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Course Overview 

 Transport Layer (Chapter 3) 

 Reliable Data Transfer 

 Pipelined Reliable Data Transfer 

 Go-Back-N (GBN) 

 Selective Repeat (SR) 

 TCP Congestion Control, Flow Control and RTT Estimation 

 

 Network Layer (Chapter 4) 

 Network layer services 

 IPv4 addressing (subnet, DHCP etc.) 

 Routing algorithms (link state, distance vector etc.) 

 

 



Chapter 3 Outline 

 3.1 Transport-layer 
services 

 3.2 Multiplexing and 
demultiplexing 

 3.3 Connectionless 
transport: UDP 

 3.4 Principles of reliable 
data transfer 

 3.5 Connection-oriented 
transport: TCP 
 segment structure 

 reliable data transfer 

 flow control 

 connection management 

 3.6 Principles of congestion 
control 

 3.7 TCP congestion control 



UDP: User Datagram Protocol [RFC 768] 

 “no frills,” “bare bones” 
Internet transport protocol 

 

 “best effort” service, UDP 
segments may be: 

 lost 

 delivered out of order to 
app 

 

 connectionless: 

 no handshaking between 
UDP sender, receiver 

 each UDP segment handled 
independently of others 

 

Why is there a UDP? 

 no connection establishment 
(which can add delay) 

 simple: no connection state at 
sender, receiver 

 small segment header 

 no congestion control: UDP 
can blast away as fast as 
desired 

 



Chapter 3 outline 

3.1 transport-layer 
services 

3.2 multiplexing and 
demultiplexing 

3.3 connectionless 
transport: UDP 

3.4 principles of reliable 
data transfer 

3.5 connection-oriented 
transport: TCP 

 segment structure 

 reliable data transfer 

 flow control 

 connection management 

3.6 principles of congestion 
control 

3.7 TCP congestion control 



Principles of reliable data transfer 

 important in application, transport, link layers 

 top-10 list of important networking topics! 

 

 characteristics of unreliable channel will determine 
complexity of reliable data transfer protocol (rdt) 



 characteristics of unreliable channel will determine 
complexity of reliable data transfer protocol (rdt) 

Principles of reliable data transfer 

 important in application, transport, link layers 

 top-10 list of important networking topics! 

 



 characteristics of unreliable channel will determine 
complexity of reliable data transfer protocol (rdt) 

 important in application, transport, link layers 

 top-10 list of important networking topics! 

 

Principles of reliable data transfer 



We’ll: 

 incrementally develop sender, receiver sides of 
reliable data transfer protocol (rdt) 

 consider only unidirectional data transfer 

 but control info will flow on both directions! 

 use finite state machines (FSM)  to specify sender, 
receiver 

state 
1 

state 
2 

event causing state transition 

actions taken on state transition 

state: when in this “state” 
next state uniquely 
determined by next 

event 
event 

actions 

Reliable data transfer: getting started 



rdt1.0: reliable transfer over a reliable channel 

 underlying channel perfectly reliable 

 no bit errors 

 no loss of packets 

 separate FSMs for sender, receiver: 

 sender sends data into underlying channel 

 receiver reads data from underlying channel 

Wait for 

call from 

above packet = make_pkt(data) 

udt_send(packet) 

rdt_send(data) 

extract (packet,data) 

deliver_data(data) 

Wait for 

call from 

below 

rdt_rcv(packet) 

sender receiver 



 underlying channel may flip bits in packet 
 checksum to detect bit errors 

 the question: how to recover from errors: 
 acknowledgements (ACKs): receiver explicitly tells 

sender that pkt received OK 
 negative acknowledgements (NAKs): receiver explicitly 

tells sender that pkt had errors 
 sender retransmits pkt on receipt of NAK 

 new mechanisms in rdt2.0 (beyond rdt1.0): 
 error detection 
 receiver feedback: control msgs (ACK,NAK) rcvr-

>sender 

rdt2.0: channel with bit errors 

How do humans recover from “errors” 

during conversation? 



rdt2.0 has a fatal flaw! 

what happens if 
ACK/NAK corrupted? 

 sender doesn’t know 
what happened at 
receiver! 

 can’t just retransmit: 
possible duplicate 

 

 
 

handling duplicates:  

 sender retransmits 
current pkt if ACK/NAK 
corrupted 

 sender adds sequence 
number to each pkt 

 receiver discards (doesnt 
deliver up) duplicate pkt 

stop and wait 
sender sends one packet,  
then waits for receiver  
response 



rdt3.0: channels with errors and loss 

new assumption: 
underlying channel can 
also lose packets 
(data, ACKs) 
 checksum, seq. #, 

ACKs, retransmissions 
will be of help … but 
not enough 

approach: sender waits 
“reasonable” amount 
of time for ACK  

 retransmits if no ACK 
received in this time 

 if pkt (or ACK) just delayed 
(not lost): 

 retransmission will be  
duplicate, but seq. #’s 
already handles this 

 receiver must specify 
seq # of pkt being 
ACKed 

 requires countdown timer 



rdt3.0 sender 
sndpkt = make_pkt(0, data, checksum) 

udt_send(sndpkt) 

start_timer 

rdt_send(data) 

Wait 

for 

ACK0 

rdt_rcv(rcvpkt) &&   

( corrupt(rcvpkt) || 

isACK(rcvpkt,1) ) 

Wait for  

call 1 from 

above 

sndpkt = make_pkt(1, data, checksum) 

udt_send(sndpkt) 

start_timer 

rdt_send(data) 

rdt_rcv(rcvpkt)    

&& notcorrupt(rcvpkt)  

&& isACK(rcvpkt,0)  

rdt_rcv(rcvpkt) &&   

( corrupt(rcvpkt) || 

isACK(rcvpkt,0) ) 

rdt_rcv(rcvpkt)    

&& notcorrupt(rcvpkt)  

&& isACK(rcvpkt,1)  

stop_timer 

stop_timer 

udt_send(sndpkt) 

start_timer 

timeout 

udt_send(sndpkt) 

start_timer 

timeout 

rdt_rcv(rcvpkt) 

Wait for  

call 0from 

above 

Wait 

for 

ACK1 

L 

rdt_rcv(rcvpkt) 

L 

L 

L 



Some transmission methods 

 Reliable data transfer over a channel with Bit Errors 
 Positive acknowledgement (ACK) 

 Negative acknowledgement (NAK) 

 ARQ (Automatic Repeat reQuest) protocols 
 Error detection 

 Receiver feedback 

 Retransmission 

 

 Stop & Wait 

 Pipelined 
 Go Back N 

 Selective Repeat 



Stop-and-wait operation 

first packet bit transmitted, t = 0 

sender receiver 

RTT  

last packet bit transmitted, t = L / R 

first packet bit arrives 

last packet bit arrives, send ACK 

ACK arrives, send next  

packet, t = RTT + L / R 

 

U 
sender 

= 
.008 

30.008 
= 0.00027 

microsec
onds 

L / R 

RTT + L / R 
= 



Pipelined protocols 

Pipelining: sender allows multiple, “in-flight”, yet-to-be-
acknowledged pkts 
 range of sequence numbers must be increased 

 buffering at sender and/or receiver 

 Two generic forms of pipelined protocols: go-Back-N, 
selective repeat 



Pipelining: increased utilization 

first packet bit transmitted, t = 0 

sender receiver 

RTT  

last bit transmitted, t = L / R 

first packet bit arrives 

last packet bit arrives, send ACK 

ACK arrives, send next  

packet, t = RTT + L / R 

last bit of 2nd packet arrives, send ACK 

last bit of 3rd packet arrives, send ACK 

 

U 
sender 

= 
.024 

30.008 
= 0.0008 

microsecon
ds 

3 * L / R 

RTT + L / R 
= 

Increase utilization 

by a factor of 3! 



Go-Back-N 
Sender: 
 k-bit seq # in pkt header 

 “window” of up to N, consecutive unack’ed pkts allowed 

 

 

 ACK(n): ACKs all pkts up to, including seq # n - “cumulative ACK” 

 may receive duplicate ACKs 

 timer for each in-flight pkt 

 timeout(n): retransmit pkt n and all higher seq # pkts in window 

 N referred to as the window size and GBN as a sliding-window protocol 

 Why we limit N? (flow control, TCP congestion control)  

 

 



GBN in  
action 



Selective Request 

 Makes sense to transmit only the lost packets 
 But this is true under what assumption ? 

 GBN suffers from performance  problems 

 Window size and bandwidth-delay product are both large, many pkts in 
pipeline  

 Single pkt error cause GBN to retransmit a large # of pkts, many 
unnecessarily 

 Probability of channel error increases, the pipeline can become filled with 
these unnecessary transmissions 

 Can you say a case in which Go-BACK-N might be better 

 GBN protocol allows the sender to potentially “fill the pipeline” with 
packets 

 Increase the channel utilization than stop-and-wait protocols 

 SR protocols avoid unnecessary retransmissions 

 Sender only retransmits pkts that are received in error at receiver 
(lost/corrupted) 

 
 



Selective Repeat (SR) 

 SR receiver acknowledge a correctly received packet 
whether or not it is in order  

 

 Out-of-order pkts are buffered 
 If any missing pkts (with lower seq #) are received, a batch of pkts 

can be delivered in order to the upper layer 



Selective repeat in action 



Agenda 

 Reliable Transport 

 Stop-and-wait 

 Pipelined 

 Go back N 

 Selective Request 

 

 TCP 

 Congestion Control 

 Flow Control 
 



TCP: Overview   RFCs: 793, 1122, 1323, 2018, 2581 

 full duplex data: 
 bi-directional data flow in 

same connection 

 MSS: maximum segment 
size 

 connection-oriented:  
 handshaking (exchange of 

control msgs) init’s sender, 
receiver state before data 
exchange 

 flow controlled: 
 sender will not overwhelm 

receiver 

 point-to-point: 
 one sender, one receiver  

 reliable, in-order byte 
steam: 
 no “message boundaries” 

 pipelined: 
 TCP congestion and flow 

control set window size 

 send & receive buffers 

 
socket

door

TCP

send buffer

TCP

receive buffer

socket

door

segment

application

writes data
application

reads data



TCP segment structure 

source port # dest port # 

32 bits 

application 

data  

(variable length) 

sequence number 

acknowledgement number 

Receive window 

Urg data pnter checksum 

F S R P A U 
head 

len 

not 

used 

Options (variable length) 

URG: urgent data  

(generally not used) 

ACK: ACK # 

valid 

PSH: push data now 

(generally not used) 

RST, SYN, FIN: 

connection estab 

(setup, teardown 

commands) 

# bytes  

rcvr willing 

to accept 

counting 

by bytes  

of data 

(not segments!) 

Internet 

checksum 

(as in UDP) 



TCP: Connection-Oriented Transport 

 TCP has 3 main components 

 Reliable transmission 

 Congestion Control 

 Flow Control 



Congstion Control 



TCP Congestion Control 

 Problem Definition 

 How much data should I pump into the network to ensure 
 Intermediate router queues not filling up 

 Fairness achieved among multiple TCP flows 

 Why is this problem difficult? 

 TCP cannot have information about the network 

 Only TCP receiver can give some feedbacks 

 Approach:  sender limit the rate of sending traffic as a 
function of perceived network congestion 

 How does a TCP sender limit the rate?  

 How does TCP sender perceive that there is congestion?  

 What algorithm should the sender use? 

 



TCP Congestion Control: details 

 sender limits transmission: 

 

 

 cwnd is dynamic, function 
of perceived network 
congestion 

 

TCP sending rate: 

 roughly: send cwnd 
bytes, wait RTT for 
ACKS, then send 
more bytes 

last byte 
ACKed sent, not-

yet ACKed 
(“in-flight”) 

last byte 
sent 

cwnd 

LastByteSent- 

 LastByteAcked 
< cwnd 

sender sequence number space  

rate ~ ~ 
cwnd 

RTT 
bytes/sec 



TCP Congestion Control Algorithm 

 A loss segment implies congestion 

 TCP sender’s rate should be decreased 

 An ACK indicates that network is delivering the 
sender’s segment to the receiver 

 TCP sender’s rate can be increased  

 Bandwidth probing 

 TCP sender increases transmission rate to probe when 
congestion onset begins 

 backs off from that rate and then begins probing to see if 
congestion rate has changed   

 Jacobson 1988 

 Slow start; congestion avoidance; fast recovery 

 



TCP Slow Start 

 When connection begins, 
increase rate exponentially 
until first loss event: 
 double CongWin every RTT 

 done by incrementing 
CongWin for every ACK 
received 

 Summary: initial rate is 
slow but ramps up 
exponentially fast 

 When this exponential 
growth rate should end? 

Host A 

R
T

T
 

Host B 

time 



TCP Slow Start (more) 

 If there is  a loss event (i.e., congestion) indicated by a 
timeout 
 TCP sender sets the value of cwnd to 1 

 Begin the slow start process anew 

 Sets the value of 2nd state variable ssthresh (slow start 
threshold) to cwnd/2 

 Slow start ends when  cwnd = ssthresh 

 TCP transitions into congestion avoidance (CA) mode 
 TCP increases cwnd more cautiously when in CA mode 

 Final end of slow start happens if 3 duplicate ACKs are detected 

 TCP performs a fast retransmit 

 Enters a fast recovery state 



TCP Slow Start (more) 

 Congestion avoidance state 
 value of cwnd is approx. half its value when congestion was 

last detected 

 Rather than doubling the value of cwnd every RTT TCP 
adopts a more conservative approach 

 Increase the value of cwnd by just a single MSS 

 

 TCP performs a fast retransmit 

 Enters a fast recovery state 



TCP: detecting, reacting to loss 

 loss indicated by timeout: 

 cwnd set to 1 MSS  

 window then grows exponentially (as in slow start) to 
threshold, then grows linearly 

 

 loss indicated by 3 duplicate ACKs: TCP RENO (newer version) 

 dup ACKs indicate network capable of  delivering some 
segments  

 cwnd is cut in half window then grows linearly 

 

 TCP Tahoe (earlier version) always sets cwnd to 1 
(timeout or 3 duplicate acks) 



Q: When should the 
exponential 
increase switch 
to linear?  

A: When cwnd gets 
to 1/2 of its value 
before timeout. 

 

  
Implementation: 
 variable ssthresh  

 on loss event, 
ssthresh is set to 1/2 
of cwnd just before loss 
event 

TCP: switching from slow start to CA 



Next Step 

 We talked about the 
congestion window 

 Setting up the congestion 
window size 

 What about RTT and 
Retransmission 
Timeout? 

 How to determine the 
value of RTT/RTO? 

sender receiver 

rcv pkt1 

rcv pkt0 

send ack0 

send ack1 

send ack0 

rcv ack0 

send pkt0 

send pkt1 

rcv ack1 

send pkt0 

rcv pkt0 
pkt0 

pkt0 

ack1 

ack0 

ack0 

(b) packet loss 

pkt1 
X 

loss 

pkt1 
timeout 

resend pkt1 



Timeout -- function of RTT 

Q: how to set TCP timeout 
value? 

 longer than RTT 

 but RTT varies 

 How much larger? 

 too short: premature timeout 

 unnecessary 
retransmissions 

 too long: slow reaction to 
segment loss 

 How should the RTT be 
estimated in first place? 

 Should a timer be associated 
with each and every 
unacknowledged segment? 
[TCP work by Jacobson 1988] 

Q: how to estimate RTT? 
 SampleRTT: measured time from 

segment transmission until ACK 
receipt 

 One of the transmitted but currently 
unacknowledged segment 

 Vary due to congestion in the routers 
and varying load on the end systems 

 

 

 SampleRTT will vary, want 
estimated RTT “smoother” 

 average several recent 
measurements, not just current 
SampleRTT 



TCP Round Trip Time and Timeout 

EstimatedRTT = (1- )*EstimatedRTT + *SampleRTT 

 Exponential weighted moving average (EWMA) 

 influence of past sample decreases exponentially fast 
 typical value:  = 0.125 



Example RTT estimation: 
RTT: gaia.cs.umass.edu to fantasia.eurecom.fr

100

150

200

250

300

350

1 8 15 22 29 36 43 50 57 64 71 78 85 92 99 106

time (seconnds)

R
T

T
 (

m
il

li
se

co
n

d
s)

SampleRTT Estimated RTT



TCP Round Trip Time and Timeout 

Setting the timeout 

 EstimatedRTT plus “safety margin” 

 large variation in EstimatedRTT -> larger safety margin 

 first estimate of how much SampleRTT deviates from EstimatedRTT:  

TimeoutInterval = EstimatedRTT + 4*DevRTT 

DevRTT = (1-)*DevRTT + *|SampleRTT-EstimatedRTT| 

 

(typically,  = 0.25) 

 Then set timeout interval: 

 Interval should be greater than or equal to EstimatedRTT, shouldn’t be 
too large 

 Unnecessary retransmissions would be sent or TCP would not quickly 
retransmit 

 EstimatedRTT + Margin 

 



TCP: Connection-Oriented Transport 

 TCP has 3 main components 

 Reliable transmission 

 Congestion Control 

 Flow Control 



TCP Flow Control 

 Problem Definition 

 The receiver has limits on buffer 

 If many nodes transmitting to same receiver 
 Losses may happen at receiver 

 Need to avoid such losses 

 

 Solution 

 Receiver tells transmitter how much space left 

 Transmitter chooses its congestion window accordingly 



TCP Flow Control: how it works 

(Suppose TCP receiver discards 
out-of-order segments) 

 spare room in buffer 
= RcvWindow 

= RcvBuffer-[LastByteRcvd - 

LastByteRead] 

 Rcvr advertises spare 
room by including value 
of RcvWindow in 
segments 

 Sender limits unACKed 
data to RcvWindow 

 guarantees receive buffer 
doesn’t overflow 



Chapter 3: Transport Layer Focus 

 Principles behind transport layer services: 

 Multiplexing, demultiplexing 

 Reliable data transfer 

 Congestion control 

 TCP slow start and CA 

 Flow control 

 TCP RTT and Timeout estimate 



Chapter 4: Network Layer 

 4. 1 Introduction 

 4.2 Virtual circuit and 
datagram networks 

 4.3 What’s inside a router 

 4.4 IP: Internet Protocol 
 Datagram format 

 IPv4 addressing 

 ICMP 

 IPv6 

 4.5 Routing algorithms 
 Link state 

 Distance Vector 

 Hierarchical routing 

 4.6 Routing in the Internet 
 RIP 

 OSPF 

 BGP 

 



Key Network-Layer Functions 

 forwarding: move 
packets from router’s 
input to appropriate 
router output 

 routing: determine 
route taken by packets 
from source to dest.  

 Routing algorithms 

 

analogy: 

 routing: process of 

planning trip from 

source to dest 

 forwarding: process of 

getting through actual 

traffic intersections 

 



1 

2 3 

0111 

value in arriving 

packet’s header 

routing algorithm 

local forwarding table 

header value output link 

0100 

0101 

0111 

1001 

3 

2 

2 

1 

Interplay between routing and forwarding 

routing algorithm determines 

end-end-path through network 

forwarding table determines 

local forwarding at this router 



4.1 introduction 

4.2 virtual circuit and 
datagram networks 

4.3 what’s inside a router 

4.4 IP: Internet Protocol 
 datagram format 

 IPv4 addressing 

 ICMP 

 IPv6 

4.5 routing algorithms 
 link state 

 distance vector 

 hierarchical routing 

4.6 routing in the Internet 
 RIP 

 OSPF 

 BGP 

4.7 broadcast and multicast 
routing 

 

Chapter 4: outline 



Two types of Network Architecture 

 Connection-Oriented and Connection-Less 

 

Virtual Circuit Switching 

 

Example: ATM, X.25 

Analogy: Telephone 

Datagram forwarding 

 

Example: IP networks 

Analogy: Postal service 



4.1 introduction 

4.2 virtual circuit and 
datagram networks 

4.3 what’s inside a router 

4.4 IP: Internet Protocol 
 datagram format 

 IPv4 addressing 

 ICMP 

 IPv6 

4.5 routing algorithms 
 link state 

 distance vector 

 hierarchical routing 

4.6 routing in the Internet 
 RIP 

 OSPF 

 BGP 

4.7 broadcast and multicast 
routing 

 

Chapter 4: outline 



The Internet network layer 

forwarding 

table 

host, router network layer functions: 

routing protocols 
• path selection 

• RIP, OSPF, BGP 

IP protocol 
• addressing conventions 

• datagram format 

• packet handling conventions 

ICMP protocol 
• error reporting 

• router “signaling” 

transport layer: TCP, UDP 

link layer 

physical layer 

network 

layer 



ver length 

32 bits 

data  

(variable length, 

typically a TCP  

or UDP segment) 

16-bit identifier 

header 

 checksum 

time to 

live 

32 bit source IP address 

head. 

len 

type of 

service 

flgs 
fragment 

 offset 
upper 

 layer  

protocol 

32 bit destination IP address 

options (if any) 

IP datagram format 
IP protocol version 

number 

header length 

 (bytes) 

upper layer protocol 

to deliver payload to 

total datagram 

length (bytes) 

“type” of data  
for 

fragmentation/ 

reassembly max number 

remaining hops 

(decremented at  

each router) 

e.g. timestamp, 

record route 

taken, specify 

list of routers  

to visit. 

how much overhead? 

 20 bytes of TCP 

 20 bytes of IP 

 = 40 bytes + app 
layer overhead 



IP fragmentation, reassembly 

 network links have MTU 
(max.transfer size) - largest 
possible link-level frame 

 different link types, 
different MTUs  

 large IP datagram divided 
(“fragmented”) within net 

 one datagram becomes 
several datagrams 

 “reassembled” only at 
final destination 

 IP header bits used to 
identify, order related 
fragments 

fragmentation:  

in: one large datagram 

out: 3 smaller datagrams 

reassembly 

…
 

…
 



ID 

=x 
offset 

=0 

fragflag 

=0 

length 

=4000 

ID 

=x 
offset 

=0 

fragflag 

=1 

length 

=1500 

ID 

=x 
offset 

=185 

fragflag 

=1 

length 

=1500 

ID 

=x 
offset 

=370 

fragflag 

=0 

length 

=1040 

one large datagram becomes 

several smaller datagrams 

example: 
 4000 byte datagram 

 MTU = 1500 bytes 

 

1480 bytes in  

data field 

offset = 

1480/8  

IP fragmentation, reassembly 



4.1 introduction 

4.2 virtual circuit and 
datagram networks 

4.3 what’s inside a router 

4.4 IP: Internet Protocol 
 datagram format 

 IPv4 addressing 

 ICMP 

 IPv6 

4.5 routing algorithms 
 link state 

 distance vector 

 hierarchical routing 

4.6 routing in the Internet 
 RIP 

 OSPF 

 BGP 

 

Chapter 4: outline 



IP Addressing: introduction 

 IP address: 32-bit 
identifier for host, 
router interface  

 interface: connection 
between host/router 
and physical link 
 router’s typically have 

multiple interfaces 

 host typically has one or 
two interfaces (e.g., 
wired Ethernet, wireless 
802.11) 

 IP addresses associated 
with each interface 

223.1.1.1 

223.1.1.2 

223.1.1.3 

223.1.1.4 223.1.2.9 

223.1.2.2 

223.1.2.1 

223.1.3.2 223.1.3.1 

223.1.3.27 

223.1.1.1 = 11011111 00000001 00000001 00000001 

223 1 1 1 



IP addressing: introduction 

Q: how are interfaces 
actually connected? 

223.1.1.1 

223.1.1.2 

223.1.1.3 

223.1.1.4 223.1.2.9 

223.1.2.2 

223.1.2.1 

223.1.3.2 223.1.3.1 

223.1.3.27 

A: wired Ethernet interfaces 

connected by Ethernet switches 

A: wireless WiFi interfaces 

connected by WiFi base station 

For now: don’t need to worry 

about how one interface is 

connected to another (with no 

intervening router)  



Subnets 

 IP address:  
 subnet part (high order 

bits) 

 host part (low order bits)  

 

 What’s a subnet ? 
 device interfaces with 

same subnet part of IP 
address 

 can physically reach each 
other without 
intervening router 

223.1.1.1 

223.1.1.2 

223.1.1.3 

223.1.1.4 223.1.2.9 

223.1.2.2 

223.1.2.1 

223.1.3.2 223.1.3.1 

223.1.3.27 

network consisting of 3 subnets 

subnet 



 

 
recipe 

 to determine the 
subnets, detach each 
interface from its 
host or router, 
creating islands of 
isolated networks 

 each isolated 
network is called a 
subnet 

subnet mask: /24 

Subnets 

223.1.1.0/24 
223.1.2.0/24 

223.1.3.0/24 

223.1.1.1 

223.1.1.3 

223.1.1.4 223.1.2.9 

223.1.3.2 
223.1.3.1 

subnet 

223.1.1.2 

223.1.3.27 
223.1.2.2 

223.1.2.1 



how many? 
223.1.1.1 

223.1.1.3 

223.1.1.4 

223.1.2.2 223.1.2.1 

223.1.2.6 

223.1.3.2 223.1.3.1 

223.1.3.27 

223.1.1.2 

223.1.7.0 

223.1.7.1 
223.1.8.0 223.1.8.1 

223.1.9.1 

223.1.9.2 

Subnets 



IP addressing: CIDR 

CIDR: Classless InterDomain Routing 
 subnet portion of address of arbitrary length 

 address format: a.b.c.d/x, where x is # bits in subnet 
portion of address 

11001000  00010111  00010000  00000000 

subnet 
part 

host 
part 

200.23.16.0/23 



IP addresses: how to get one? 

Q: How does a host get IP address? 

 

 hard-coded by system admin in a file 

 Windows: control-panel->network->configuration->tcp/ip-
>properties 

 UNIX: /etc/rc.config 

 

 DHCP: Dynamic Host Configuration Protocol: 
dynamically get address from as server 

 “plug-and-play”  

 

 



DHCP: Dynamic Host Configuration Protocol 

goal: allow host to dynamically obtain its IP address from network 
server when it joins network 

 can renew its lease on address in use 

 allows reuse of addresses (only hold address while 
connected/“on”) 

 support for mobile users who want to join network (more 
shortly) 

DHCP overview: 

 host broadcasts “DHCP discover” msg [optional] 

 DHCP server responds with “DHCP offer” msg [optional] 

 host requests IP address: “DHCP request” msg 

 DHCP server sends address: “DHCP ack” msg  



DHCP client-server scenario 

  

223.1.1.0/24 

223.1.2.0/24 

223.1.3.0/24 

223.1.1.1 

223.1.1.3 

223.1.1.4 223.1.2.9 

223.1.3.2 223.1.3.1 

223.1.1.2 

223.1.3.27 
223.1.2.2 

223.1.2.1 

DHCP 
server 

arriving DHCP 
client needs  
address in this 
network 



DHCP server: 223.1.2.5 arriving 
 client 

DHCP discover 

src : 0.0.0.0, 68      

dest.: 255.255.255.255,67 

yiaddr:    0.0.0.0 

transaction ID: 654 

DHCP offer 

src: 223.1.2.5, 67       

dest:  255.255.255.255, 68 

yiaddrr: 223.1.2.4 

transaction ID: 654 

lifetime: 3600 secs 
DHCP request 

src:  0.0.0.0, 68      

dest::  255.255.255.255, 67 

yiaddrr: 223.1.2.4 

transaction ID: 655 

lifetime: 3600 secs 

DHCP ACK 

src: 223.1.2.5, 67       

dest:  255.255.255.255, 68 

yiaddrr: 223.1.2.4 

transaction ID: 655 

lifetime: 3600 secs 

DHCP client-server scenario 



 

 

 

 

Network Address Translation 



NAT: Network Address Translation 

10.0.0.1 

10.0.0.2 

10.0.0.3 

10.0.0.4 

138.76.29.7 

local network 
(e.g., home network) 

10.0.0/24 

rest of 
Internet 

Datagrams with source or  
destination in this network 
have 10.0.0/24 address for  
source, destination (as usual) 

All datagrams leaving local 
network have same single source 

NAT IP address: 138.76.29.7, 
different source port numbers 



10.0.0.1 

10.0.0.2 

10.0.0.3 

S: 10.0.0.1, 3345 

D: 128.119.40.186, 80 

1 

10.0.0.4 

138.76.29.7 

1: host 10.0.0.1  
sends datagram to  
128.119.40.186, 80 

NAT translation table 

WAN side addr        LAN side addr 

138.76.29.7, 5001   10.0.0.1, 3345 

……                                         …… 

S: 128.119.40.186, 80  

D: 10.0.0.1, 3345 

 

4 

S: 138.76.29.7, 5001 

D: 128.119.40.186, 80 2 

2: NAT router 
changes datagram 
source addr from 
10.0.0.1, 3345 to 
138.76.29.7, 5001, 
updates table 

S: 128.119.40.186, 80  

D: 138.76.29.7, 5001 

 

3 

3: reply arrives 
 dest. address: 
 138.76.29.7, 5001 

4: NAT router 
changes datagram 
dest addr from 
138.76.29.7, 5001 to 10.0.0.1, 3345  

 

NAT: network address translation 



NAT traversal problem 

 client wants to connect to 
server with address 10.0.0.1 
 server address 10.0.0.1 local to 

LAN (client can’t use it as 
destination addr) 

 only one externally visible NATed 
address: 138.76.29.7 

 solution1: statically configure 
NAT to forward incoming 
connection requests at given 
port to server 
 e.g., (123.76.29.7, port 2500) 

always forwarded to 10.0.0.1 
port 25000 

10.0.0.1 

10.0.0.4 

NAT  
router 

138.76.29.7 

client 

? 



NAT traversal problem 

 solution 2: Universal Plug and 
Play (UPnP) Internet Gateway 
Device (IGD) Protocol.  Allows 
NATed host to: 
 learn public IP address 

(138.76.29.7) 
 add/remove port mappings 

(with lease times) 
 

i.e., automate static NAT port 
map configuration 

10.0.0.1 

NAT  
router 

IGD 



NAT traversal problem 

 solution 3: relaying (used in Skype) 

 NATed client establishes connection to relay 

 external client connects to relay 

 relay bridges packets between to connections 

 

138.76.29.7 

client 

1. connection to 
relay initiated 
by NATed host 

2. connection to 
relay initiated 
by client 

3. relaying  
established 

NAT  
router 

10.0.0.1 
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ICMP: internet control message protocol 

 used by hosts & routers to 
communicate network-level 
information 
 error reporting: unreachable 

host, network, port, protocol 

 echo request/reply (used by 
ping) 

 network-layer “above” IP: 
 ICMP msgs carried in IP 

datagrams 

 ICMP message: type, code 
plus first 8 bytes of IP 
datagram causing error 

Type  Code  description 

0        0         echo reply (ping) 

3        0         dest. network unreachable 

3        1         dest host unreachable 

3        2         dest protocol unreachable 

3        3         dest port unreachable 

3        6         dest network unknown 

3        7         dest host unknown 

4        0         source quench (congestion 

                     control - not used) 

8        0         echo request (ping) 

9        0         route advertisement 

10      0         router discovery 

11      0         TTL expired 

12      0         bad IP header 

 



Traceroute and ICMP 
 source sends series of UDP 

segments to dest 
 first set has TTL =1 

 second set has TTL=2, etc. 

 unlikely port number 

 when nth set of datagrams  
arrives to nth router: 
 router discards datagrams 

 and sends source ICMP 
messages (type 11, code 0) 

 ICMP messages includes name 
of router & IP address 

 when ICMP messages 
arrives, source records 
RTTs 

stopping criteria: 

 UDP segment eventually 
arrives at destination host 

 destination returns ICMP 
“port unreachable” 
message (type 3, code 3) 

 source stops 

3 probes 

3 probes 

3 probes 



IPv6: motivation 

 initial motivation: 32-bit address space soon to be 
completely allocated.   

 additional motivation: 

 header format helps speed processing/forwarding 

 header changes to facilitate QoS  

 

IPv6 datagram format:  

 fixed-length 40 byte header 

 no fragmentation allowed 



Network Layer 

IPv6 datagram format 

Priority/traffic class:  identify priority among datagrams in flow 

flow Label: identify datagrams in same “flow.”  

                    (concept of“flow” not well defined). 

next header: identify upper layer protocol for data  

data 

destination address 
(128 bits) 

source address 
(128 bits) 

payload len next hdr hop limit 

flow label pri ver 

32 bits 



Other changes from IPv4 

 checksum: removed entirely to reduce processing 
time at each hop 

 options: allowed, but outside of header, indicated 
by “Next Header” field 

 ICMPv6: new version of ICMP 

 additional message types, e.g. “Packet Too Big” 

 multicast group management functions 



Transition from IPv4 to IPv6 

 not all routers can be upgraded simultaneously 
 no “flag days” 
 how will network operate with mixed IPv4 and 

IPv6 routers?  

 tunneling: IPv6 datagram carried as payload in IPv4 
datagram among IPv4 routers 

IPv4 source, dest addr  

IPv4 header fields  

IPv4 datagram 

IPv6 datagram 

IPv4 payload  

UDP/TCP payload 

IPv6 source dest addr 

IPv6 header fields 



Tunneling 

physical view: 

IPv4 IPv4 

A B 

IPv6 IPv6 

E 

IPv6 IPv6 

F C D 

logical view: 

IPv4 tunnel  
connecting IPv6 routers 

E 

IPv6 IPv6 

F A B 

IPv6 IPv6 



flow: X 

src: A 

dest: F 

 

 

data 

A-to-B: 
IPv6 

Flow: X 

Src: A 

Dest: F 

 

 

data 

src:B 

dest: E 

B-to-C: IPv4 
IPv6 inside 

IPv4 

E-to-F: 
IPv6 

flow: X 

src: A 

dest: F 

 

 

data 

D-to-E: IPv4 
IPv6 inside 

IPv4 

Flow: X 

Src: A 

Dest: F 

 

 

data 

src:B 

dest: E 

physical view: 
A B 

IPv6 IPv6 

E 

IPv6 IPv6 

F C D 

logical view: 

IPv4 tunnel  
connecting IPv6 routers 

E 

IPv6 IPv6 

F A B 

IPv6 IPv6 

Tunneling 

IPv4 IPv4 
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Routing algorithm classification 
Q: global or decentralized 

information? 

global: 

 all routers have complete 
topology, link cost info 

 “link state” algorithms 

decentralized:  

 router knows physically-
connected neighbors, link costs 
to neighbors 

 iterative process of computation, 
exchange of info with neighbors 

 “distance vector” algorithms 

Q: static or dynamic? 

static:  

 routes change slowly over 
time 

dynamic:  

 routes change more 
quickly 

 periodic update 

 in response to link cost 
changes 



A Link-State Routing Algorithm 

Dijkstra’s algorithm 

 net topology, link costs 
known to all nodes 

 accomplished via “link state 
broadcast”  

 all nodes have same info 

 computes least cost paths 
from one node (‘source”) to 
all other nodes 
 gives forwarding table for that 

node 

 iterative: after k iterations, 
know least cost path to k 
dest.’s 

notation: 
 c(x,y): link cost from 

node x to y;  = ∞ if not 
direct neighbors 

 D(v): current value of 
cost of path from source to 
dest. v 

 p(v): predecessor node 
along path from source to 
v 

 N': set of nodes whose 
least cost path definitively 
known 

 



Dijsktra’s Algorithm 

1  Initialization:  

2    N' = {u}  

3    for all nodes v  

4      if v adjacent to u  

5          then D(v) = c(u,v)  

6      else D(v) = ∞  

7  

8   Loop  

9     find w not in N' such that D(w) is a minimum  

10    add w to N'  

11    update D(v) for all v adjacent to w and not in N' :  

12       D(v) = min( D(v), D(w) + c(w,v) )  

13    /* new cost to v is either old cost to v or known  

14     shortest path cost to w plus cost from w to v */  

15  until all nodes in N'  

Notation: 

 c(x,y): link cost from node x to y;  

= ∞ if not direct neighbors 

 D(v): current value of cost of path 

from source to dest. v 



w 3 

4 

v 

x 

u 

5 

3 
7 4 

y 

8 

z 
2 

7 

9 

Dijkstra’s algorithm: example 

Step 

 

N' 
D(v) 

p(v) 

0 

1 

2 

3 

4 

5 

D(w) 
p(w) 

D(x) 
p(x) 

D(y) 
p(y) 

D(z) 
p(z) 

u ∞  ∞  7,u 3,u 5,u 

uw ∞  11,w  6,w 5,u 

14,x  11,w  6,w uwx 

uwxv 14,x  10,v  
uwxvy 12,y  

notes: 
 construct shortest path tree by 

tracing predecessor nodes 

 ties can exist (can be broken 
arbitrarily) 

uwxvyz 



Dijkstra’s algorithm: another example 

Step 

0 

1 

2 

3 

4 

5 

N' 

u 

ux 

uxy 

uxyv 

uxyvw 

uxyvwz 

D(v),p(v) 

2,u 

2,u 

2,u 

D(w),p(w) 

5,u 

4,x 

3,y 

3,y 

D(x),p(x) 

1,u 

D(y),p(y) 
∞ 

2,x 

D(z),p(z) 

∞  
∞  

4,y 

4,y 

4,y 

u 

y x 

w v 

z 
2 

2 
1 

3 

1 

1 

2 

5 
3 

5 



Dijkstra’s algorithm: example (2)  

u 

y x 

w v 

z 

resulting shortest-path tree from u: 

v 

x 

y 

w 

z 

(u,v) 

(u,x) 

(u,x) 

(u,x) 

(u,x) 

destination link 

resulting forwarding table in u: 
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Distance vector algorithm  

Bellman-Ford equation (dynamic programming) 

 

let 

   dx(y) := cost of least-cost path from x to y 

then 

   dx(y) = min {c(x,v) + dv(y) } 

    

 

v 

cost to neighbor v 

min taken over all neighbors v of x 

cost from neighbor v to destination y 



Bellman-Ford example  

u 

y x 

w v 

z 
2 

2 
1 

3 

1 

1 

2 

5 
3 

5 
clearly, dv(z) = 5, dx(z) = 3, dw(z) = 3 

du(z) = min {c(u,v) + dv(z), 

                    c(u,x) + dx(z), 

                    c(u,w) + dw(z)} 

         = min {2 + 5, 

                    1 + 3, 

                    5 + 3}  = 4 

node achieving minimum is next 
hop in shortest path, used in forwarding table 

B-F equation says: 
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Hierarchical routing 

scale: with 600 million 
destinations: 

 can’t store all dest’s in 
routing tables! 

 routing table exchange 

would swamp links!  

 

 

administrative autonomy 

 internet = network of 
networks 

 each network admin may 
want to control routing in 
its own network 

our routing study thus far - idealization  

 all routers identical 

 network “flat” 

… not true in practice 



 aggregate routers into 
regions, “autonomous 
systems” (AS) 

 routers in same AS run 
same routing protocol 

 “intra-AS” routing 
protocol 

 routers in different AS 
can run different intra-AS 
routing protocol 

gateway router: 

 at “edge” of its own AS 

 has  link to router in 
another AS 

Hierarchical routing 



3b 

1d 

3a 

1c 
2a 

AS3 

AS1 

AS2 
1a 

2c 

2b 

1b 

Intra-AS 

Routing  

algorithm 

Inter-AS 

Routing  

algorithm 

Forwarding 

table 

3c 

Interconnected ASes 

 forwarding table  
configured by both intra- 
and inter-AS routing 
algorithm 

 intra-AS sets entries 
for internal dests 

 inter-AS & intra-AS 
sets entries for 
external dests  



learn from inter-AS  

protocol that subnet  

x is reachable via  

multiple gateways 

use routing info 

from intra-AS  

protocol to determine 

costs of least-cost  

paths to each 

of the gateways 

hot potato routing: 

choose the gateway 

that has the  

smallest least cost 

determine from 

forwarding table the  

interface I that leads  

to least-cost gateway.  

Enter (x,I) in  

forwarding table 

Example: choosing among multiple ASes 
 now suppose AS1 learns from inter-AS protocol that subnet x 

is reachable from AS3 and from AS2. 
 to configure forwarding table, router 1d must determine 

towards which gateway it should forward packets for dest x 
 this is also job of inter-AS routing protocol! 

 
 hot potato routing: send packet towards closest of two 

routers. 
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Intra-AS Routing 

 also known as interior gateway protocols (IGP) 

 most common intra-AS routing protocols: 

 RIP: Routing Information Protocol 

 OSPF: Open Shortest Path First 

 IGRP: Interior Gateway Routing Protocol (Cisco 
proprietary) 



Internet inter-AS routing: BGP 

 BGP (Border Gateway Protocol): the de facto 
inter-domain routing protocol 

 “glue that holds the Internet together” 

 BGP provides each AS a means to: 

 eBGP: obtain subnet reachability information from 
neighboring ASs. 

 iBGP: propagate reachability information to all AS-
internal routers. 

 determine “good” routes to other networks based on 
reachability information and policy. 

 allows subnet to advertise its existence to rest of 
Internet: “I am here” 



Routing in Wireless Mobile Networks 

 Imagine hundreds of hosts moving 

 Routing algorithm needs to cope up with varying 
wireless channel, error and node mobility and discovery 

Where’s 

RED guy 
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Chapter 4: Network Layer Focus 

Practice the Homework 2 and Quiz 3  



Tentative Final Exam Structure 

 Multiple Choice Questions                                   = 18 points 

 Chapter 3: (Reliable data transfer,           15+12 = 27 points 

TCP congestion control, flow control, & RTT estimation etc.) 

 Chapter 3: (TCP slow start,                                     = 15 points 
congestion avoidance etc.) 

 Chapter 4: (subnet, routing etc.)            10 + 20  = 30 points 

 Chapter 4: General Network Concept                   = 10 points 

 

 

 When:  Tuesday (5/19)  3:30pm – 5:30pm 
 Where: In Class 

          100 points 



Please take a few minutes to complete the online course 
evaluations.  
 
 
 
Thank you for taking IS 450/650. Enjoy your Summer!! 
 

Conclusion 


