tuple: 

 (dest IP address, dest port number) 

 When host receives UDP 
segment: 
 checks destination port 

number in segment 

 directs UDP segment to 
socket with that port 
number 

 IP datagrams with different 
source IP addresses and/or 
source port numbers 
directed to same socket 



Connectionless demux (cont) 

DatagramSocket serverSocket = new DatagramSocket(6428); 
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P2 

client 
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server 
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SP: 6428 
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SP: 9157 

DP: 6428 

SP: 6428 

DP: 5775 

SP: 5775 

DP: 6428 

SP provides “return address” 



Connection-oriented demux 

 TCP socket identified by 4-
tuple:  
 source IP address 

 source port number 

 dest IP address 

 dest port number 

 

 recv host uses all four 
values to direct segment 
to appropriate socket 

 Server host may support 
many simultaneous TCP 
sockets: 
 each socket identified by its 

own 4-tuple 

 

 Web servers have different 
sockets for each connecting 
client 
 non-persistent HTTP will 

have different socket for 
each request 



Connection-oriented demux (cont) 
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Connection-oriented demux: 
Threaded Web Server 
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UDP: User Datagram Protocol [RFC 768] 

 “no frills,” “bare bones” 
Internet transport protocol 

 

 “best effort” service, UDP 
segments may be: 

 lost 

 delivered out of order to 
app 

 

 connectionless: 

 no handshaking between 
UDP sender, receiver 

 each UDP segment handled 
independently of others 

 

Why is there a UDP? 

 no connection establishment 
(which can add delay) 

 simple: no connection state at 
sender, receiver 

 small segment header 

 no congestion control: UDP 
can blast away as fast as 
desired 

 



UDP: segment header 

 often used for streaming 
multimedia apps 

 loss tolerant 

 rate sensitive 

 other UDP uses 

 DNS 

 SNMP 

 reliable transfer over UDP: 
add reliability at application 
layer 

 application-specific error 
recovery! 

source port # dest port # 

32 bits 

Application 

data  

(message) 

UDP segment format 

length checksum 

Length, in 

bytes of UDP 

segment, 

including 

header 



UDP checksum 

sender: 
 treat segment contents, 

including header fields,  
as sequence of 16-bit 
integers 

 checksum: addition 
(one’s complement sum) 
of segment contents 

 sender puts checksum 
value into UDP checksum 
field 

 

 

receiver: 

 compute checksum of 
received segment 

 check if computed checksum 
equals checksum field value: 

 NO - error detected 

 YES - no error detected. 
But maybe errors 
nonetheless? More later 
…. 

Goal: detect “errors” (e.g., flipped bits) in transmitted 
segment 

 



Internet checksum: example 

example: add two 16-bit integers 

1  1  1  1  0  0  1  1  0  0  1  1  0  0  1  1  0 
1  1  1  0  1  0  1  0  1  0  1  0  1  0  1  0  1 
 
1  1  0  1  1  1  0  1  1  1  0  1  1  1  0  1  1 
 
1  1  0  1  1  1  0  1  1  1  0  1  1  1  1  0  0 
1  0  1  0  0  0  1  0  0  0  1  0  0  0  0  1  1 

wraparound 

sum 

checksum 

Note: when adding numbers, a carryout from the most 
significant bit needs to be added to the result 

 



Chapter 3 outline 

3.1 transport-layer 
services 

3.2 multiplexing and 
demultiplexing 

3.3 connectionless 
transport: UDP 

3.4 principles of reliable 
data transfer 

3.5 connection-oriented 
transport: TCP 

 segment structure 

 reliable data transfer 

 flow control 

 connection management 

3.6 principles of congestion 
control 

3.7 TCP congestion control 



Principles of reliable data transfer 

 important in application, transport, link layers 

 top-10 list of important networking topics! 

 

 characteristics of unreliable channel will determine 
complexity of reliable data transfer protocol (rdt) 



 characteristics of unreliable channel will determine 
complexity of reliable data transfer protocol (rdt) 

Principles of reliable data transfer 

 important in application, transport, link layers 

 top-10 list of important networking topics! 

 



 characteristics of unreliable channel will determine 
complexity of reliable data transfer protocol (rdt) 

 important in application, transport, link layers 

 top-10 list of important networking topics! 

 

Principles of reliable data transfer 



Reliable data transfer: getting started 

send 

side 
receive 

side 

rdt_send(): called from above, 

(e.g., by app.). Passed data to  
deliver to receiver upper layer 

udt_send(): called by rdt, 

to transfer packet over  
unreliable channel to receiver 

rdt_rcv(): called when packet 

arrives on rcv-side of channel 

deliver_data(): called by 

rdt to deliver data to upper 



We’ll: 

 incrementally develop sender, receiver sides of 
reliable data transfer protocol (rdt) 

 consider only unidirectional data transfer 

 but control info will flow on both directions! 

 use finite state machines (FSM)  to specify sender, 
receiver 

state 
1 

state 
2 

event causing state transition 

actions taken on state transition 

state: when in this “state” 
next state uniquely 
determined by next 

event 
event 

actions 

Reliable data transfer: getting started 



rdt1.0: reliable transfer over a reliable channel 

 underlying channel perfectly reliable 

 no bit errors 

 no loss of packets 

 separate FSMs for sender, receiver: 

 sender sends data into underlying channel 

 receiver reads data from underlying channel 

Wait for 

call from 

above packet = make_pkt(data) 

udt_send(packet) 

rdt_send(data) 

extract (packet,data) 

deliver_data(data) 

Wait for 

call from 

below 

rdt_rcv(packet) 

sender receiver 



 underlying channel may flip bits in packet 
 checksum to detect bit errors 

 the question: how to recover from errors: 
 acknowledgements (ACKs): receiver explicitly tells 

sender that pkt received OK 
 negative acknowledgements (NAKs): receiver explicitly 

tells sender that pkt had errors 
 sender retransmits pkt on receipt of NAK 

 new mechanisms in rdt2.0 (beyond rdt1.0): 
 error detection 
 receiver feedback: control msgs (ACK,NAK) rcvr-

>sender 

rdt2.0: channel with bit errors 

How do humans recover from “errors” 
during conversation? 



 underlying channel may flip bits in packet 
 checksum to detect bit errors 

 the question: how to recover from errors: 

 acknowledgements (ACKs): receiver explicitly tells 
sender that pkt received OK 

 negative acknowledgements (NAKs): receiver explicitly 
tells sender that pkt had errors 

 sender retransmits pkt on receipt of NAK 

 new mechanisms in rdt2.0 (beyond rdt1.0): 
 error detection 
 feedback: control msgs (ACK,NAK) from receiver to 

sender 

rdt2.0: channel with bit errors 



rdt2.0: FSM specification 

Wait for 

call from 

above 

sndpkt = make_pkt(data, checksum) 

udt_send(sndpkt) 

extract(rcvpkt,data) 

deliver_data(data) 

udt_send(ACK) 

rdt_rcv(rcvpkt) &&  

   notcorrupt(rcvpkt) 

rdt_rcv(rcvpkt) && isACK(rcvpkt) 

udt_send(sndpkt) 

rdt_rcv(rcvpkt) && 

   isNAK(rcvpkt) 

udt_send(NAK) 

rdt_rcv(rcvpkt) &&  

  corrupt(rcvpkt) 

Wait for 

ACK or 

NAK 

Wait for 

call from 

below sender 

receiver 
rdt_send(data) 

L 



rdt2.0: operation with no errors 

Wait for 

call from 

above 

snkpkt = make_pkt(data, checksum) 

udt_send(sndpkt) 

extract(rcvpkt,data) 

deliver_data(data) 

udt_send(ACK) 

rdt_rcv(rcvpkt) &&  

   notcorrupt(rcvpkt) 

rdt_rcv(rcvpkt) && isACK(rcvpkt) 

udt_send(sndpkt) 

rdt_rcv(rcvpkt) && 

   isNAK(rcvpkt) 

udt_send(NAK) 

rdt_rcv(rcvpkt) &&  

  corrupt(rcvpkt) 
Wait for 

ACK or 

NAK 

Wait for 

call from 

below 

rdt_send(data) 

L 



rdt2.0: error scenario 

Wait for 

call from 

above 

snkpkt = make_pkt(data, checksum) 

udt_send(sndpkt) 

extract(rcvpkt,data) 

deliver_data(data) 

udt_send(ACK) 

rdt_rcv(rcvpkt) &&  

   notcorrupt(rcvpkt) 

rdt_rcv(rcvpkt) && isACK(rcvpkt) 

udt_send(sndpkt) 

rdt_rcv(rcvpkt) && 

   isNAK(rcvpkt) 

udt_send(NAK) 

rdt_rcv(rcvpkt) &&  

  corrupt(rcvpkt) 

Wait for 

ACK or 

NAK 

Wait for 

call from 

below 

rdt_send(data) 

L 



rdt2.0 has a fatal flaw! 

what happens if 
ACK/NAK corrupted? 

 sender doesn’t know 
what happened at 
receiver! 

 can’t just retransmit: 
possible duplicate 

 

 
 

handling duplicates:  

 sender retransmits 
current pkt if ACK/NAK 
corrupted 

 sender adds sequence 
number to each pkt 

 receiver discards (doesnt 
deliver up) duplicate pkt 

stop and wait 
sender sends one packet,  
then waits for receiver  
response 



rdt2.1: sender, handles garbled 
ACK/NAKs 

Wait for 

call 0 from 

above 

sndpkt = make_pkt(0, data, checksum) 

udt_send(sndpkt) 

rdt_send(data) 

Wait for 

ACK or 

NAK 0 udt_send(sndpkt) 

rdt_rcv(rcvpkt) &&   

( corrupt(rcvpkt) || 

isNAK(rcvpkt) ) 

sndpkt = make_pkt(1, data, checksum) 

udt_send(sndpkt) 

rdt_send(data) 

rdt_rcv(rcvpkt)    

&& notcorrupt(rcvpkt)  

&& isACK(rcvpkt)  

udt_send(sndpkt) 

rdt_rcv(rcvpkt) &&   

( corrupt(rcvpkt) || 

isNAK(rcvpkt) ) 

rdt_rcv(rcvpkt)    

&& notcorrupt(rcvpkt)  

&& isACK(rcvpkt)  

Wait for 

call 1 from 

above 

Wait for 

ACK or 

NAK 1 

L 
L 



Wait for  

0 from 

below 

sndpkt = make_pkt(NAK, chksum) 

udt_send(sndpkt) 

rdt_rcv(rcvpkt) &&  

   not corrupt(rcvpkt) && 

   has_seq0(rcvpkt) 

 

rdt_rcv(rcvpkt) && notcorrupt(rcvpkt)  

  && has_seq1(rcvpkt)  

extract(rcvpkt,data) 

deliver_data(data) 

sndpkt = make_pkt(ACK, chksum) 

udt_send(sndpkt) 

Wait for  

1 from 

below 

rdt_rcv(rcvpkt) && notcorrupt(rcvpkt)  

  && has_seq0(rcvpkt)  

extract(rcvpkt,data) 

deliver_data(data) 

sndpkt = make_pkt(ACK, chksum) 

udt_send(sndpkt) 

rdt_rcv(rcvpkt) && (corrupt(rcvpkt) 

sndpkt = make_pkt(ACK, chksum) 

udt_send(sndpkt) 

rdt_rcv(rcvpkt) &&  

   not corrupt(rcvpkt) && 

   has_seq1(rcvpkt) 

 

rdt_rcv(rcvpkt) && (corrupt(rcvpkt) 

sndpkt = make_pkt(ACK, chksum) 

udt_send(sndpkt) 

sndpkt = make_pkt(NAK, chksum) 

udt_send(sndpkt) 

rdt2.1: receiver, handles garbled 
ACK/NAKs 



rdt2.1: discussion 

sender: 

 seq # added to pkt 

 two seq. #’s (0,1) will 
suffice.  Why? 

 must check if received 
ACK/NAK corrupted  

 twice as many states 

 state must 
“remember” whether 
“expected” pkt should 
have seq # of 0 or 1  

 

receiver: 

 must check if received 
packet is duplicate 

 state indicates whether 
0 or 1 is expected pkt 
seq # 

 note: receiver can not 
know if its last 
ACK/NAK received OK 
at sender 



rdt2.2: a NAK-free protocol 

 same functionality as rdt2.1, using ACKs only 

 instead of NAK, receiver sends ACK for last pkt 
received OK 

 receiver must explicitly include seq # of pkt being ACKed  

 duplicate ACK at sender results in same action as 
NAK: retransmit current pkt 



rdt2.2: sender, receiver fragments 

Wait for 

call 0 from 

above 

sndpkt = make_pkt(0, data, checksum) 

udt_send(sndpkt) 

rdt_send(data) 

udt_send(sndpkt) 

rdt_rcv(rcvpkt) &&   

( corrupt(rcvpkt) || 

  isACK(rcvpkt,1) ) 

rdt_rcv(rcvpkt)    

&& notcorrupt(rcvpkt)  

&& isACK(rcvpkt,0)  

Wait for 

ACK 

0 

sender FSM 
fragment 

rdt_rcv(rcvpkt) && notcorrupt(rcvpkt)  

  && has_seq1(rcvpkt)  

extract(rcvpkt,data) 

deliver_data(data) 

sndpkt = make_pkt(ACK1, chksum) 

udt_send(sndpkt) 

Wait for  

0 from 

below 

rdt_rcv(rcvpkt) &&  

   (corrupt(rcvpkt) || 

     has_seq1(rcvpkt)) 

udt_send(sndpkt) 

receiver FSM 
fragment 

L 



rdt3.0: channels with errors and loss 

new assumption: 
underlying channel can 
also lose packets (data, 
ACKs) 
 checksum, seq. #, 

ACKs, retransmissions 
will be of help … but 
not enough 

approach: sender waits 
“reasonable” amount 
of time for ACK  

 retransmits if no ACK 
received in this time 

 if pkt (or ACK) just delayed 
(not lost): 

 retransmission will be  
duplicate, but seq. #’s 
already handles this 

 receiver must specify 
seq # of pkt being 
ACKed 

 requires countdown timer 



rdt3.0 sender 
sndpkt = make_pkt(0, data, checksum) 

udt_send(sndpkt) 

start_timer 

rdt_send(data) 

Wait 

for 

ACK0 

rdt_rcv(rcvpkt) &&   

( corrupt(rcvpkt) || 

isACK(rcvpkt,1) ) 

Wait for  

call 1 from 

above 

sndpkt = make_pkt(1, data, checksum) 

udt_send(sndpkt) 

start_timer 

rdt_send(data) 

rdt_rcv(rcvpkt)    

&& notcorrupt(rcvpkt)  

&& isACK(rcvpkt,0)  

rdt_rcv(rcvpkt) &&   

( corrupt(rcvpkt) || 

isACK(rcvpkt,0) ) 

rdt_rcv(rcvpkt)    

&& notcorrupt(rcvpkt)  

&& isACK(rcvpkt,1)  

stop_timer 

stop_timer 

udt_send(sndpkt) 

start_timer 

timeout 

udt_send(sndpkt) 

start_timer 

timeout 

rdt_rcv(rcvpkt) 

Wait for  

call 0from 

above 

Wait 

for 

ACK1 

L 

rdt_rcv(rcvpkt) 

L 

L 

L 



sender receiver 

rcv pkt1 

rcv pkt0 

send ack0 

send ack1 

send ack0 

rcv ack0 

send pkt0 

send pkt1 

rcv ack1 

send pkt0 

rcv pkt0 
pkt0 

pkt0 

pkt1 

ack1 

ack0 

ack0 

(a) no loss 

sender receiver 

rcv pkt1 

rcv pkt0 

send ack0 

send ack1 

send ack0 

rcv ack0 

send pkt0 

send pkt1 

rcv ack1 

send pkt0 

rcv pkt0 
pkt0 

pkt0 

ack1 

ack0 

ack0 

(b) packet loss 

pkt1 
X 

loss 

pkt1 
timeout 

resend pkt1 

rdt3.0 in action 



rdt3.0 in action 

rcv pkt1 
send ack1 

(detect duplicate) 

pkt1 

sender receiver 

rcv pkt1 

rcv pkt0 

send ack0 

send ack1 

send ack0 

rcv ack0 

send pkt0 

send pkt1 

rcv ack1 

send pkt0 

rcv pkt0 
pkt0 

pkt0 

ack1 

ack0 

ack0 

(c) ACK loss 

ack1 
X 

loss 

pkt1 
timeout 

resend pkt1 

rcv pkt1 
send ack1 

(detect duplicate) 

pkt1 

sender receiver 

rcv pkt1 

send ack0 
rcv ack0 

send pkt1 

send pkt0 

rcv pkt0 
pkt0 

ack0 

(d) premature timeout/ delayed ACK 

pkt1 
timeout 

resend pkt1 

ack1 

send ack1 

send pkt0 
rcv ack1 

pkt0 

ack1 

ack0 

send pkt0 
rcv ack1 pkt0 

rcv pkt0 
send ack0 ack0 

rcv pkt0 

send ack0 
(detect duplicate) 



Summary of transmission methods 

 Reliable data transfer over a channel with Bit Errors 
 Positive acknowledgement (ACK) 

 Negative acknowledgement (NAK) 

 ARQ (Automatic Repeat reQuest) protocols 
 Error detection 

 Receiver feedback 

 Retransmission 

 

 Stop & Wait 

 Pipelined 
 Go Back N 

 Selective Repeat 



Problem: Performance of rdt3.0 

 1 Gbps link, 15 ms prop. delay, 8000 bit packet: 

 

 U sender: utilization – fraction of time sender busy sending 

 

U 
sender = 

.008 

30.008 
= 0.00027  

L / R 

RTT + L / R 
= 

 if RTT=30 msec, 1KB pkt every 30 msec: 33KB/sec thruput 
over 1 Gbps link 

 1KB = 1000 bytes = 8000 bits 

 

 network protocol limits use of physical resources! 

Dtrans = 
L 
R 

  8000 bits 

109 bits/sec 
= = 8 microsecs 



Stop-and-wait operation 

first packet bit transmitted, t = 0 

sender receiver 

RTT  

last packet bit transmitted, t = L / R 

first packet bit arrives 

last packet bit arrives, send ACK 

ACK arrives, send next  

packet, t = RTT + L / R 

 

U 
sender 

= 
.008 

30.008 
= 0.00027 

microsec
onds 

L / R 

RTT + L / R 
= 



Pipelined protocols 

Pipelining: sender allows multiple, “in-flight”, yet-to-be-
acknowledged pkts 
 range of sequence numbers must be increased 

 buffering at sender and/or receiver 

 Two generic forms of pipelined protocols: go-Back-N, 
selective repeat 



Pipelining: increased utilization 

first packet bit transmitted, t = 0 

sender receiver 

RTT  

last bit transmitted, t = L / R 

first packet bit arrives 

last packet bit arrives, send ACK 

ACK arrives, send next  

packet, t = RTT + L / R 

last bit of 2nd packet arrives, send ACK 

last bit of 3rd packet arrives, send ACK 

 

U 
sender 

= 
.024 

30.008 
= 0.0008 

microsecon
ds 

3 * L / R 

RTT + L / R 
= 

Increase utilization 

by a factor of 3! 
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Go-Back-N 
Sender: 
 k-bit seq # in pkt header 

 “window” of up to N, consecutive unack’ed pkts allowed 

 

 

 ACK(n): ACKs all pkts up to, including seq # n - “cumulative ACK” 

 may receive duplicate ACKs 

 timer for each in-flight pkt 

 timeout(n): retransmit pkt n and all higher seq # pkts in window 

 N referred to as the window size and GBN as a sliding-window protocol 

 Why we limit N? (flow control, TCP congestion control)  

 

 



GBN in  
action 



Selective Repeat 

 receiver individually acknowledges all correctly 
received pkts 
 buffers pkts, as needed, for eventual in-order delivery to 

upper layer 

 sender only resends pkts for which ACK not received 
 sender timer for each unACKed pkt 

 sender window 
 N consecutive seq #’s 

 again limits seq #s of sent, unACKed pkts 



Selective Request 

 Makes sense to transmit only the lost packets 
 But this is true under what assumption ? 

 GBN suffers from performance  problems 

 Window size and bandwidth-delay product are both large, many pkts in 
pipeline  

 Single pkt error cause GBN to retransmit a large # of pkts, many 
unnecessarily 

 Probability of channel error increases, the pipeline can become filled with 
these unnecessary transmissions 

 Can you say a case in which Go-BACK-N might be better 

 GBN protocol allows the sender to potentially “fill the pipeline” with 
packets 

 Increase the channel utilization than stop-and-wait protocols 

 SR protocols avoid unnecessary retransmissions 

 Sender only retransmits pkts that are received in error at receiver 
(lost/corrupted) 

 
 



Selective repeat: sender, receiver 
windows 



Selective repeat 

data from above : 

 if next available seq # in window, 
send pkt 

timeout(n): 

 resend pkt n, restart timer 

ACK(n) in [sendbase,sendbase+N]: 

 mark pkt n as received 

 if n smallest unACKed pkt, advance 
window base to next unACKed seq #  

 

sender 

pkt n in [rcvbase, rcvbase+N-1] 

 send ACK(n) 

 out-of-order: buffer 

 in-order: deliver (also deliver 

buffered, in-order pkts), 

advance window to next not-

yet-received pkt 

pkt n in [rcvbase-N,rcvbase-1] 

 ACK(n) 

otherwise:  
 ignore  

 

receiver 



Selective repeat in action 



Selective Repeat (SR) 

 SR receiver acknowledge a correctly received packet 
whether or not it is in order  

 

 Out-of-order pkts are buffered 
 If any missing pkts (with lower seq #) are received, a batch of pkts 

can be delivered in order to the upper layer. 



Selective repeat: 
dilemma 

Example:  

 seq #’s: 0, 1, 2, 3 

 window size=3 

 

 receiver sees no difference in two 
scenarios! 

 incorrectly passes duplicate data as 
new in (a) 

 No way of distinguishing the 
retransmission of the 1st pkt from an 
original transmission of the 5th pkt 

 

Q: What relationship between seq # size 

and window size? 

Ans:  window size must be ≤ half the size 
of the seq # space for SR protocols. 

What if pkts go out of order 
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TCP: Overview   RFCs: 793, 1122, 1323, 2018, 2581 

 full duplex data: 
 bi-directional data flow in 

same connection 

 MSS: maximum segment 
size 

 connection-oriented:  
 handshaking (exchange of 

control msgs) init’s sender, 
receiver state before data 
exchange 

 flow controlled: 
 sender will not overwhelm 

receiver 

 point-to-point: 
 one sender, one receiver  

 reliable, in-order byte 
steam: 
 no “message boundaries” 

 pipelined: 
 TCP congestion and flow 

control set window size 

 send & receive buffers 
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TCP segment structure 

source port # dest port # 

32 bits 

application 

data  

(variable length) 

sequence number 

acknowledgement number 

Receive window 

Urg data pnter checksum 

F S R P A U 
head 

len 

not 

used 

Options (variable length) 

URG: urgent data  

(generally not used) 

ACK: ACK # 

valid 

PSH: push data now 

(generally not used) 

RST, SYN, FIN: 

connection estab 

(setup, teardown 

commands) 

# bytes  

rcvr willing 

to accept 

counting 

by bytes  

of data 

(not segments!) 

Internet 

checksum 

(as in UDP) 



TCP: Connection-Oriented Transport 

 TCP has 3 main components 

 Reliable transmission 

 Congestion Control 

 Flow Control 



Reliable Transmission 

 TCP is connection-oriented 

 Sender sends control packets (SYN) and receiver replies 
(ACK) 

 Receiver also opens a similar connection 

 Full-duplex service; point-to-point connection 

 

 Sender sends a small burst of packets 

 Receiver ACKs: ACK contains the next expected packet 
(actually byte) 

 Sender receives ACK, and sends a bigger burst 

 Called “Self-clocking” behavior 



Reliable Transmission 

 If train of packets lost 

 Sender will not get any ACKs 

 Will timeout (gets alarmed) 

 Retransmit from first un-ACK-ed packet,  

 Drastically reduces window size 

 If packet n lost, but (n+1) successful 

 Receiver will send Duplicate ACK 

 Three DupACKs, Resends (n) 

 Fast Retransmit 
 Retransmitting the missing segments before that segment’s timer 

expires 

 Cuts window size by half 



Congstion Control 



TCP Congestion Control 

 Problem Definition 

 How much data should I pump into the network to ensure 
 Intermediate router queues not filling up 

 Fairness achieved among multiple TCP flows 

 Why is this problem difficult? 

 TCP cannot have information about the network 

 Only TCP receiver can give some feedbacks 

 Approach:  sender limit the rate of sending traffic as a 
function of perceived network congestion 

 How does a TCP sender limit the rate?  

 How does TCP sender perceive that there is congestion?  

 What algorithm should the sender use? 

 



The TCP Intuition 

Pour 

water 

Collect 

water 



The TCP Protocol (in a nutshell) 
 T (sender) transmits few packets, waits for ACK 

 Called slow start 

 

 R (receiver) acknowledges all packet till seq #i by ACK i 
(optimizations possible) 

 ACK sent out only on receiving a packet 

 Can be Duplicate ACK if expected packet not received 

 

 ACK reaches T  indicator of more capacity 
 T transmits larger burst of packets (self clocking) … so on 

 Burst size increased until packet drops (i.e., DupACK or timeout) 

 

 When T gets DupACK or waits for longer than RTO 
(Retransmission TimeOut) 
 Assumes congestion  reduces burst size (congestion window) 



TCP Congestion Control: details 

 sender limits transmission: 

 

 

 cwnd is dynamic, function 
of perceived network 
congestion 

 

TCP sending rate: 

 roughly: send cwnd 
bytes, wait RTT for 
ACKS, then send 
more bytes 

last byte 
ACKed sent, not-

yet ACKed 
(“in-flight”) 

last byte 
sent 

cwnd 

LastByteSent- 

 LastByteAcked 
< cwnd 

sender sequence number space  

rate ~ ~ 
cwnd 

RTT 
bytes/sec 



TCP Timeline 

Host A 

R
T

T
 

Host B 

time 

Think of a blind 

person trying to 

stand up in a low 

ceiling room 

 

Objective: 

Don’t bang your 

head, but stand 

up quickly  

 



TCP Congestion Control Algorithm 

 A loss segment implies congestion 

 TCP sender’s rate should be decreased 

 An ACK indicates that network is delivering the 
sender’s segment to the receiver 

 TCP sender’s rate can be increased  

 Bandwidth probing 

 TCP sender increases transmission rate to probe when 
congestion onset begins 

 backs off from that rate and then begins probing to see if 
congestion rate has changed   

 Jacobson 1988 

 Slow start; congestion avoidance; fast recovery 

 



TCP Slow Start 

 When connection begins, 
increase rate exponentially 
until first loss event: 
 double CongWin every RTT 

 done by incrementing 
CongWin for every ACK 
received 

 Summary: initial rate is 
slow but ramps up 
exponentially fast 

 When this exponential 
growth rate should end? 

Host A 

R
T

T
 

Host B 

time 



TCP Slow Start (more) 

 If there is  a loss event (i.e., congestion) indicated by a 
timeout 
 TCP sender sets the value of cwnd to 1 

 Begin the slow start process anew 

 Sets the value of 2nd state variable ssthresh (slow start 
threshold) to cwnd/2 

 Slow start ends when  cwnd = ssthresh 

 TCP transitions into congestion avoidance (CA) mode 
 TCP increases cwnd more cautiously when in CA mode 

 Final end of slow start happens if 3 duplicate ACKs are detected 

 TCP performs a fast retransmit 

 Enters a fast recovery state 



TCP Slow Start (more) 

 Congestion avoidance state 
 value of cwnd is approx. half its value when congestion was 

last detected 

 Rather than doubling the value of cwnd every RTT TCP 
adopts a more conservative approach 

 Increase the value of cwnd by just a single MSS 

 

 TCP performs a fast retransmit 

 Enters a fast recovery state 



TCP: detecting, reacting to loss 

 loss indicated by timeout: 

 cwnd set to 1 MSS  

 window then grows exponentially (as in slow start) to 
threshold, then grows linearly 

 

 loss indicated by 3 duplicate ACKs: TCP RENO (newer version) 

 dup ACKs indicate network capable of  delivering some 
segments  

 cwnd is cut in half window then grows linearly 

 

 TCP Tahoe (earlier version) always sets cwnd to 1 
(timeout or 3 duplicate acks) 



Q: When should the 
exponential 
increase switch 
to linear?  

A: When cwnd gets 
to 1/2 of its value 
before timeout. 

 

  
Implementation: 
 variable ssthresh  

 on loss event, 
ssthresh is set to 1/2 
of cwnd just before loss 
event 

TCP: switching from slow start to CA 



TCP fast retransmit 

 time-out period  
often relatively long: 

 long delay before 
resending lost packet 

 detect lost segments 
via duplicate ACKs. 

 sender often sends 
many segments back-
to-back 

 if segment is lost, 
there will likely be 
many duplicate ACKs. 

 

 

if sender receives 3 
ACKs for same data 

(“triple duplicate ACKs”), 
resend unacked 
segment with smallest 
seq # 
 likely that unacked 

segment lost, so don’t 
wait for timeout 

TCP fast retransmit 



X 

fast retransmit after sender  
receipt of triple duplicate ACK 

Host B Host A 
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ACK=100 

TCP fast retransmit 

Seq=100, 20 bytes of data 

Seq=100, 20 bytes of data 

Seq=120, 15 bytes of data 

Seq=135, 6 bytes of data 

Seq=141, 16 bytes of data 

ACK=100 

ACK=100 

ACK=100 

ACK=100 



Understanding 3 Duplicate ACKs from GBN 

Q: Is TCP Go-Back-N or Selective Repeat? 

A: a) TCP implementation buffers 

correctly received but out-of-order 

segments. 

 b) Selective acknowledgement allows a 

TCP receiver to acknowledge out-of 

order segments selectively rather than 

just cumulatively acknowledging the 

last correctly received, in-order 

segment. 

c) Selective retransmission: skipping 

the retransmission of segments that 

have already been selectively acknowledged by 

the receiver 

d) TCP is a hybrid GBN and SR protocol 

 

  

 

  

buffered 

buffered 

buffered 



More Example: When waited for > RTO 
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cwnd = 20 

After RTO timeout 

double CongWin every RTT 

done by incrementing CongWin  

for every ACK received 



Understanding RTT (X axis) & cwnd/segments 
(Y axis) relationship 

 Relation between RTT 
(Transmission Round) and 
Packets Sequence Number/ 
MSS (Maximum Segment Size) 

 1st RTT: pkt  1 

 2nd RTT: pkt 2 & 3 

 3rd RTT: pkt  4, 5, 6 & 7 

 4th RTT: pkt 8, 9, 10, 11, 12, 13, 
14, & 15 

 5th RTT: pkt 16 to 31 

 6th RTT: pkt 32 to 63 
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time 



Next Step 

 We talked about the 
congestion window 

 Setting up the congestion 
window size 

 What about RTT and 
Retransmission 
Timeout? 

 How to determine the 
value of RTT/RTO? 

sender receiver 

rcv pkt1 

rcv pkt0 

send ack0 

send ack1 

send ack0 

rcv ack0 

send pkt0 

send pkt1 

rcv ack1 

send pkt0 

rcv pkt0 
pkt0 

pkt0 

ack1 

ack0 

ack0 

(b) packet loss 

pkt1 
X 

loss 

pkt1 
timeout 

resend pkt1 



Timeout -- function of RTT 

Q: how to set TCP timeout 
value? 

 longer than RTT 

 but RTT varies 

 How much larger? 

 too short: premature timeout 

 unnecessary 
retransmissions 

 too long: slow reaction to 
segment loss 

 How should the RTT be 
estimated in first place? 

 Should a timer be associated 
with each and every 
unacknowledged segment? 
[TCP work by Jacobson 1988] 

Q: how to estimate RTT? 
 SampleRTT: measured time from 

segment transmission until ACK 
receipt 

 One of the transmitted but currently 
unacknowledged segment 

 Vary due to congestion in the routers 
and varying load on the end systems 

 

 

 SampleRTT will vary, want 
estimated RTT “smoother” 

 average several recent 
measurements, not just current 
SampleRTT 



TCP Round Trip Time 

EstimatedRTT = (1- )*EstimatedRTT + *SampleRTT 

 Exponential weighted moving average (EWMA) 

 influence of past sample decreases exponentially fast 
 typical value:  = 0.125 



Example RTT estimation: 
RTT: gaia.cs.umass.edu to fantasia.eurecom.fr
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Timeout 

Setting the timeout 

 EstimatedRTT plus “safety margin” 

 large variation in EstimatedRTT -> larger safety margin 

 first estimate of how much SampleRTT deviates from EstimatedRTT:  

TimeoutInterval = EstimatedRTT + 4*DevRTT 

DevRTT = (1-)*DevRTT + *|SampleRTT-EstimatedRTT| 

 

(typically,  = 0.25) 

 Then set timeout interval: 

 Interval should be greater than or equal to EstimatedRTT, shouldn’t be 
too large 

 Unnecessary retransmissions would be sent or TCP would not quickly 
retransmit 

 EstimatedRTT + Margin 

 
 



TCP: Connection-Oriented Transport 

 TCP has 3 main components 

 Reliable transmission 

 Congestion Control 

 Flow Control 



TCP Flow Control 

 Problem Definition 

 The receiver has limits on buffer 

 If many nodes transmitting to same receiver 
 Losses may happen at receiver 

 Need to avoid such losses 

 

 Solution 

 Receiver tells transmitter how much space left 

 Transmitter chooses its congestion window accordingly 



TCP Flow Control: how it works 

(Suppose TCP receiver discards 
out-of-order segments) 

 spare room in buffer 
= RcvWindow 

= RcvBuffer-[LastByteRcvd - 

LastByteRead] 

 Rcvr advertises spare 
room by including value 
of RcvWindow in 
segments 

 Sender limits unACKed 
data to RcvWindow 

 guarantees receive buffer 
doesn’t overflow 



Chapter 3: Transport Layer Summary 

 principles behind transport 
layer services: 

 multiplexing, 
demultiplexing 

 reliable data transfer 

 flow control 

 congestion control 

 instantiation, implementation 
in the Internet 

 UDP 

 TCP 

next: 

 leaving the 
network “edge” 
(application, 
transport layers) 

 into the network 
“core” 

 



 

 

 

 

Questions? 

 

 

…  


