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Abstract

In an influential paper, Edelman (2004) argues that, compared to the situations in which all members

of a legislative assembly are elected from single-member districts or all members are elected at-large,

the indirect (Banzhaf) voting power of individual citizens can be increased by an electoral scheme

that mixes district and at-large representation.  Edelman further shows that this power is maximized

when the number of members elected at large is equal to the square root of the total assembly size.

An explicit and key assumption in Edelman’s analysis is that voters casts separate and independent

votes for district and at-large representation. However, if we stay within the standard voting power

framework based on binary outcomes, voters never have reason to cast differing votes at the two

levels.  On the other hand, if elections have multifaceted outcomes that might justify casting

differing votes, standard voting power analysis based on the Banzhaf measure does not straight-

forwardly apply.  In any event, Edelman’s approach certainly does not apply to situations in which

each citizen casts a single vote that counts (the same way) at both the district and at-large level, as

exemplified by the Modified District Plan and the National Bonus Plan variations on the U.S.

Electoral College.  The major part of this paper is devoted to calculating individual indirect voting

power under these plans.  The analysis employs large-scale simulations of Bernoulli (random voting)

elections. 

Paul H. Edelman, “Voting Power and At-Large Representation,” Mathematical Social Sciences, 47/2

(2004). 

I thank Dan Felsenthal, Moshe Machover, and especially Claus Beisbart for exceptionally helpful

comments and suggestions on earlier related work.  I hope that this paper adequately responds to

their comments but I must note that none of them has yet had a opportunity chance to see version.
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1   If the number of voters n is even (e.g., n = 100), the interpretation of a decisive vote differs somewhat

according to whether the voting context is parliamentary or electoral.  In a parliamentary body, a tie vote typically defeats

a motion, so voter i decisive in any voting combination in which 50 other voters  vote “yes” and 49 vote “no,” as the

motion passes or fails depending on whether i votes “yes” or “no.”  However, in elections between two candidates (our

present concern), the voting rule is typically symmetric between the candidates, so a tie outcome might be decided by

the flip of a coin.  In this event, a voter i is “half decisive” in any voting combination in which 50 other voters vote for

A and 49 for B (A wins if i votes for A and each candidate wins with .5 probability if i votes for B) and also in any

voting combination in which 49 other voters vote for A and 50 for B.  The upshot is that voter i’s total Banzhaf score

(and voting power) is the same under either interpretation.  Thus we can (and will) speak loosely “the probability of a

tie vote” even when the number of voters is even.  More obviously, we can (and will) speak interchangeably between

“the probability of voter i breaking what would otherwise be a tie vote” and  “the probability of a tie vote” when the

number of voters is large.

VOTING POWER WITH DISTRICT PLUS AT-LARGE REPRESENTATION

As a warm-up exercise, let us consider the simplest case in which nine voters are partitioned

into three districts.  Elections are held under four distinct voting rules, each of which is symmetric

with respect to both voters and two candidates A and B.  With the U.S. Electoral College in mind,

we sometimes call first-tier votes “popular votes” and second-tier votes “electoral votes.”  These are

the four voting rules:

(1) Pure District System:  there is l electoral vote for each district, and the candidate

winning a majority of electoral votes (2 out of 3) is elected;

(2) Small At-Large Bonus System: there is 1 electoral vote for each district plus 1 at-large

electoral vote, and the candidate winning a majority electoral votes (3 out 4) is

elected (ties may occur in the second tier);

(3) Large At-Large Bonus System: there is 1 electoral vote for each district plus a bloc

of 2 at-large electoral votes, and the candidate winning a majority of electoral votes

(3 out 5) is elected; and

(4) Pure At-Large Vote System: there are 4 or more at-large electoral votes, so the

candidate winning a majority of the popular votes (5 out of 9) is elected.

We consider things from the point of view of a focal voter i in District 1, who confronts 28

= 256 distinct combinations of votes by the other eight voters.  We want to determine, for each

voting rule,  in how many of the 256 combinations voter i is decisive, in the sense that i’s vote tips

the election outcome for one way or the other.1  The number of such combinations is voter i’s

Banzhaf score, and the number of such combinations divided by 256 is voter i’s (absolute) Banzhaf

voting power, in the two-tier voting game.  If each distinct combination is equally likely (being

generated by the Bernoulli model in which everyone votes randomly, i.e., as if independently flipping

fair coins), voter i’s Banzhaf power is equal to the probability that i casts a vote that is doubly
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2
    However, with only nine voters, the Large At-Large Bonus System is effectively equivalent to the National

Popular Vote system, because the candidate who wins the at-large vote must win at least one district and thus 3 out of

5 electoral votes.

3    In the Edelman setup, any district vote profile nay occur with any popular vote split and, in particular, a

candidate can win the at-large vote without carrying any district.  

4   In Edelman’s setup, 44 districts plus 7 at-large votes maximizes individual voting power, since 7 is the

integer closest to the square root of the total number of 51 electoral votes.

decisive, i.e., the individual vote is decisive in i’s district and/or at-large and the district vote and/or

the at-large bloc is decisive in the second tier.

Table 1 lists all 256 possible district vote profiles, shows the number of distinct voting

combinations giving rise to each profile, indicates for each whether voter i’s vote is decisive under

each of the four rules, and reports voter i’s Banzhaf score and voting power for each rule.  We see

that Banzhaf voting power increases as the weight of the at-large component increases.2  The bottom

of the table shows Banzhaf voting power defined in the manner of Edelman (2004), on the

assumption that voters cast separate and independent votes at the district and at-large levels.  In the

Edelman setup, individual voting power is maximized with a mixture of district and at-large electoral

votes such that the at-large component is approximately the square root of the total number of

electoral votes.  However, the voting game in Edelman’s setup is not an ordinary simple voting

game, and his voting power scores cannot be derived directly from Table 1.3

Table 2 is derived from Table 1 and has two types of entries in each cell.  Table 2 crosstabu-

lates the 256 voting combinations with respect to whether the vote in voter i’s district is tied, thereby

making i’s vote decisive within the district (column variable), and whether the at-large vote is tied,

thereby making i’s vote decisive with respect to the at-large vote (row variable).  Each cell is called

a contingency, and the lower number in each cell indicates number of voting combinations giving

rise to each contingency.  The contingencies themselves pertain to characteristics of the first-tier vote

only.  However, the four top numbers in each cell pertain to the second-tier voting rules and indicate

the number of combinations in which i’s vote is doubly decisive vote, with a separate number for

each of the four voting rules. 

The numbers in Table 2 were determined by consulting Table 1, and Table 1 in turn was easy

enough to construct.  But if the number of voters expands even slightly, it becomes impossible to

replicate Table 1 (for example, with 25 voters the number of possible combinations facing vote i is

224 = 16,777,216), so some less direct method for enumerating (or estimating) Banzhaf scores and

voting power values must be devised.  The rest of this note is devoted to outlining such a method,

which we illustrate by means of an example in which there are n =100,035 voters uniformly

partitioned into k = 45 districts, each with a single electoral vote and with a bloc of 6 additional

electoral votes elected at-large.4  

We note two relevant baselines.  Given 51 districts (with 1961 voters in each) and no at-large

seats and using the standard approximation o&2&/ &B&n  with n = 1961 for the probability of a tie vote
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5  Taking the sum of the voting powers associated with each of the voter’s (district and at-large) votes may

appear to double-count those voting combinations in Contingency 1 in which both of i’s two votes are doubly decisive,

but at the same time it  misses voting combinations in Contingency 1 in which neither vote by itself is doubly decisive

but the two votes together are, and it turns out that these combinations exactly balance out (Beisbart, 2007). 

in a district, individual voting power within a district is .0180178.  Using Leech’s Voting Power

Algorithms (or any similar facility), the voting power of each district in the second tier is .112275.

Thus the individual two-tier voting power (the probability of double decisiveness) is .0180178 ×

.112275 = .00202295.  At the other extreme, with 25 or fewer districts (i.e., direct popular vote),

individual two-tier voting power is o&2&/ &B&n  with n = 100,035 or .00252269. 

We begin with Table 3A, set up in the same manner as Table 2 and initially pertaining to

first-tier votes only.  Since the actual number of voting combinations is impossibly large, it displays

proportions of combinations associated with each contingency or, equivalently under the Bernoulli

model, the probability that each contingency will arise. 

We first calculate the probability that the popular vote is tied, which gives us the total in the

first row.  As noted just above, this probability is about .00252269.  Using the same approximation

with n = 100,035/45 = 2223,  we calculate the probability that the vote in i’s district is tied to be

.0169227, which gives us the first column total.  Subtraction from 1.000000 gives us the totals in the

second row and second column (Table 3A).

So far as Edelman-style calculations are concerned, we are close to done.  If district and at-

large votes are separate and independent, we can calculate the probabilities of contingencies simply

by multiplying the corresponding row and column probabilities, as shown in Table 3B.  But, given

Edelman’s assumptions, we need not be concerned with the interior cells at all. We need look only

at the totals for the first row and first column and then take account of voting at the second tier.

Second-tier voting is given by the voting rule 46(26:6,1, . . . ,1) — that is, a weighted voting game

with 46 players (45 districts plus the at-large bloc), a quota of 26 (a bare majority of the total of 51

electoral votes), and voting weights of 6 for the at-large bloc and 1 for each district in which each

voting combination occurs with equal probability.  Leech’s Voting Power Algorithms facility)

produces .628702 and .080083 as the voting power for the at-large bloc and each district

respectively.  The voting power of voter i through district representation is his probability of being

decisive within his district times the probability that is district is decisive in the second tier, i.e.,

.0169227 × .080083 =  .0013552, and i’s voting power through at-large representation is his

probability of being decisive in the popular vote times the probability that the at-large bloc is district

is decisive in the second tier, i.e., .00252227 × .628702  = .0015860.  Within Edelman’s setup, the

overall voting power of each voter is simply the sum of these probabilities, i.e., .0029412 (Table

3C).5   Note that this is greater than voting power under direct popular election, i.e., .0025227.  Chart

1 shows Edelman-style voting power for all magnitudes of at-large representation.

If, in contrast to the Edelman setup, each voter has a single vote that counts the same way for

both district and at-large representation, the resulting voting game is an ordinary simple voting game,
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6   See Felsenthal and Machover (1998), pp. 58-59. 

and individual two-tier voting power cannot exceed the .0025227 level resulting from direct

popular(Pure At-Large) election.6   However, voting power calculations become far more complex.

We first return to Table 3B and observe that, in the single-vote setup, the marginal probabi-

lities are the same.  However, the fact that voters cast the same vote for both district and at-large

representation induces some correlation between the vote in any district and the at-large vote, so the

probability that both votes are tied is greater than in the Edelman setup.  

We can directly calculate the conditional probability that the at-large vote is tied given that

the district vote is tied.  Given that the vote in i’s district is tied, the overall at-large vote is tied if

and only if there is also a tie in the residual at-large vote after the votes cast in voter i’s district are

removed.  The probability of this event is given by the standard approximation o&2&/ &B&n , where n

is now 100,035 !2223 = 97812, and is equal to .0025512 (Table 4A).  We can now derive the

unconditional probability that both types of ties occur simultaneously by multiplying this conditional

probability by the probability that the district vote is tied in the first place, i.e., .0025512 × .0167366

= .0000432.  With this piece of the puzzle in place, the probabilities of the other contingencies are

also determined (Table 4B).  Comparing Tables 4B and 3B, we observe that the probabilities of the

contingencies differ only minutely, so the substantially lower overall voting power arising from this

setup relative to Edelman’s results almost entirely from the workings of second-tier voting.

In any event, voter i is decisive in the two-tier voting process only if the at-large and district

votes are both tied (Contingency 1), the at-large vote only is tied (Contingency 2), or the district vote

only is tied (Contingency 3).  Having determined the probabilities of these contingencies, our next

— and much more difficult — task is to determine, given each of these contingencies, the probability

that voter i’s vote is decisive in the second tier as well. 

First, let’s form some general expectations.  Contingency 1, being the conjunction of two

already unlikely circumstances, is extraordinarily unlikely occur; but, if it does occur, voter i  is very

likely to be doubly decisive.  Voter i is doubly decisive if and only if neither candidate has won a

majority of 26 electoral votes from the 44 other districts — put otherwise, if each candidate has won

between 19 and 25 districts.  By breaking a tie in both his district and at-large vote, voter i is tipping

7 electoral votes one way or the other and thereby gives one or other candidate the 26 electoral votes

required for election.  Given the Bernoulli model, the electoral votes of the other 44 districts are

likely to be quite evenly divided, so it likely that neither candidate has won 26 districts.  

At this point, it may be tempting to note that the second tier voting game is 45(26:7,1,...,1)

and that the Banzhaf voting power of the at-large plus one district bloc of 7 votes is .708785, and

from this to conclude that voter i’s probability of double decisiveness through Contingency 1 is

therefore .0000432 × .708785 = .0000306.  However, to interpret the Banzhaf voting power of the

at-large plus one district bloc calculated in this manner as the probability of second-tier decisiveness

is to assume that all second-tier voting combinations are equally likely and, in particular, are

independent of votes at the district level (as they are in the Edelman setup).  But, given that the

district and at-large votes are the same vote counting the same way, this assumption is not justified.
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Contingency 2 is much more likely to occur than Contingency 1, while voter i’s probability

of double decisiveness is only slightly less.  Voter i is now doubly decisive if and only if neither

candidate has won a majority of 26 electoral votes from all 45 districts — put otherwise, if each

candidate has won between 20 and 25 districts.  By breaking an at-large vote tie, voter i is tipping

6 electoral votes one way or the other and thereby gives one or other candidate the 26 electoral votes

required for election. Again, given the Bernoulli model, the electoral votes of the 45 districts are

likely to be quite evenly divided, so it quite likely that neither candidate has won 26 districts.  

At this point, it may again be tempting to note that the second tier voting game is

46(26:6,1,...,1) and that the Banzhaf voting power of the at-large bloc is .628702, and from this to

conclude that voter i’s probability of double decisiveness through Contingency B is therefore

.0024800 × .628702 = .0015592.  But again this assumes that all second-tier voting combinations

are equally likely, and again this assumption is not justified.

Contingency 3 is still more likely to occur than Contingency 2, but voter i is far less likely

to be doubly decisive in this contingency.  Voter i is doubly decisive if and only if neither candidate

has won a majority of 26 electoral votes from the other 44 districts and the at-large bloc of 6 votes,

i.e., in the event that there is a overall 25-25 electoral vote tie.  Such a tie results if and only if one

candidate has carried 25 districts, while the other candidate has carried 18 districts and the at-large

vote.  The probability of such an event is small for three reasons:

(1) an exact tie in the second-tier electoral vote tie is required, because i is tipping only

a single electoral vote; 

(2) the split in district electoral votes must be unequal in a degree that depends on the

number of at-large seats (25 to 19 with 6 at-large seats) in order to create a tie in

overall electoral votes, and such an unequal split is less likely than an equal split,

since Bernoulli elections always produce 50-50 expectations; and 

(3) this rather unlikely 25-19 split in favor of one candidate in terms of district electoral

votes must come about in the face of a popular vote majority in favor of the other

candidate.   

The last point implies that, in Contingency 3, voter i is doubly decisive only if i’s vote can

bring about the kind of election reversal (or “reversal of winners,” “wrong winner,” “election

conflict,” “referendum paradox,” etc.) in which the candidate who wins with respect to district (but

excluding at-large) electoral votes at the same time loses with respect to the overall at-large (popular)

vote.  It is characteristic of districted election systems such as U.S. Presidential elections and U.K.

general elections that such election reversals may occur, but they are generally thought to be quite

unlikely unless the (at-large/popular vote) election is very close.  However, we must bear in mind

that almost all large-scale Bernoulli elections are extremely close.  Indeed, if district and at-large

votes are cast separately and independently in the Edelman manner, it is evident that 50% of all

Bernoulli elections will entail election reversals.  This is shown in Chart 2, which is based on a

sample of 30,000 simulated elections in which the at-large vote was generated independently of the

district vote.  In contrast, if the popular vote is the district vote summed over all districts, a
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7   Large-scale simulations run by Feix et al. (2004) found that, given Bernoulli (or “Impartial Culture”)

elections with 20 or more districts, election reversals occur in about 20.5% of all voting combinations.  In Chart 3,

election reversals occur 20.4% of the time.  It is also clear that, in contrast to the Edelman setup, the probability of

reversals declines as the election outcomes become even slightly lopsided.  

8
   Each of the 45 districts has 2223 voters, a number selected so that both district and at-large vote ties may

occur before focal voter i (in District 1) casts his vote and so that no ties occur after i has voted.  The simulations, which

are generated by SPSS syntax files, operate at the level of the district: the vote for candidate A in each district is a

number drawn randomly from a normal distribution with a mean of 2223/2 = 1111.5 and a standard deviation of

o .&2&5&&× 2&2&2&3& and then rounded to the nearest integer.

substantial correlation is induced between district and at-large votes, which considerably reduces the

incidence of election reversals.  This is shown in Chart 3, which is based on the same simulated

elections but with the at-large vote being the sum of the district votes.7

Having formed expectations about the probability of double decisiveness in each contin-

gency, we must now make actual calculations. While it may be possible to proceed analytically, I

have found the obstacles to be formidable and have instead proceeded on the basis of large-scale

simulations.  For the present case with 45 districts and 6 at-large seat, I have generated four samples

of 300,000 Bernoulli elections, for a total of 1.2 million cases.8

The next question is how to use the results of these simulations to estimate the relevant

probabilities.  The most direct approach is to simply produce the crosstabulation depicted in Tables

2-4.  Table 4C shows the absolute frequencies resulting from these simulations.  The number in the

lower part of each cell is the number of times that contingency arose.  The number in the upper part

of each cell is the number of times voter i’s was doubly decisive in that contingency. Overall, voter

i was doubly decisive in 2970 elections out of 1,200,000.  Thus the  estimated a priori voting power

of voter i (and every other voter as well, given the overall symmetry) is 2970/1,200,000 or .002475.

Our confidence in this estimate is reinforced by comparing Table 4D, in which all absolute

frequencies in Table 4C are converted into proportions (and estimated probabilities), with Table 4B.

It is evident that the simulation data closely matches the expected probabilities of each contingency

calculated earlier.

A second approach is to replace the estimated probabilities of each contingency in the lower

part of each cell in Table 4D with the known probabilities displayed in Table 4B.  In this case, the

numbers are so similar that this substituion makes essentially no difference.  (Voter i’ estimated

voting power becomes .002488.)  

A third approach is suggested if we examine the frequency distributions underlying Table 4C.

Chart 4 shows the frequency distribution of districts won by Candidate A in the 51 elections in which

both the district and at-large votes are tied.  Voter i is doubly decisive provided that the number of

districts won by either candidate lies in the range of 19-25.  This was true in 49 elections out of the

51 elections, giving voter i a .960785 probability of double decisiveness in this contingency.  But

it evident that another sample of 1.2 million Bernoulli elections (including about 50 belonging to

Contingency 1) could produce a rather different statistic.  Given the existing sample, a more reliable
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estimate of voter i’s probability of double decisiveness can be derived by supposing that the

distribution of districts won be Candidate A is normally distributed with a known mean of 22 (i.e.,

one half of the 44 districts other than voter i’s), rather that the sample statistic of 22.294118, and

with a standard deviation of 2.032674.  (From this point of view, the main purpose of the simulation

is to provide an estimate of this standard deviation.)  The estimated proportion of times voter i is

doubly decisive is therefore equal the proportion of the area under a normal curve that lies within

3.5/2.032674 = 1.72187 standard deviations from the mean, which is .914907.  This suggests that

the direct result of the simulation of .960785 is too high.

In like manner, Chart 5 shows the frequency distribution of districts won by Candidate A in

the contingency that the at-large vote only is tied.  The actual distribution closely matches a normal

with a mean of 22.5 (i.e., one half of all the 45 districts).  Given the much large sample of elections

in Contingency 2, it is unsurprising therefore that using the normal curve approach to estimating

voter i’s double decisiveness produces almost the same result  (.859592) as the sample statistic itself

(.862838).

Chart 6 shows the frequency distribution of districts won by Candidate A in the contingency

that the district vote only is tied.  Since the distribution is clearly bimodal (which results from the

fact that the at-large vote is not tied as in Charts 4 and 5 and one or other candidate has won the

block of 6 at-large votes) and not normal, we clearly cannot use the normal curve approach.

Moreover, Contingency 3 is by far the most likely of the three contingencies that allow voter i to be

doubly decisive, so the sample statistic (367/20,167 = .01819805) is itself quite reliable.

Putting this altogether, using the normal curve approach to estimate probabilities of double

decisiveness in Contingencies 1 and 2 and the sample statistic in Contingency 3 and the known

probabilities for the contingencies themselves, we get an estimate of voter i’s voting power of

.002478, compared with .002475 using sample statistics only and  .002488 using the sample statistics

for probabilities of decisiveness in conjunction with the known probabilities for the contingencies

themselves.  In sum we can be pretty confident that the true value of voter i’s voting power is a bit

under .0025, putting it slightly but pretty clearly below the value of .002523 that results from direct

popular vote.   This of contrasts of the Edelman value of .0029412 that results when voters cast

separate and independent votes at the district and at-large levels.

Comparing Charts 4-6 with the Charts 7-9 that result in the Edelman setup makes evident

how the Edelman setup produces a greater probability of double decisiveness.  We see that each

contingency occurs with essentially the same probability in the two setups (as we saw theoretically

in the calculations displayed in Tables 3B and 4B).  And in the first two contingencies, the voter is

actually less likely to be doubly decisive in the Edelman setup as the spread in districts won by either

candidate is substantially larger.  This results from correlation between popular votes won and

number of districts won that results when each voter casts a single vote that counts twice (Chart 3)

rather that two separate and independent votes (Chart 2).  But this effect is more than wiped out in

Contingency 3, where two setups result in quite different distributions of electoral votes won.  In the

single-vote setup, the distribution is strikingly bimodal (the distance between the modes depending

on the number of at-large electoral votes relative to the total) because, as a candidate wins more
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districts, he is more likely to win the at-large vote as well, whereas in the Edelman setup no such

correlation exists.  Given the parameters we are working with (6 at-large electoral votes out of 51),

the Edelman setup produces a distribution that is unimodal but, relative to a normal curve, slightly

“squashed” in the center.  If the relative magnitude of the at-large component were increased, the

“squashing” effect would be increased and would in due course produce bimodality, but it would

always be substantially less than in the single-vote setup with the same at-large component.  Thus,

unless at-large component is wholly controlling (e.g., 26 electoral votes out of 51), the Edelman

setup makes a even split of total electoral votes far more likely than does the single-vote setup and

thereby greatly enhances the probability of double decisiveness in Contingency 3, which in turn is

by far the probable contingency that (in either setup) allows double decisiveness.

I have duplicated the same kinds of simulations, but with fewer than 1.2 million elections,

for other odd values of the at-large component within a fixed total of 51 electoral votes.  The results

are displayed in Chart 10.  Simulations were run in blocks of 300,000 elections, and the voting

power estimates are displayed individually (along with the means) for each at-large magnitude.  It

is evident that even blocks of this size produce considerable sampling error, but the general pattern

of the relationship between the magnitude of the at-large component and individual power is very

clear and in sharp contrast with the pattern of the same relationship in the Edelman setup (Chart 1).

To this point, we have considered only voting systems with uniform districts — that is, such

that all districts have the same number of voters and electoral votes.  But the most obvious

application of this kind of analysis is to variants of the U.S. Electoral College —  in particular, the

National Bonus Plan and the Modified District Plan (already used by Maine and Nebraska) —  in

which the districts (i.e., the states) are far from uniform.  Using estimating procedures generally

similar (but necessarily more burdensome and with samples of 256,000 Bernoulli elections for  each

magnitude of the national bonus), to those outlined above for the uniform case, Chart 11 displays

individual voting power in each state as the magnitude of the at-large component increases.

Sampling error probably accounts for the minor anomalies in the chart, but again the overall pattern

is clear enough. Chart 11 may be contrasted with Chart 12, which is based on the Edelman setup

(and, being based on essentially exact calculations, is free of anomalies).
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All Possible Vote Profiles (Bipartitions) Confronting a Focal Voter i in District 1, 

Given a Total of Nine Voters Uniformly Partitioned into Three Districts

Number of Times Voter i is Decisive (i’s Bz Score)

Pop.

Vote
District Vote Profile n* DV DV + 1 AL DV + 2 AL PV (all AL)

8-0 (2-0)  (3-0)  (3-0) 1 0 0 0 0

Total 1 0 0 0 0

7-1 (1-1)  (3-0)  (3-0) 2 0 0 0 0

(2-0)  (2-1)  (3-0) 3 0 0 0 0

(2-0)  (3-0) (2-1) 3 0 0 0 0

Total 8 0 0 0 0

6-2 (0-2)   (3-0)   (3-0) 1 0 0 0 0

(1-1)  (2-1)   (3-0) 6 0 0 0 0

(1-1)   (3-0)   (2-1) 6 0 0 0 0

(2-0)   (3-0)   (1-2) 3 0 0 0 0

(2-0)   (2-1)   (2-1) 9 0 0 0 0

(2-0)   (1-2)   (3-0) 3 0 0 0 0

Total 28 0 0 0 0

5-3 (0-2)   (3-0)   (2-1) 3 0 0 0 0

(0-2)   (2-1)   (3-0) 3 0 0 0 0

(1-1)   (3-0)   (1-2) 6 6 3** 0 0

(1-1)   (2-1)   (2-1) 18 0 0 0 0

(1-1)   (1-2)   (3-0) 6 6 3** 0 0

(2-0)   (3-0)   (0-3) 1 0 0 0 0

(2-0)   (2-1)   (1-2) 9 0 0 0 0

(2-0)   (1-2)   (2-1) 9 0 0 0 0

(2-0)   (0-3)   (3-0) 1 0 0 0 0
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Total 56 0 6** 0 0

4-4 (0-2)   (3-0)   (1-2) 3 0 1.5** 3 3

(0-2)   (2-1)   (1-2) 9 0 4.5** 9 9

(0-2)   (1-2)   (3-0) 3 0 1.5** 3 3

(1-1)   (3-0)   (0-3) 2 2 2 2 2

(1-1)   (2-1)   (1-2) 18 18 18 18 18

(1-1)   (1-2)   (2-1) 18 18 18 18 18

(1-1)   (0-3)   (3-0) 2 2 2 2 2

(2-0)   (2-1)  (0-3) 3 0 1.5** 3 3

(2-0)   (1-2)   (1-2) 9 0 4.5** 9 9

(2-0)   (0-3)   (2-1) 3 0 1.5* 3 3

Total 70 40 55 70 70

3-5 Dual of 5-3 56 12 6 0 0

2-6 Dual of 6-2 28 0 0 0 0

1-7 Dual of 7-1 8 0 0 0 0

0-8 Dual of 8-0 1 0 0 0 0

 Total [Bz Score] 256 64 67 70 70

Bz Power .25 .26172 .27344 .27344

Edelman Bz Power*** .25 .29004 .33008 .27244

* n is the number of distinct voter combinations giving rise to the specified district vote profile.

**     In these profiles, Bz awards voter i  “half credit” as i’s vote is decisive with respect to whether a particular candidate wins or

there is a tie between the two candidates.  (Under the other voting rules, ties cannot occur.)

                                                Prob. i decisive         Prob. district             Prob. i decisive             Prob at-large
*** Edelman Bz Power  =                             ×                                 +                               ×                             

                                        in district            decisive in Tier 2             at-large                 decisive in Tier 2

      AL = 1:                                .5                 ×          .375               +        .27344             ×          .375                 =  .29004

       AL = 2:                                .5                 ×           .25                +        .27344             ×            .7                   =  .33008

TABLE 1
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DV Tied DV Not Tied Total

PV Tied

40 / 40 / 40 / 40

40

0 / 15 / 30 / 30 

30

40 / 55 / 70 / 70

70

PV Not Tied

24 / 12 / 0 / 0 

88

0 / 0 / 0 / 0

98

24 / 12 / 0 / 0

186

Total

64 / 52 / 40 / 40

128

0 / 15 / 30 / 30 

128

64 / 67 / 70 / 70

256

All District / 1 A-L / 2 A-L / All AL

TABLE 2

DV Tied DV Not Tied Total

PV Tied
      

      Contingency 1 Contingency 2
.0025227

PV Not Tied Contingency 3 Contingency 4

.9974773

Total

.0169227 .9830773 1.000000

TABLE 3A
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DV Tied DV Not Tied Total

PV Tied

.0000427 .0024800 .0025227

PV Not Tied

.0168800 .9805973 .9974773

Total

.0169227 .9830773 1.0000000

TABLE 3B

DV Tied DV Not Tied Total

PV Tied

.0000427 .0024800

× .628702 = .0015860

.0025227

PV Not Tied

.0168800 .9805973 .9974773

Total

× .080083 = .0013552

 

.0169227 .9830773

 .0029412

1.0000000

TABLE 3C
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DV Tied DV Not Tied Total

PV Tied

.0025512

„

.0000432 .0025227

PV Not Tied

.9974773

Total

.0169227 .9830773 1.0000000

TABLE 4A

DV Tied DV Not Tied Total

PV Tied

.0000432 .0024795 .0025227

PV Not Tied

.0168795 .9805978 .9974773

Total

.0169227 .9830773 1.0000000

TABLE 4B
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DV Tied DV Not Tied Total

PV Tied

49

51

2554

2960

2063

3011

PV Not Tied

367

20,167

0

1,176,822

367

1,196,989

Total

416

20,218

2554

1,179,782

2970

1,200,000

TABLE 4C

DV Tied DV Not Tied Total

PV Tied

.00003323

.0000426

.0017581

.0024805

.0017913

.0025231

PV Not Tied

 .00018283 

.0166940

.0000000

.9808269

.00018283

.9974769

Total

.00021606

.0167366

.0017581

.9833264

.0019742

1.0000000

TABLE 4D
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