

Data Communications and Networks IS 450/IS 650 – Spring 2015

Course Logistics

Nirmalya Roy Department of Information Systems University of Maryland Baltimore County

www.umbc.edu

Welcome to IS 450/IS 650

- Timings:
- Location:
- Instructor:

Tuesday; 4:30pm to 7:00pm Math & Psychology 106 Nirmalya Roy Faculty in IS, MS in CSE: UT-Arlington, 2004 PhD in CSE: UT-Arlington, 2008 Postdoc in ECE: UT-Austin, 2010 Faculty at Washington State University, 2013 Research Interest: Mobile, Pervasive and Ubiquitous Computing http://userpages.umbc.edu/~nroy/mpsc.html

Office hours: Thursday 1pm – 2:30pm or by appointment

Email: nroy@umbc.edu Office: ITE 421

Welcome to IS 450/IS 650

Course website

- o <u>http://userpages.umbc.edu/~nroy/courses/spring2015/dcn/</u>
- Course related information will be posted on the website
- Please check the course website frequently
- Prerequisite:
 - MATH 215 or MATH 221
 - Make up classes
 - Will be occasionally necessary due to travel

Welcome to IS 450/IS 650

Grading:

- Homework/Quizzes/Class Participation: 30%
- Hands-on Data Communications
 Research & Development Project 20%
- 1 mid-term exam:20%
- Final exam: 30%

Course Expectations

Attendance

- You should attend class
- Lecture notes will be made available, but they should not be considered a substitution for attending class

Collaboration

 Collaboration is good in general but do not copy from each other

Course Information

Course materials:

 Text: Computer Networking: A Top Down Approach, 6th Ed., by James F. Kurose and Keith W. Ross. Addison-Wesley, 2012

- Class notes/slides
- Some supplementary reading materials

Computer Networking

A Top-Down Approach

KUROSE ROSS

What is this course about?

- First undergraduate and graduate level course in computer networking
 - BS and MS students
- Learn principles of computer networking
- Learn modeling and analysis of computer networking
- □ Learn practice of computer networking
- Internet architecture/protocols as case study
- Real wireless networks and devices as case studies
- Introduction to next generation networking
- Learn how to find an interesting networking research and development problem

Course Information

- At the end of the course
 - You understand variety of concepts
 - □ Internet, HTTP, DNS, P2P, ...
 - Sockets, Ports, ...
 - Congestion Control, Flow Control, TCP, ...
 - Routing, Basic Graphs, Djikstra's Algorithm, IP, ...
 - DSL , Cable, Aloha, CSMA, TDMA, Token, WiFi 802.11, ...
 - Security, RSA, ...
 - Cellular Networks, Mobile Networks, Satellite Networks, ...
 - Wireless Multihop Networks (ad hoc, mesh, WLANs)
 - Sensor Networks
 - Tackling a research & development problem

What this Course Does Not Cover

• We will not discuss

- Large-scale path loss, small scale fading and multipath
- Modulation schemes; channel coding
- Transmitter/Receiver design, signal processing, antenna design etc.
- This is course on
 - Understanding, analyzing, and designing of protocols and algorithms in networking systems (wired Internet/Ethernet and wireless cell/WiFi)

- Deploy, test, compare and if needed make changes to have access to real data on real devices commercially available in the market
 - Energy Education through Green Building
 - Constellation Energy
 - Smart Plugs
 - Enmetric
 - Z-Wave
 - iMeterSolo
 - SiteStage (previously was known as eMonitor)

0

- Understand the working principle and pros & cons of different types of communication protocols
 - Wi-Fi (IEEE 802.11.x)
 - ZigBee (IEEE 802.15.4)
 - o Bluetooth
 - o X10
 - o ANT
 - Bluetooth low energy (BLE) or Bluetooth Smart
 - Powerline communication protocol (PLC)
 - **O**

- Device selection
 - Form a team (3 for undergrad and 2 for grad students)
 - Decide a team leader
 - Choose a device related to your tentative R&D project
 - Choose the most cost effective device
 - Our plan is to deploy the system ultimately at large scale in smart environments
 - Email me the device specification, the tentative title of your project and purpose and link
 - Deadline for selecting the appropriate device is by the last class in February, 2/24

Selecting the Appropriate Device

- Select a device which is ubiquitous, easy to set up, easy to use and most importantly less expensive and has huge potential for the real deployment
- Discuss with me through emails
- Let's look at some potential choices

- Energy metering and communication
 - Z-Wave Smart Energy Power Strip
 - iMeter Solo INSTEON Power Meter (quite a few in the lab)
 - PowerLinc Modem INSTEON USB Interface
 - Z-wave Smart Metering and Communication
 - Aeon Labs DSA02203-ZWUS Z-Stick Series 2
 - Aeon Labs DSC24-ZWUS Smart Switch Z-Wave Appliance Module
 - Aeon Labs DSC06106-ZWUS Z-wave Smart Energy Switch
 - Aeon Labs Aeotec Z-Wave Smart Energy Power Strip

- Insteon Energy Metering and Communication
 - iMeter Solo INSTEON Power Meter (Plug-In)
 - PowerLinc Modem INSTEON USB Interface (Dual-Band)
- Enmetric System for Intelligent Plug load Management and Power Telemetry Communication
 - Enmetric PowerPort
 - Enmetric Wireless Bridge

PeoplePower

- Presence Pro Energy for Android
- Nest Lab
 - Nest Thermostat
- Wattics: Innovative Energy Management
- Tendril: Changing the way the world uses energy

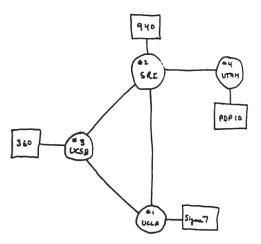
- EnergyHub: Powers positive relationships with millions of energy users every day
- Baltimore Energy Challenge
 <u>https://baltimoreenergychallenge.org/</u>

- Projects consist of 3 parts:
 - Choosing an interesting low-cost device
 - Identifying what you can do
 - Install the required SDK to make it work
 - Think about a novel application
 - Collect DATA for a period of at least 2-3 weeks or more
 - Based on the data propose a novel application
 - o Results
 - Identify the different communication protocols
 - Test with different settings based on the range, distance, interference, environment, user body position etc.
 - Draw the important inferences or conclusions from the results
 - Is it good for what it's meant for?
 - How does it make the environment more smarter, healthy and sustainable?

- Mid semester progress update in end of March
- Final demonstration to the class and report submission in May
 - 3-page report (undergrads team)
 - 6-page report (grads team)
 - Energy related projects and Course best project may get a chance to present their projects to *Constellation Energy*
- Bonus points will be given to the Best 3 projects in the class (up to 3 points)

Other Assignments

- Homework, Quizzes will be given appropriately as we make progress
- Attending class and participation in class discussion will be equivalent to the credit of an assignment


Data Communications and Networks

- Past
- Present
- Future

1961-1972: Early packet-switching principles

- 1961: Kleinrock queueing theory shows effectiveness of packet-switching
- 1964: Baran packetswitching in military nets
- 1967: ARPAnet conceived by Advanced Research Projects Agency
- 1969: first ARPAnet node operational

- **1972**:
 - ARPAnet public demonstration
 - NCP (Network Control Protocol) first host-host protocol
 - o first e-mail program
 - ARPAnet has 15 nodes

1972-1980: Internetworking, new and proprietary nets

- 1970: ALOHAnet satellite network in Hawaii
- 1974: Cerf and Kahn architecture for interconnecting networks
- 1976: Ethernet at Xerox PARC
- late70's: proprietary architectures: DECnet, SNA, XNA
- late 70's: switching fixed length packets (ATM precursor)
- 1979: ARPAnet has 200 nodes

Cerf and Kahn's internetworking principles:

- minimalism, autonomy no internal changes required to interconnect networks
- o best effort service model
- stateless routers
- o decentralized control

define today's Internet architecture

1980-1990: new protocols, a proliferation of networks

- 1983: deployment of TCP/IP
- 1982: smtp e-mail protocol defined
- 1983: DNS defined for name-to-IP-address translation
- 1985: ftp protocol defined
- 1988: TCP congestion control

- new national networks:
 Csnet, BITnet, NSFnet,
 Minitel
- 100,000 hosts connected to confederation of networks

1990, 2000's: commercialization, the Web, new apps

- Early 1990's: ARPAnet decommissioned
- 1991: NSF lifts restrictions on commercial use of NSFnet (decommissioned, 1995)
- early 1990s: Web
 - hypertext [Bush 1945, Nelson 1960's]
 - HTML, HTTP: Berners-Lee
 - 1994: Mosaic, later Netscape
 - late 1990's: commercialization of the Web

Late 1990's – 2000's:

- more killer apps: instant messaging, P2P file sharing
- network security to forefront
- est. 50 million host, 100 million+ users
- backbone links running at Gbps

The New Millennium: "Cool" Internet Applications

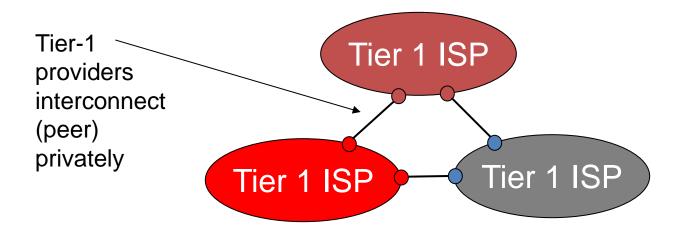
IP picture frame http://www.ceiva.com/

Internet phones

World's smallest web server http://www-ccs.cs.umass.edu/~shri/iPic.html

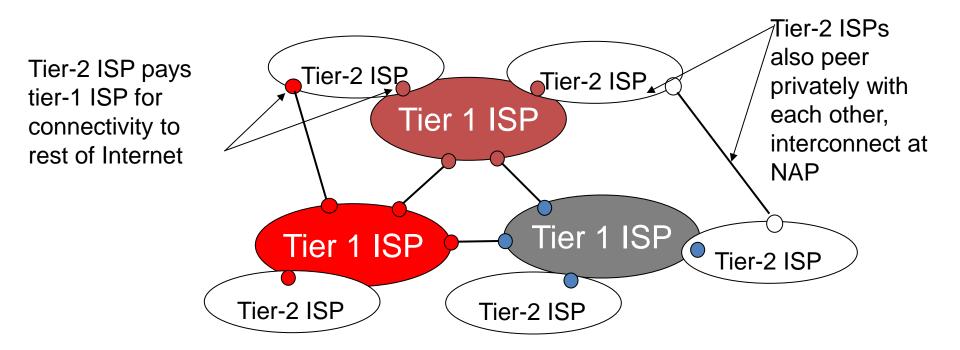
Web-enabled toaster + weather forecaster

Network Edge

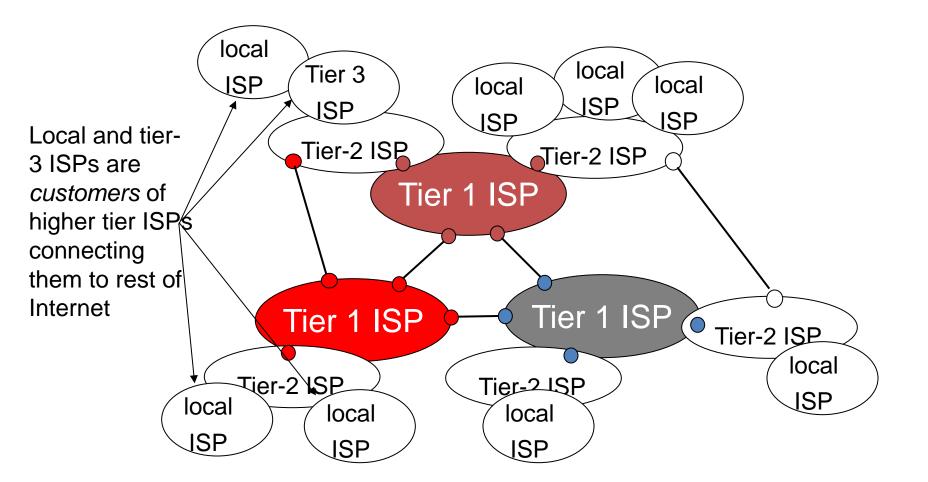

- End points need not be devices
- Imagine locations as end points, and associated with email addresses in the future ...
 - You could email your grocery list to aisle 3 in Safeway
 - I could email "running late" to whiteboard in the class

InterNetwork

- Millions of end points (you, me, and toasters) are connected over a network
 - Many end points can be addressed by numbers
 - Many others lie behind a virtual end point
 - Many networks form a bigger network
 - The overall structure called the Internet
 - Defined as *the network of networks*

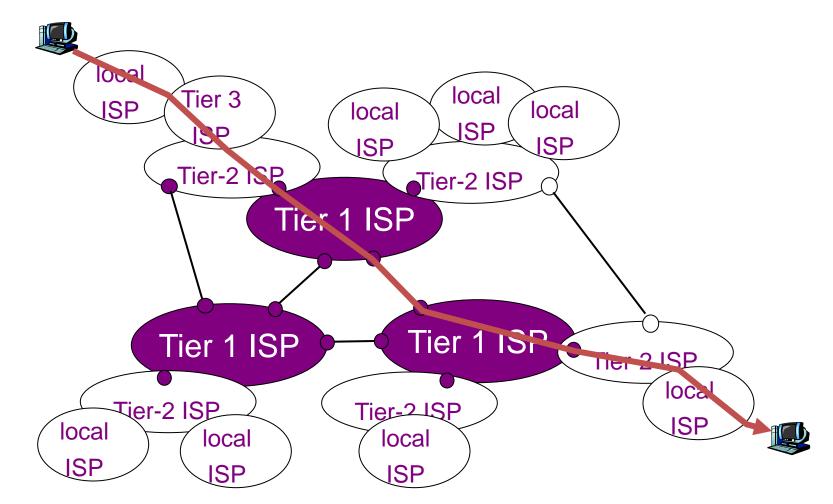

Internet Structure: Network of Networks

- roughly hierarchical
- at center: "tier-1" ISPs (e.g., MCI, Sprint, AT&T, Cable and Wireless), national/international coverage
 - treat each other as equals


Internet Structure: Network of Networks

- "Tier-2" ISPs: smaller (often regional) ISPs
 - Connect to one or more tier-1 ISPs, possibly other tier-2 ISPs
- France telecome, Tiscali, etc. buys from Sprint

Internet structure: Network of Networks


- "Tier-3" ISPs and local ISPs (Time Warner, Earthlink, etc.)
 - last hop ("access") network (closest to end systems)

Internet Structure: Network of Networks

a packet passes through many networks!

Local ISP (taxi) -> T3 (bus) -> T2 (domestic) -> T1 (international)

Organizing the giant structure

Networks are complex!

- many "pieces":
 - o hosts
 - o routers
 - links of various media
 - applications
 - o protocols
 - hardware, software

Question:

Is there any hope of *organizing* structure of network?

Or at least our discussion of networks?

Turn to Analogies in Air Travel

ticket (purchase)

baggage (check)

gates (load)

runway takeoff

airplane routing

ticket (complain)

baggage (claim)

gates (unload)

runway landing

airplane routing

airplane routing

a series of steps

Layering of Airline Functionality

ticket (purchase)		ticket (complain)	ticket
baggage (check)		baggage (claim	baggage
gates (load)		gates (unload)	gate
runway (takeoff)		runway (land)	takeoff/landing
airplane routing	airplane routing airplane routing	airplane routing	airplane routing
den entrine	·	 	-

departure	intermediate air-traffic	arrival
airport	control centers	airport

Layers: each layer implements a service

- o layers communicate with peer layers
- rely on services provided by layer below

Why layering?

- Explicit structure allows identification, relationship of complex system's pieces
- Modularization eases maintenance, updating of system
 - change of implementation of layer's service transparent to rest of system
 - e.g., runway delay (wheels up time) depends on clearance of destination runway ... doesn't affect rest of system

Protocol "Layers"

- Service of each layer encapsulated
- Universally agreed services called PROTOCOLS
- A large part of this course will focus on designing and analyzing protocols for networking systems

Internet protocol stack

- application: supporting network applications
 - FTP, SMTP, HTTP, DNS ...
- transport: host-host data transfer
 - TCP, UDP ...
- network: routing of datagrams from source to destination
 - IP, BGP, routing protocols ...
- link: data transfer between neighboring network elements
 - PPP, Ethernet, WiFi, Bluetooth ...
- physical: bits "on the wire"
 - OFDM, DSSS, CDMA, Coding ...

	application	
	transport	
e to	network	
etwork	link	
	physical	

Queueing Theory

Waiting in lines

- In the grocery store, on the telephone, at the airport, on the road
- Queueing theory is the mathematical study of lines
 - What are the stochastic characteristics of delay?
 - For example, what is the average delay?
 - What is the probability that delay exceeds some threshold?
 - What fraction of customers are turned away?
 - What system capacity (e.g., what number of servers) is needed to achieve a specified quality of service?
 - Provide decision makers a way to efficiently allocate resources to reduce delay

Applications of Queueing Theory

- Applications to Networks
- Study of the performance of systems composed of
 - Waiting lines
 - Processing units
 - Allows to estimate
 - Time spent in waiting
 - Expected number of waiting requests
 - Probability of being in certain states
- Useful for the design of systems such as networks
 - Delay, blocking probability, links, bandwidth, number of processors, buffers size

Questions

?