
IS 450/IS 650–
Data Communications and Networks

 Course Review

Final Exam

 Nirmalya Roy

Department of Information Systems

University of Maryland Baltimore County

www.umbc.edu

Final Exam

 When: Tuesday (5/19) 3:30pm - 5:30pm
 Where: In Class

 Closed book, Closed notes
 Transport Layer (Chapter 3) and Network Layer

(Chapter 4)

 Materials for preparation:
 Lecture Slides
 Quiz 3 and Homework 2
 Textbook

 Computer Networking: A Top Down Approach

Course Overview

 Transport Layer (Chapter 3)

 Reliable Data Transfer

 Pipelined Reliable Data Transfer

 Go-Back-N (GBN)

 Selective Repeat (SR)

 TCP Congestion Control, Flow Control and RTT Estimation

 Network Layer (Chapter 4)

 Network layer services

 IPv4 addressing (subnet, DHCP etc.)

 Routing algorithms (link state, distance vector etc.)

Chapter 3 Outline

 3.1 Transport-layer
services

 3.2 Multiplexing and
demultiplexing

 3.3 Connectionless
transport: UDP

 3.4 Principles of reliable
data transfer

 3.5 Connection-oriented
transport: TCP
 segment structure

 reliable data transfer

 flow control

 connection management

 3.6 Principles of congestion
control

 3.7 TCP congestion control

UDP: User Datagram Protocol [RFC 768]

 “no frills,” “bare bones”
Internet transport protocol

 “best effort” service, UDP
segments may be:

 lost

 delivered out of order to
app

 connectionless:

 no handshaking between
UDP sender, receiver

 each UDP segment handled
independently of others

Why is there a UDP?

 no connection establishment
(which can add delay)

 simple: no connection state at
sender, receiver

 small segment header

 no congestion control: UDP
can blast away as fast as
desired

Chapter 3 outline

3.1 transport-layer
services

3.2 multiplexing and
demultiplexing

3.3 connectionless
transport: UDP

3.4 principles of reliable
data transfer

3.5 connection-oriented
transport: TCP

 segment structure

 reliable data transfer

 flow control

 connection management

3.6 principles of congestion
control

3.7 TCP congestion control

Principles of reliable data transfer

 important in application, transport, link layers

 top-10 list of important networking topics!

 characteristics of unreliable channel will determine
complexity of reliable data transfer protocol (rdt)

 characteristics of unreliable channel will determine
complexity of reliable data transfer protocol (rdt)

Principles of reliable data transfer

 important in application, transport, link layers

 top-10 list of important networking topics!

 characteristics of unreliable channel will determine
complexity of reliable data transfer protocol (rdt)

 important in application, transport, link layers

 top-10 list of important networking topics!

Principles of reliable data transfer

We’ll:

 incrementally develop sender, receiver sides of
reliable data transfer protocol (rdt)

 consider only unidirectional data transfer

 but control info will flow on both directions!

 use finite state machines (FSM) to specify sender,
receiver

state
1

state
2

event causing state transition

actions taken on state transition

state: when in this “state”
next state uniquely
determined by next

event
event

actions

Reliable data transfer: getting started

rdt1.0: reliable transfer over a reliable channel

 underlying channel perfectly reliable

 no bit errors

 no loss of packets

 separate FSMs for sender, receiver:

 sender sends data into underlying channel

 receiver reads data from underlying channel

Wait for

call from

above packet = make_pkt(data)

udt_send(packet)

rdt_send(data)

extract (packet,data)

deliver_data(data)

Wait for

call from

below

rdt_rcv(packet)

sender receiver

 underlying channel may flip bits in packet
 checksum to detect bit errors

 the question: how to recover from errors:
 acknowledgements (ACKs): receiver explicitly tells

sender that pkt received OK
 negative acknowledgements (NAKs): receiver explicitly

tells sender that pkt had errors
 sender retransmits pkt on receipt of NAK

 new mechanisms in rdt2.0 (beyond rdt1.0):
 error detection
 receiver feedback: control msgs (ACK,NAK) rcvr-

>sender

rdt2.0: channel with bit errors

How do humans recover from “errors”

during conversation?

rdt2.0 has a fatal flaw!

what happens if
ACK/NAK corrupted?

 sender doesn’t know
what happened at
receiver!

 can’t just retransmit:
possible duplicate

handling duplicates:

 sender retransmits
current pkt if ACK/NAK
corrupted

 sender adds sequence
number to each pkt

 receiver discards (doesnt
deliver up) duplicate pkt

stop and wait
sender sends one packet,
then waits for receiver
response

rdt3.0: channels with errors and loss

new assumption:
underlying channel can
also lose packets
(data, ACKs)
 checksum, seq. #,

ACKs, retransmissions
will be of help … but
not enough

approach: sender waits
“reasonable” amount
of time for ACK

 retransmits if no ACK
received in this time

 if pkt (or ACK) just delayed
(not lost):

 retransmission will be
duplicate, but seq. #’s
already handles this

 receiver must specify
seq # of pkt being
ACKed

 requires countdown timer

rdt3.0 sender
sndpkt = make_pkt(0, data, checksum)

udt_send(sndpkt)

start_timer

rdt_send(data)

Wait

for

ACK0

rdt_rcv(rcvpkt) &&

(corrupt(rcvpkt) ||

isACK(rcvpkt,1))

Wait for

call 1 from

above

sndpkt = make_pkt(1, data, checksum)

udt_send(sndpkt)

start_timer

rdt_send(data)

rdt_rcv(rcvpkt)

&& notcorrupt(rcvpkt)

&& isACK(rcvpkt,0)

rdt_rcv(rcvpkt) &&

(corrupt(rcvpkt) ||

isACK(rcvpkt,0))

rdt_rcv(rcvpkt)

&& notcorrupt(rcvpkt)

&& isACK(rcvpkt,1)

stop_timer

stop_timer

udt_send(sndpkt)

start_timer

timeout

udt_send(sndpkt)

start_timer

timeout

rdt_rcv(rcvpkt)

Wait for

call 0from

above

Wait

for

ACK1

L

rdt_rcv(rcvpkt)

L

L

L

Some transmission methods

 Reliable data transfer over a channel with Bit Errors
 Positive acknowledgement (ACK)

 Negative acknowledgement (NAK)

 ARQ (Automatic Repeat reQuest) protocols
 Error detection

 Receiver feedback

 Retransmission

 Stop & Wait

 Pipelined
 Go Back N

 Selective Repeat

Stop-and-wait operation

first packet bit transmitted, t = 0

sender receiver

RTT

last packet bit transmitted, t = L / R

first packet bit arrives

last packet bit arrives, send ACK

ACK arrives, send next

packet, t = RTT + L / R

U
sender

=
.008

30.008
= 0.00027

microsec
onds

L / R

RTT + L / R
=

Pipelined protocols

Pipelining: sender allows multiple, “in-flight”, yet-to-be-
acknowledged pkts
 range of sequence numbers must be increased

 buffering at sender and/or receiver

 Two generic forms of pipelined protocols: go-Back-N,
selective repeat

Pipelining: increased utilization

first packet bit transmitted, t = 0

sender receiver

RTT

last bit transmitted, t = L / R

first packet bit arrives

last packet bit arrives, send ACK

ACK arrives, send next

packet, t = RTT + L / R

last bit of 2nd packet arrives, send ACK

last bit of 3rd packet arrives, send ACK

U
sender

=
.024

30.008
= 0.0008

microsecon
ds

3 * L / R

RTT + L / R
=

Increase utilization

by a factor of 3!

Go-Back-N
Sender:
 k-bit seq # in pkt header

 “window” of up to N, consecutive unack’ed pkts allowed

 ACK(n): ACKs all pkts up to, including seq # n - “cumulative ACK”

 may receive duplicate ACKs

 timer for each in-flight pkt

 timeout(n): retransmit pkt n and all higher seq # pkts in window

 N referred to as the window size and GBN as a sliding-window protocol

 Why we limit N? (flow control, TCP congestion control)

GBN in
action

Selective Request

 Makes sense to transmit only the lost packets
 But this is true under what assumption ?

 GBN suffers from performance problems

 Window size and bandwidth-delay product are both large, many pkts in
pipeline

 Single pkt error cause GBN to retransmit a large # of pkts, many
unnecessarily

 Probability of channel error increases, the pipeline can become filled with
these unnecessary transmissions

 Can you say a case in which Go-BACK-N might be better

 GBN protocol allows the sender to potentially “fill the pipeline” with
packets

 Increase the channel utilization than stop-and-wait protocols

 SR protocols avoid unnecessary retransmissions

 Sender only retransmits pkts that are received in error at receiver
(lost/corrupted)

Selective Repeat (SR)

 SR receiver acknowledge a correctly received packet
whether or not it is in order

 Out-of-order pkts are buffered
 If any missing pkts (with lower seq #) are received, a batch of pkts

can be delivered in order to the upper layer

Selective repeat in action

Agenda

 Reliable Transport

 Stop-and-wait

 Pipelined

 Go back N

 Selective Request

 TCP

 Congestion Control

 Flow Control

TCP: Overview RFCs: 793, 1122, 1323, 2018, 2581

 full duplex data:
 bi-directional data flow in

same connection

 MSS: maximum segment
size

 connection-oriented:
 handshaking (exchange of

control msgs) init’s sender,
receiver state before data
exchange

 flow controlled:
 sender will not overwhelm

receiver

 point-to-point:
 one sender, one receiver

 reliable, in-order byte
steam:
 no “message boundaries”

 pipelined:
 TCP congestion and flow

control set window size

 send & receive buffers

socket

door

TCP

send buffer

TCP

receive buffer

socket

door

segment

application

writes data
application

reads data

TCP segment structure

source port # dest port #

32 bits

application

data

(variable length)

sequence number

acknowledgement number

Receive window

Urg data pnter checksum

F S R P A U
head

len

not

used

Options (variable length)

URG: urgent data

(generally not used)

ACK: ACK #

valid

PSH: push data now

(generally not used)

RST, SYN, FIN:

connection estab

(setup, teardown

commands)

bytes

rcvr willing

to accept

counting

by bytes

of data

(not segments!)

Internet

checksum

(as in UDP)

TCP: Connection-Oriented Transport

 TCP has 3 main components

 Reliable transmission

 Congestion Control

 Flow Control

Congstion Control

TCP Congestion Control

 Problem Definition

 How much data should I pump into the network to ensure
 Intermediate router queues not filling up

 Fairness achieved among multiple TCP flows

 Why is this problem difficult?

 TCP cannot have information about the network

 Only TCP receiver can give some feedbacks

 Approach: sender limit the rate of sending traffic as a
function of perceived network congestion

 How does a TCP sender limit the rate?

 How does TCP sender perceive that there is congestion?

 What algorithm should the sender use?

TCP Congestion Control: details

 sender limits transmission:

 cwnd is dynamic, function
of perceived network
congestion

TCP sending rate:

 roughly: send cwnd
bytes, wait RTT for
ACKS, then send
more bytes

last byte
ACKed sent, not-

yet ACKed
(“in-flight”)

last byte
sent

cwnd

LastByteSent-

 LastByteAcked
< cwnd

sender sequence number space

rate ~ ~
cwnd

RTT
bytes/sec

TCP Congestion Control Algorithm

 A loss segment implies congestion

 TCP sender’s rate should be decreased

 An ACK indicates that network is delivering the
sender’s segment to the receiver

 TCP sender’s rate can be increased

 Bandwidth probing

 TCP sender increases transmission rate to probe when
congestion onset begins

 backs off from that rate and then begins probing to see if
congestion rate has changed

 Jacobson 1988

 Slow start; congestion avoidance; fast recovery

TCP Slow Start

 When connection begins,
increase rate exponentially
until first loss event:
 double CongWin every RTT

 done by incrementing
CongWin for every ACK
received

 Summary: initial rate is
slow but ramps up
exponentially fast

 When this exponential
growth rate should end?

Host A

R
T

T

Host B

time

TCP Slow Start (more)

 If there is a loss event (i.e., congestion) indicated by a
timeout
 TCP sender sets the value of cwnd to 1

 Begin the slow start process anew

 Sets the value of 2nd state variable ssthresh (slow start
threshold) to cwnd/2

 Slow start ends when cwnd = ssthresh

 TCP transitions into congestion avoidance (CA) mode
 TCP increases cwnd more cautiously when in CA mode

 Final end of slow start happens if 3 duplicate ACKs are detected

 TCP performs a fast retransmit

 Enters a fast recovery state

TCP Slow Start (more)

 Congestion avoidance state
 value of cwnd is approx. half its value when congestion was

last detected

 Rather than doubling the value of cwnd every RTT TCP
adopts a more conservative approach

 Increase the value of cwnd by just a single MSS

 TCP performs a fast retransmit

 Enters a fast recovery state

TCP: detecting, reacting to loss

 loss indicated by timeout:

 cwnd set to 1 MSS

 window then grows exponentially (as in slow start) to
threshold, then grows linearly

 loss indicated by 3 duplicate ACKs: TCP RENO (newer version)

 dup ACKs indicate network capable of delivering some
segments

 cwnd is cut in half window then grows linearly

 TCP Tahoe (earlier version) always sets cwnd to 1
(timeout or 3 duplicate acks)

Q: When should the
exponential
increase switch
to linear?

A: When cwnd gets
to 1/2 of its value
before timeout.

Implementation:
 variable ssthresh

 on loss event,
ssthresh is set to 1/2
of cwnd just before loss
event

TCP: switching from slow start to CA

Next Step

 We talked about the
congestion window

 Setting up the congestion
window size

 What about RTT and
Retransmission
Timeout?

 How to determine the
value of RTT/RTO?

sender receiver

rcv pkt1

rcv pkt0

send ack0

send ack1

send ack0

rcv ack0

send pkt0

send pkt1

rcv ack1

send pkt0

rcv pkt0
pkt0

pkt0

ack1

ack0

ack0

(b) packet loss

pkt1
X

loss

pkt1
timeout

resend pkt1

Timeout -- function of RTT

Q: how to set TCP timeout
value?

 longer than RTT

 but RTT varies

 How much larger?

 too short: premature timeout

 unnecessary
retransmissions

 too long: slow reaction to
segment loss

 How should the RTT be
estimated in first place?

 Should a timer be associated
with each and every
unacknowledged segment?
[TCP work by Jacobson 1988]

Q: how to estimate RTT?
 SampleRTT: measured time from

segment transmission until ACK
receipt

 One of the transmitted but currently
unacknowledged segment

 Vary due to congestion in the routers
and varying load on the end systems

 SampleRTT will vary, want
estimated RTT “smoother”

 average several recent
measurements, not just current
SampleRTT

TCP Round Trip Time and Timeout

EstimatedRTT = (1-)*EstimatedRTT + *SampleRTT

 Exponential weighted moving average (EWMA)

 influence of past sample decreases exponentially fast
 typical value: = 0.125

Example RTT estimation:
RTT: gaia.cs.umass.edu to fantasia.eurecom.fr

100

150

200

250

300

350

1 8 15 22 29 36 43 50 57 64 71 78 85 92 99 106

time (seconnds)

R
T

T
 (

m
il

li
se

co
n

d
s)

SampleRTT Estimated RTT

TCP Round Trip Time and Timeout

Setting the timeout

 EstimatedRTT plus “safety margin”

 large variation in EstimatedRTT -> larger safety margin

 first estimate of how much SampleRTT deviates from EstimatedRTT:

TimeoutInterval = EstimatedRTT + 4*DevRTT

DevRTT = (1-)*DevRTT + *|SampleRTT-EstimatedRTT|

(typically, = 0.25)

 Then set timeout interval:

 Interval should be greater than or equal to EstimatedRTT, shouldn’t be
too large

 Unnecessary retransmissions would be sent or TCP would not quickly
retransmit

 EstimatedRTT + Margin

TCP: Connection-Oriented Transport

 TCP has 3 main components

 Reliable transmission

 Congestion Control

 Flow Control

TCP Flow Control

 Problem Definition

 The receiver has limits on buffer

 If many nodes transmitting to same receiver
 Losses may happen at receiver

 Need to avoid such losses

 Solution

 Receiver tells transmitter how much space left

 Transmitter chooses its congestion window accordingly

TCP Flow Control: how it works

(Suppose TCP receiver discards
out-of-order segments)

 spare room in buffer
= RcvWindow

= RcvBuffer-[LastByteRcvd -

LastByteRead]

 Rcvr advertises spare
room by including value
of RcvWindow in
segments

 Sender limits unACKed
data to RcvWindow

 guarantees receive buffer
doesn’t overflow

Chapter 3: Transport Layer Focus

 Principles behind transport layer services:

 Multiplexing, demultiplexing

 Reliable data transfer

 Congestion control

 TCP slow start and CA

 Flow control

 TCP RTT and Timeout estimate

Chapter 4: Network Layer

 4. 1 Introduction

 4.2 Virtual circuit and
datagram networks

 4.3 What’s inside a router

 4.4 IP: Internet Protocol
 Datagram format

 IPv4 addressing

 ICMP

 IPv6

 4.5 Routing algorithms
 Link state

 Distance Vector

 Hierarchical routing

 4.6 Routing in the Internet
 RIP

 OSPF

 BGP

Key Network-Layer Functions

 forwarding: move
packets from router’s
input to appropriate
router output

 routing: determine
route taken by packets
from source to dest.

 Routing algorithms

analogy:

 routing: process of

planning trip from

source to dest

 forwarding: process of

getting through actual

traffic intersections

1

2 3

0111

value in arriving

packet’s header

routing algorithm

local forwarding table

header value output link

0100

0101

0111

1001

3

2

2

1

Interplay between routing and forwarding

routing algorithm determines

end-end-path through network

forwarding table determines

local forwarding at this router

4.1 introduction

4.2 virtual circuit and
datagram networks

4.3 what’s inside a router

4.4 IP: Internet Protocol
 datagram format

 IPv4 addressing

 ICMP

 IPv6

4.5 routing algorithms
 link state

 distance vector

 hierarchical routing

4.6 routing in the Internet
 RIP

 OSPF

 BGP

4.7 broadcast and multicast
routing

Chapter 4: outline

Two types of Network Architecture

 Connection-Oriented and Connection-Less

Virtual Circuit Switching

Example: ATM, X.25

Analogy: Telephone

Datagram forwarding

Example: IP networks

Analogy: Postal service

4.1 introduction

4.2 virtual circuit and
datagram networks

4.3 what’s inside a router

4.4 IP: Internet Protocol
 datagram format

 IPv4 addressing

 ICMP

 IPv6

4.5 routing algorithms
 link state

 distance vector

 hierarchical routing

4.6 routing in the Internet
 RIP

 OSPF

 BGP

4.7 broadcast and multicast
routing

Chapter 4: outline

The Internet network layer

forwarding

table

host, router network layer functions:

routing protocols
• path selection

• RIP, OSPF, BGP

IP protocol
• addressing conventions

• datagram format

• packet handling conventions

ICMP protocol
• error reporting

• router “signaling”

transport layer: TCP, UDP

link layer

physical layer

network

layer

ver length

32 bits

data

(variable length,

typically a TCP

or UDP segment)

16-bit identifier

header

 checksum

time to

live

32 bit source IP address

head.

len

type of

service

flgs
fragment

 offset
upper

 layer

protocol

32 bit destination IP address

options (if any)

IP datagram format
IP protocol version

number

header length

 (bytes)

upper layer protocol

to deliver payload to

total datagram

length (bytes)

“type” of data
for

fragmentation/

reassembly max number

remaining hops

(decremented at

each router)

e.g. timestamp,

record route

taken, specify

list of routers

to visit.

how much overhead?

 20 bytes of TCP

 20 bytes of IP

 = 40 bytes + app
layer overhead

IP fragmentation, reassembly

 network links have MTU
(max.transfer size) - largest
possible link-level frame

 different link types,
different MTUs

 large IP datagram divided
(“fragmented”) within net

 one datagram becomes
several datagrams

 “reassembled” only at
final destination

 IP header bits used to
identify, order related
fragments

fragmentation:

in: one large datagram

out: 3 smaller datagrams

reassembly

…

…

ID

=x
offset

=0

fragflag

=0

length

=4000

ID

=x
offset

=0

fragflag

=1

length

=1500

ID

=x
offset

=185

fragflag

=1

length

=1500

ID

=x
offset

=370

fragflag

=0

length

=1040

one large datagram becomes

several smaller datagrams

example:
 4000 byte datagram

 MTU = 1500 bytes

1480 bytes in

data field

offset =

1480/8

IP fragmentation, reassembly

4.1 introduction

4.2 virtual circuit and
datagram networks

4.3 what’s inside a router

4.4 IP: Internet Protocol
 datagram format

 IPv4 addressing

 ICMP

 IPv6

4.5 routing algorithms
 link state

 distance vector

 hierarchical routing

4.6 routing in the Internet
 RIP

 OSPF

 BGP

Chapter 4: outline

IP Addressing: introduction

 IP address: 32-bit
identifier for host,
router interface

 interface: connection
between host/router
and physical link
 router’s typically have

multiple interfaces

 host typically has one or
two interfaces (e.g.,
wired Ethernet, wireless
802.11)

 IP addresses associated
with each interface

223.1.1.1

223.1.1.2

223.1.1.3

223.1.1.4 223.1.2.9

223.1.2.2

223.1.2.1

223.1.3.2 223.1.3.1

223.1.3.27

223.1.1.1 = 11011111 00000001 00000001 00000001

223 1 1 1

IP addressing: introduction

Q: how are interfaces
actually connected?

223.1.1.1

223.1.1.2

223.1.1.3

223.1.1.4 223.1.2.9

223.1.2.2

223.1.2.1

223.1.3.2 223.1.3.1

223.1.3.27

A: wired Ethernet interfaces

connected by Ethernet switches

A: wireless WiFi interfaces

connected by WiFi base station

For now: don’t need to worry

about how one interface is

connected to another (with no

intervening router)

Subnets

 IP address:
 subnet part (high order

bits)

 host part (low order bits)

 What’s a subnet ?
 device interfaces with

same subnet part of IP
address

 can physically reach each
other without
intervening router

223.1.1.1

223.1.1.2

223.1.1.3

223.1.1.4 223.1.2.9

223.1.2.2

223.1.2.1

223.1.3.2 223.1.3.1

223.1.3.27

network consisting of 3 subnets

subnet

recipe

 to determine the
subnets, detach each
interface from its
host or router,
creating islands of
isolated networks

 each isolated
network is called a
subnet

subnet mask: /24

Subnets

223.1.1.0/24
223.1.2.0/24

223.1.3.0/24

223.1.1.1

223.1.1.3

223.1.1.4 223.1.2.9

223.1.3.2
223.1.3.1

subnet

223.1.1.2

223.1.3.27
223.1.2.2

223.1.2.1

how many?
223.1.1.1

223.1.1.3

223.1.1.4

223.1.2.2 223.1.2.1

223.1.2.6

223.1.3.2 223.1.3.1

223.1.3.27

223.1.1.2

223.1.7.0

223.1.7.1
223.1.8.0 223.1.8.1

223.1.9.1

223.1.9.2

Subnets

IP addressing: CIDR

CIDR: Classless InterDomain Routing
 subnet portion of address of arbitrary length

 address format: a.b.c.d/x, where x is # bits in subnet
portion of address

11001000 00010111 00010000 00000000

subnet
part

host
part

200.23.16.0/23

IP addresses: how to get one?

Q: How does a host get IP address?

 hard-coded by system admin in a file

 Windows: control-panel->network->configuration->tcp/ip-
>properties

 UNIX: /etc/rc.config

 DHCP: Dynamic Host Configuration Protocol:
dynamically get address from as server

 “plug-and-play”

DHCP: Dynamic Host Configuration Protocol

goal: allow host to dynamically obtain its IP address from network
server when it joins network

 can renew its lease on address in use

 allows reuse of addresses (only hold address while
connected/“on”)

 support for mobile users who want to join network (more
shortly)

DHCP overview:

 host broadcasts “DHCP discover” msg [optional]

 DHCP server responds with “DHCP offer” msg [optional]

 host requests IP address: “DHCP request” msg

 DHCP server sends address: “DHCP ack” msg

DHCP client-server scenario

223.1.1.0/24

223.1.2.0/24

223.1.3.0/24

223.1.1.1

223.1.1.3

223.1.1.4 223.1.2.9

223.1.3.2 223.1.3.1

223.1.1.2

223.1.3.27
223.1.2.2

223.1.2.1

DHCP
server

arriving DHCP
client needs
address in this
network

DHCP server: 223.1.2.5 arriving
 client

DHCP discover

src : 0.0.0.0, 68

dest.: 255.255.255.255,67

yiaddr: 0.0.0.0

transaction ID: 654

DHCP offer

src: 223.1.2.5, 67

dest: 255.255.255.255, 68

yiaddrr: 223.1.2.4

transaction ID: 654

lifetime: 3600 secs
DHCP request

src: 0.0.0.0, 68

dest:: 255.255.255.255, 67

yiaddrr: 223.1.2.4

transaction ID: 655

lifetime: 3600 secs

DHCP ACK

src: 223.1.2.5, 67

dest: 255.255.255.255, 68

yiaddrr: 223.1.2.4

transaction ID: 655

lifetime: 3600 secs

DHCP client-server scenario

Network Address Translation

NAT: Network Address Translation

10.0.0.1

10.0.0.2

10.0.0.3

10.0.0.4

138.76.29.7

local network
(e.g., home network)

10.0.0/24

rest of
Internet

Datagrams with source or
destination in this network
have 10.0.0/24 address for
source, destination (as usual)

All datagrams leaving local
network have same single source

NAT IP address: 138.76.29.7,
different source port numbers

10.0.0.1

10.0.0.2

10.0.0.3

S: 10.0.0.1, 3345

D: 128.119.40.186, 80

1

10.0.0.4

138.76.29.7

1: host 10.0.0.1
sends datagram to
128.119.40.186, 80

NAT translation table

WAN side addr LAN side addr

138.76.29.7, 5001 10.0.0.1, 3345

…… ……

S: 128.119.40.186, 80

D: 10.0.0.1, 3345

4

S: 138.76.29.7, 5001

D: 128.119.40.186, 80 2

2: NAT router
changes datagram
source addr from
10.0.0.1, 3345 to
138.76.29.7, 5001,
updates table

S: 128.119.40.186, 80

D: 138.76.29.7, 5001

3

3: reply arrives
 dest. address:
 138.76.29.7, 5001

4: NAT router
changes datagram
dest addr from
138.76.29.7, 5001 to 10.0.0.1, 3345

NAT: network address translation

NAT traversal problem

 client wants to connect to
server with address 10.0.0.1
 server address 10.0.0.1 local to

LAN (client can’t use it as
destination addr)

 only one externally visible NATed
address: 138.76.29.7

 solution1: statically configure
NAT to forward incoming
connection requests at given
port to server
 e.g., (123.76.29.7, port 2500)

always forwarded to 10.0.0.1
port 25000

10.0.0.1

10.0.0.4

NAT
router

138.76.29.7

client

?

NAT traversal problem

 solution 2: Universal Plug and
Play (UPnP) Internet Gateway
Device (IGD) Protocol. Allows
NATed host to:
 learn public IP address

(138.76.29.7)
 add/remove port mappings

(with lease times)

i.e., automate static NAT port
map configuration

10.0.0.1

NAT
router

IGD

NAT traversal problem

 solution 3: relaying (used in Skype)

 NATed client establishes connection to relay

 external client connects to relay

 relay bridges packets between to connections

138.76.29.7

client

1. connection to
relay initiated
by NATed host

2. connection to
relay initiated
by client

3. relaying
established

NAT
router

10.0.0.1

4.1 introduction

4.2 virtual circuit and
datagram networks

4.3 what’s inside a router

4.4 IP: Internet Protocol
 datagram format

 IPv4 addressing

 ICMP

 IPv6

4.5 routing algorithms
 link state

 distance vector

 hierarchical routing

4.6 routing in the Internet
 RIP

 OSPF

 BGP

4.7 broadcast and multicast
routing

Chapter 4: outline

ICMP: internet control message protocol

 used by hosts & routers to
communicate network-level
information
 error reporting: unreachable

host, network, port, protocol

 echo request/reply (used by
ping)

 network-layer “above” IP:
 ICMP msgs carried in IP

datagrams

 ICMP message: type, code
plus first 8 bytes of IP
datagram causing error

Type Code description

0 0 echo reply (ping)

3 0 dest. network unreachable

3 1 dest host unreachable

3 2 dest protocol unreachable

3 3 dest port unreachable

3 6 dest network unknown

3 7 dest host unknown

4 0 source quench (congestion

 control - not used)

8 0 echo request (ping)

9 0 route advertisement

10 0 router discovery

11 0 TTL expired

12 0 bad IP header

Traceroute and ICMP
 source sends series of UDP

segments to dest
 first set has TTL =1

 second set has TTL=2, etc.

 unlikely port number

 when nth set of datagrams
arrives to nth router:
 router discards datagrams

 and sends source ICMP
messages (type 11, code 0)

 ICMP messages includes name
of router & IP address

 when ICMP messages
arrives, source records
RTTs

stopping criteria:

 UDP segment eventually
arrives at destination host

 destination returns ICMP
“port unreachable”
message (type 3, code 3)

 source stops

3 probes

3 probes

3 probes

IPv6: motivation

 initial motivation: 32-bit address space soon to be
completely allocated.

 additional motivation:

 header format helps speed processing/forwarding

 header changes to facilitate QoS

IPv6 datagram format:

 fixed-length 40 byte header

 no fragmentation allowed

Network Layer

IPv6 datagram format

Priority/traffic class: identify priority among datagrams in flow

flow Label: identify datagrams in same “flow.”

 (concept of“flow” not well defined).

next header: identify upper layer protocol for data

data

destination address
(128 bits)

source address
(128 bits)

payload len next hdr hop limit

flow label pri ver

32 bits

Other changes from IPv4

 checksum: removed entirely to reduce processing
time at each hop

 options: allowed, but outside of header, indicated
by “Next Header” field

 ICMPv6: new version of ICMP

 additional message types, e.g. “Packet Too Big”

 multicast group management functions

Transition from IPv4 to IPv6

 not all routers can be upgraded simultaneously
 no “flag days”
 how will network operate with mixed IPv4 and

IPv6 routers?

 tunneling: IPv6 datagram carried as payload in IPv4
datagram among IPv4 routers

IPv4 source, dest addr

IPv4 header fields

IPv4 datagram

IPv6 datagram

IPv4 payload

UDP/TCP payload

IPv6 source dest addr

IPv6 header fields

Tunneling

physical view:

IPv4 IPv4

A B

IPv6 IPv6

E

IPv6 IPv6

F C D

logical view:

IPv4 tunnel
connecting IPv6 routers

E

IPv6 IPv6

F A B

IPv6 IPv6

flow: X

src: A

dest: F

data

A-to-B:
IPv6

Flow: X

Src: A

Dest: F

data

src:B

dest: E

B-to-C: IPv4
IPv6 inside

IPv4

E-to-F:
IPv6

flow: X

src: A

dest: F

data

D-to-E: IPv4
IPv6 inside

IPv4

Flow: X

Src: A

Dest: F

data

src:B

dest: E

physical view:
A B

IPv6 IPv6

E

IPv6 IPv6

F C D

logical view:

IPv4 tunnel
connecting IPv6 routers

E

IPv6 IPv6

F A B

IPv6 IPv6

Tunneling

IPv4 IPv4

4.1 introduction

4.2 virtual circuit and
datagram networks

4.3 what’s inside a router

4.4 IP: Internet Protocol
 datagram format

 IPv4 addressing

 ICMP

 IPv6

4.5 routing algorithms
 link state

 distance vector

 hierarchical routing

4.6 routing in the Internet
 RIP

 OSPF

 BGP

Chapter 4: outline

Routing algorithm classification
Q: global or decentralized

information?

global:

 all routers have complete
topology, link cost info

 “link state” algorithms

decentralized:

 router knows physically-
connected neighbors, link costs
to neighbors

 iterative process of computation,
exchange of info with neighbors

 “distance vector” algorithms

Q: static or dynamic?

static:

 routes change slowly over
time

dynamic:

 routes change more
quickly

 periodic update

 in response to link cost
changes

A Link-State Routing Algorithm

Dijkstra’s algorithm

 net topology, link costs
known to all nodes

 accomplished via “link state
broadcast”

 all nodes have same info

 computes least cost paths
from one node (‘source”) to
all other nodes
 gives forwarding table for that

node

 iterative: after k iterations,
know least cost path to k
dest.’s

notation:
 c(x,y): link cost from

node x to y; = ∞ if not
direct neighbors

 D(v): current value of
cost of path from source to
dest. v

 p(v): predecessor node
along path from source to
v

 N': set of nodes whose
least cost path definitively
known

Dijsktra’s Algorithm

1 Initialization:

2 N' = {u}

3 for all nodes v

4 if v adjacent to u

5 then D(v) = c(u,v)

6 else D(v) = ∞

7

8 Loop

9 find w not in N' such that D(w) is a minimum

10 add w to N'

11 update D(v) for all v adjacent to w and not in N' :

12 D(v) = min(D(v), D(w) + c(w,v))

13 /* new cost to v is either old cost to v or known

14 shortest path cost to w plus cost from w to v */

15 until all nodes in N'

Notation:

 c(x,y): link cost from node x to y;

= ∞ if not direct neighbors

 D(v): current value of cost of path

from source to dest. v

w 3

4

v

x

u

5

3
7 4

y

8

z
2

7

9

Dijkstra’s algorithm: example

Step

N'
D(v)

p(v)

0

1

2

3

4

5

D(w)
p(w)

D(x)
p(x)

D(y)
p(y)

D(z)
p(z)

u ∞ ∞ 7,u 3,u 5,u

uw ∞ 11,w 6,w 5,u

14,x 11,w 6,w uwx

uwxv 14,x 10,v
uwxvy 12,y

notes:
 construct shortest path tree by

tracing predecessor nodes

 ties can exist (can be broken
arbitrarily)

uwxvyz

Dijkstra’s algorithm: another example

Step

0

1

2

3

4

5

N'

u

ux

uxy

uxyv

uxyvw

uxyvwz

D(v),p(v)

2,u

2,u

2,u

D(w),p(w)

5,u

4,x

3,y

3,y

D(x),p(x)

1,u

D(y),p(y)
∞

2,x

D(z),p(z)

∞
∞

4,y

4,y

4,y

u

y x

w v

z
2

2
1

3

1

1

2

5
3

5

Dijkstra’s algorithm: example (2)

u

y x

w v

z

resulting shortest-path tree from u:

v

x

y

w

z

(u,v)

(u,x)

(u,x)

(u,x)

(u,x)

destination link

resulting forwarding table in u:

4.1 introduction

4.2 virtual circuit and
datagram networks

4.3 what’s inside a router

4.4 IP: Internet Protocol
 datagram format

 IPv4 addressing

 ICMP

 IPv6

4.5 routing algorithms
 link state

 distance vector

 hierarchical routing

4.6 routing in the Internet
 RIP

 OSPF

 BGP

4.7 broadcast and multicast
routing

Chapter 4: outline

Distance vector algorithm

Bellman-Ford equation (dynamic programming)

let

 dx(y) := cost of least-cost path from x to y

then

 dx(y) = min {c(x,v) + dv(y) }

v

cost to neighbor v

min taken over all neighbors v of x

cost from neighbor v to destination y

Bellman-Ford example

u

y x

w v

z
2

2
1

3

1

1

2

5
3

5
clearly, dv(z) = 5, dx(z) = 3, dw(z) = 3

du(z) = min {c(u,v) + dv(z),

 c(u,x) + dx(z),

 c(u,w) + dw(z)}

 = min {2 + 5,

 1 + 3,

 5 + 3} = 4

node achieving minimum is next
hop in shortest path, used in forwarding table

B-F equation says:

x y z

x

y

z

0 2 7

∞ ∞ ∞

∞ ∞ ∞

fr
o

m

cost to

fr
o

m

fr
o

m

x y z

x

y

z

0

x y z

x

y

z

∞ ∞

∞ ∞ ∞

cost to

x y z

x

y

z
∞ ∞ ∞

7 1 0

cost to

∞

2 0 1

∞ ∞ ∞

2 0 1

7 1 0

time

x z
1 2

7

y

node x
table

Dx(y) = min{c(x,y) + Dy(y), c(x,z) + Dz(y)}

 = min{2+0 , 7+1} = 2

Dx(z) = min{c(x,y) +

 Dy(z), c(x,z) + Dz(z)}

= min{2+1 , 7+0} = 3

3 2

node y
table

node z
table

cost to

fr
o

m

x y z

x

y

z

0 2 3

fr
o

m

cost to

x y z

x

y

z

0 2 7

fr
o

m

cost to

x y z

x

y

z

0 2 3

fr
o

m

cost to

x y z

x

y

z

0 2 3

fr
o

m

cost to
x y z

x

y

z

0 2 7

fr
o

m

cost to

2 0 1

7 1 0

2 0 1

3 1 0

2 0 1

3 1 0

2 0 1

3 1 0

2 0 1

3 1 0

time

x y z

x

y

z

0 2 7

∞ ∞ ∞

∞ ∞ ∞

fr
o

m

cost to

fr
o

m

fr
o

m

x y z

x

y

z

0

x y z

x

y

z

∞ ∞

∞ ∞ ∞

cost to

x y z

x

y

z
∞ ∞ ∞

7 1 0

cost to

∞

2 0 1

∞ ∞ ∞

2 0 1

7 1 0

time

x z
1 2

7

y

node x
table

Dx(y) = min{c(x,y) + Dy(y), c(x,z) + Dz(y)}

 = min{2+0 , 7+1} = 2

Dx(z) = min{c(x,y) +

 Dy(z), c(x,z) + Dz(z)}

= min{2+1 , 7+0} = 3

3 2

node y
table

node z
table

cost to

fr
o

m

4.1 introduction

4.2 virtual circuit and
datagram networks

4.3 what’s inside a router

4.4 IP: Internet Protocol
 datagram format

 IPv4 addressing

 ICMP

 IPv6

4.5 routing algorithms
 link state

 distance vector

 hierarchical routing

4.6 routing in the Internet
 RIP

 OSPF

 BGP

4.7 broadcast and multicast
routing

Chapter 4: outline

Hierarchical routing

scale: with 600 million
destinations:

 can’t store all dest’s in
routing tables!

 routing table exchange

would swamp links!

administrative autonomy

 internet = network of
networks

 each network admin may
want to control routing in
its own network

our routing study thus far - idealization

 all routers identical

 network “flat”

… not true in practice

 aggregate routers into
regions, “autonomous
systems” (AS)

 routers in same AS run
same routing protocol

 “intra-AS” routing
protocol

 routers in different AS
can run different intra-AS
routing protocol

gateway router:

 at “edge” of its own AS

 has link to router in
another AS

Hierarchical routing

3b

1d

3a

1c
2a

AS3

AS1

AS2
1a

2c

2b

1b

Intra-AS

Routing

algorithm

Inter-AS

Routing

algorithm

Forwarding

table

3c

Interconnected ASes

 forwarding table
configured by both intra-
and inter-AS routing
algorithm

 intra-AS sets entries
for internal dests

 inter-AS & intra-AS
sets entries for
external dests

learn from inter-AS

protocol that subnet

x is reachable via

multiple gateways

use routing info

from intra-AS

protocol to determine

costs of least-cost

paths to each

of the gateways

hot potato routing:

choose the gateway

that has the

smallest least cost

determine from

forwarding table the

interface I that leads

to least-cost gateway.

Enter (x,I) in

forwarding table

Example: choosing among multiple ASes
 now suppose AS1 learns from inter-AS protocol that subnet x

is reachable from AS3 and from AS2.
 to configure forwarding table, router 1d must determine

towards which gateway it should forward packets for dest x
 this is also job of inter-AS routing protocol!

 hot potato routing: send packet towards closest of two

routers.

4.1 introduction

4.2 virtual circuit and
datagram networks

4.3 what’s inside a router

4.4 IP: Internet Protocol
 datagram format

 IPv4 addressing

 ICMP

 IPv6

4.5 routing algorithms
 link state

 distance vector

 hierarchical routing

4.6 routing in the Internet
 RIP

 OSPF

 BGP

4.7 broadcast and multicast
routing

Chapter 4: outline

Intra-AS Routing

 also known as interior gateway protocols (IGP)

 most common intra-AS routing protocols:

 RIP: Routing Information Protocol

 OSPF: Open Shortest Path First

 IGRP: Interior Gateway Routing Protocol (Cisco
proprietary)

Internet inter-AS routing: BGP

 BGP (Border Gateway Protocol): the de facto
inter-domain routing protocol

 “glue that holds the Internet together”

 BGP provides each AS a means to:

 eBGP: obtain subnet reachability information from
neighboring ASs.

 iBGP: propagate reachability information to all AS-
internal routers.

 determine “good” routes to other networks based on
reachability information and policy.

 allows subnet to advertise its existence to rest of
Internet: “I am here”

Routing in Wireless Mobile Networks

 Imagine hundreds of hosts moving

 Routing algorithm needs to cope up with varying
wireless channel, error and node mobility and discovery

Where’s

RED guy

4.1 introduction

4.2 virtual circuit and
datagram networks

4.3 what’s inside a router

4.4 IP: Internet Protocol
 datagram format

 IPv4 addressing

 ICMP

 IPv6

4.5 routing algorithms
 link state, distance vector,

hierarchical routing

4.6 routing in the Internet
 RIP, OSPF, BGP

Chapter 4: Network Layer Focus

Practice the Homework 2 and Quiz 3

Tentative Final Exam Structure

 Multiple Choice Questions = 18 points

 Chapter 3: (Reliable data transfer, 15+12 = 27 points

TCP congestion control, flow control, & RTT estimation etc.)

 Chapter 3: (TCP slow start, = 15 points
congestion avoidance etc.)

 Chapter 4: (subnet, routing etc.) 10 + 20 = 30 points

 Chapter 4: General Network Concept = 10 points

 When: Tuesday (5/19) 3:30pm – 5:30pm
 Where: In Class

 100 points

Please take a few minutes to complete the online course
evaluations.

Thank you for taking IS 450/650. Enjoy your Summer!!

Conclusion

