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Abstract

Thefact that political choice by majority rule may lead to voting cycles has been the subject
of ongoing scholarly concern since it was rediscovered some fifty years ago by Duncan Black and
Kenneth Arrow. However, part of this research has revealed an apparent anomaly: while avariety
of theoretical results suggest that they are pervasive, it has been relatively difficult to turn up
empirical evidence of voting cycles, even where appropriate data — that is, data on individual
preference orderings over three (or more) candidates, parties, or legislative alternatives — are
available. In this paper, | address this apparent discrepancy between formal theory and common
empirical findings. In the first section, | briefly review some relevant theory and the empirical
findings, introducing some notation, terminology, concepts along the way, and then observe there
isno logical tension between the theoretical and empirical results. In the remaining sections, | go
beyond this observation to show theoretically that only in quite exceptional circumstance can a
voting cycleexist among three al ternatives embedded in aspace of two (or more) dimensions, where
voters have preferences based on Euclidean distance. In doingthis, | exploit asimple geometrical
construction suggested by recent empirical and theoretical work.



THE GEOMETRY OF VOTING CYCLES:
THEORETICAL DEVELOPMENTS

Thefact that political choice by majority rule may lead to voting cycles has been the subject
of ongoing scholarly concernsinceit wasrediscovered somefifty yearsago by Duncan Black (1948,
1958) and Kenneth Arrow (1951). However, part of thisresearch hasreveal ed an apparent anomaly:
while avariety of theoretical results suggest that they are pervasive, it has been relatively difficult
to turn up empirical evidence of voting cycles, even where appropriate data — that is, data on
individual preference orderings over three (or more) candidates, parties, or legidative alternatives
— areavailable.

In this paper, | address this apparent discrepancy between formal theory and common
empirical findings. In the first section, | briefly review some relevant theory and the empirical
findings, introducing some notation, terminology, concepts along the way, and then observe there
isno logical tension between the theoretical and empirical results. In the remaining sections, | go
beyond this observation to show theoretically that only in quite exceptional circumstance can a
voting cycleexist among three al ternatives embedded in aspace of two (or more) dimensions, where
voters have preferences based on Euclidean distance. In doing this, | exploit a simple geometrical
construction recently introduced by Adams and Adams (2000) in amore empirically oriented paper.

1. Theoretical and Empirical Background

Suppose we have a one-dimensional ideological or policy space and a set of voters with
preferences over the space. Suppose further that these preferences are single-peaked, i.e., that each
voter has an ideal point (point of highest preference) somewhere along the dimension and that his
satisfaction with alternatives declines with distance away from hisideal point. We say that point X
ismajority preferred to another point Y (for whichwe write X — Y and sometimes say “X beats Y’)
if the number of voterswho prefer X to Y exceeds the number who prefer Yto X. A voting cycleis
asequenceof alternativessuchasX Y~ Z— X, i.e, suchthat maority preference "cyclesback"
and repeats itself. Duncan Black's Median Voter Theorem (1948, 1958) tells us that, in the one-
dimensional case with single-peaked preferences, no voting cycles of any length can occur: that is,
given any two points X and Y such that X — Y, there are no other pointsP,, ..., P, suchthat Y —
P,— ...~ P,~ X. Thisimpliesthat thereis at |east one point not beaten by any other point.
Indeed, if the number n of votersisodd, it impliesthat thereisaunigue point (called the Condor cet
winner) that beats every other point, which coincides with theideal point of the median voter when
voters are ordered by the locations of their ideal points.

If in theworld of empirical political choice aternatives weretypically arrayed over asingle
commonly perceived ideological or policy spectrum, the paucity of observed voting cycles would
be predicted by Black’ stheorem. But agood deal of empirical research suggeststhat theideological
or policy space over which candidates and parties compete for electoral support in the U.S. and



Voting Cycles page 3

elsewhere has (at least) two dimensions. Studies of contemporary American mass public opinion
strongly indicatethat the economic/welfare and cultural/national dimensionsof opinion areindepen-
dent and largely uncorrelated in the mass public (seein particular Shafer and Claggett, 1995). Other
empirical work (e.g., Budgeetd., eds, 1987; Schofield, 1995; Schofieldeta., 1997; Lijphart, 1998)
likewise finds that two dimensions are necessary (and substantially sufficient) to represent voter
preferences over multiple competing parties in recent national elections in a wide variety of
countries.

Social choicetheory hasproduced two well-known resultsabout the behavior of majority rule
when the number of dimensions increases beyond one. First, if the ideological or policy spaceis
expanded to two (or more) dimensions (while voter preferences remain single-peaked over all
straight lines through this space), voting cycles can easily occur. Indeed, Charles Plott's Majority
Rule (Dis)Equilibrium Theorem (1967), together with related results,® tells us that the “radial
symmetry” condition on voter preferences necessary for the existence of aCondorcet winner in such
aspaceare extremely stringent and almost awaysfailsto hold. Second, Richard McKelvey'sGlobal
Cycling Theorem (1976, 1979) tells usthat, in the almost certain event that the symmetry condition
failsto hold and thereis no Condorcet winner, voting cycles are pervasi ve and encompass all points
isthe space.

Thus, McKelvey's Theorem, in conjunction with the empirical findings previously noted,
might seem to imply that voter preferences over candidates, parties, bills, or other alternatives
located in an ideological space of two or more dimensions will typicaly exhibit cycles. While
scholars have (arguably) identified a number of example of voting cycles in parliamentary or
legidlative committee settings where the (effective) number of votersis small, the (relatively few)
surveys or other data sources (e.g., ordinal balots available for scholarly analysis) that elicit
information (or alow inferences) about the preference orderings over three (or somewhat more)
aternatives held by relatively large numbers of votersrarely turn up evidence of voting cycles.?

This paper showsthat in fact there is no tension between McKelvey's theoreticd result and
the empirical findings noted here. More specifically, we use asimple geometrical construction to
show that, given an electorate that is even moderately large and even in the face of the McKelvey
Theorem, voter preferences over any three alter natives located in two-dimensional space are very
unlikely to exhibit voting cycles.?

Y particular, Enelow and Hinich (1983); also see Cox (1987). Plott’ s theorem was anticipated in earlier work by Black

and Newing (1951).

% For example, Feld and Grofman (1992) examine ordinal ballotsfrom 36 STV electionsin British and Irish professional
associations. Among the 15,599 triples of candidates, only 71 (0.4%) resulted in voting cycles. Further analysison amoreinclusive
version of the same data set is provided by Felsental et al. (1993) and Felsenthal and Machover (1995). Similar research includes
Niemi (1970), Dobraand Tullock (1981), Dobra(1983), Chamberlin, et al.(1984), Niemi and Wright (1987), Abramson et a . (1995),
Brams and Merrill (1994), Radcliff (1997), Regenwetter and Grofman (1998), Van Deeman and Vergunst (1998), and Adams and
Adams (2000). Insuch data, al logically possible preference orderings actually occur, so the voters do not commonly perceivethe
alternatives as arrayed across a single dimension.

3Tangian (2000) reach a somewhat similar conclusion by a quite different logical route.
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Asafirst step, itisuseful to specify exactly what the M cK el vey Theorem does, and does not,
say. Thisiswhat the McKelvey theorem does say: in the almost certain absence of a Condorcet
winner, if we take any two arbitrary points X and Y in atwo-dimensional space such that X — Y, we
can always find afinite set of other pointsP,, ..., P, suchthatY —> P, ~> ...~ P, —~ X, sothat X
and Y appear in acommon voting cycle. Consequently, any point in the space can be reached from
any other point by following a path of majority preference.

But the McK elvey Theorem does not say this: if we take any two arbitrary points X and Yin
the space such that X — Y, we can aways find some single third point P such that there is athree-
element cycleX - Y —> P~ X.* And evenlessdoesthe McKelvey Theorem say this: if wetake any
three arbitrary points X, Y, and Z the space, we can expect to find a 3-cycle that includes precisely
these three alternatives. The upshot is that there is certainly no logical contradiction between the
McK elvey Theorem and the empirical findings noted earlier. Thisis by no meansanovel claim,’
but | do believethat it hasrather often been overlooked in discussions of thisproblem. What | show
in the remainder of the paper — and what | do believe is new — isthis: only in rare and peculiar
circumstances will we find a voting cycle encompassing three alternatives arbitrarily located in a
two-dimensional space.

Theremainder of the paper islaid out asfollows. | first present the geometrical construction
due to Adams and Adams (2000) that allows us to apply various socia choice ideas due to Sen
(1966), Niemi (1969), and Feld and Grofman (1986) to voter preferences in a two-dimensional
space. Intermsof thisconstruction, | then identify conditions on the location of the alternativesand
the distribution of ideal points that determine whether majority preference exhibits a cycle over the
three alternatives, and | show that these conditions are likely to be satisfied only rarely. Findly, |
link these social choiceideaswith conceptsin the spatial theory of voting— in particular the* yolk”
— toidentify several necessary conditions for a voting cycle among three aternativesto exist and
again observe that they are quite stringent.

For convenience of exposition, | consistently refer to the alternatives that are the object of
socia choice as*“candidates,” though obviously the analysis pertains just as well to choice among
parties, legislative options, etc. For ease of analysis, | assume that there are just three candidates,
that candidate locations and voter ideal points are embedded in atwo-dimensional space, and that
voter preferences are Euclidean — that is, each voter has an ideal point in the two-dimensional
spaceand prefersany alternative closer to hisideal pointsto amoredistant one(so voter indifference
curves are concentric circles).® | briefly consider the generalizability and limitations of these
conclusions in the concluding discussion.

4 That is, the shortest majority preference path cycling back to X may require many alternatives. (It istruethat every point

in the space belongs to a 3-cycle, so thereisa3-cycleincluding X and a 3-cycleincluding Y, but this does not imply that thereisa
3-cycleincluding both X and Y.)

> The point was made explicitly and emphatically by Richard Niemi (1983, p. 261). The following anaysis strongly

supports the more general claim that Niemi was making.

® Theealier (less general) version of the Global Cycling Theorem presented by McKelvey (1976) specificaly applies

in this context.
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2. The Candidate Triangle and Preference Profiles

Supposewe have atwo-dimensional spaceand adistribution of nvoter ideal pointsover that
space (where n is either odd or so large that ties effectively never occur). Suppose also that three
candidates locate at points in the same space. Given Euclidean preferences, each voter prefers a
candidate who is closer to hisideal point to one who is more distant. We want to investigate the
conditions under which this setup entails a voting cycle among the candidates.

If the three candidates are located at the same point, all voters are indifferent among them,
so there is no voting cycle. If the three candidates are located along a straight line, the
dimensionality of the spaceis effectively reduced to one and voter preferences are single peaked, so
thereisno cycle. Wetherefore assumethat the three candidate locations X, Y, and Z are distinct and
non-collinear, defining the vertices of what we shall call the candidate triangle.

Now let us construct the perpendicular bisector of the XY side of the candidatetriangle, i.e.,
the locus of points equidistant from X and Y, and also do the same for the other two sides. A basic
theorem of plane geometry tells us that the three bisectors intersect at a common point that is
equidistant from the three vertices, which we call the hub of the candidate triangle. Thus the three
bisectorsjointly partition the spaceinto six “pie-slice” sectors separated by six “spokes’ emanating
from the hub. We call this geometrical construction the preference partition resulting from the
candidatetriangle.” (See Figures 1-3 for illustrative partitions resulting from candidate triangles of
different shapes.)

Given Euclidean preferences, every voter whose ideal point lies on the X side of the
perpendicular bisector of the XY side prefers X to Y, while every voter whose ideal point lieson the
Y side prefers Y to X.® Voter preferences between X and Z and also Y and Z likewise depend on
which side of the XZ and YZ bisectors ideal pointslie. Thusall voters whose ideal pointsliein a
given sector haveidentical preference orderingsover X, Y, and Z— the nature of the common order-
ing being determined by the side of each bisector the sector lies on. Figures 1-3 display the
preference orderings associated with each sector and | abel sthe sectorsand orderingsin thefollowing
manner.

" This preference partition superimposed on the distribution of voter idea points over atwo-dimensiona spaceisthe geo-
metrical construction introduced by Adams and Adams (2000). However the more genera representation of preferences ordering
over three dternativesassix “dices’ of awheel or triangle goes back at |east to Saari (1994) and Lissowski and Swistak 1995). Also
see Regenwetter, Adams, and Grofman (2000) and Tabarrok (2001). Note that this construction can also represent the six weak
orderings which expressindifference between two candidates (i.e., voterswhoseideal pointslie exactly on one of the six “spokes’)
and the one “null ordering” expressing indifference among al three candidates (i.e., a voter whose ideal point lies exactly on the
hub).

8 Thusthe perpendicular bisector isthe two-dimensional generalization of what iscommonly called the“cut point” in one-
dimensional voting models. It isconvenient, and not particularly restrictive, to assumethat no voter ideal point lies precisely on any
bisector, and we carry forth the discussion in the main text accordingly.
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Sector => X1 Y2 Z1 X2 Y1l Z2
Highest preference Z Z Y Y X X
Medium preference X Y Z X Y Z
Lowest preference Y X X Z Z Y

We make the following observations. Geometrically opposite sectors are associated with
opposite preference orderings over X, Y, and Z. Since opposite orderings have the same medium
preferences, each ordering (and the associated sector) is labeled X, Y, Z according to its medium
ranked element. Sectorsarealternately labeled Type 1 or Type 2, So opposite sectors are of opposite
types. Voters in aternating adjacent sectors share the same first preference and the same last
preference.

If we now superimpose a preference partition over the actual distribution of voter ideal
points, we can count up the number of ideal pointsin each sector to determineits population, i.e.,
n(X1), n(X2), where the six sector populations add up to n. A list n(X1), ..., n(Z2) is avoter
preference profile, which specifies the number of voters with each possible preference ordering of
the candidates.’

Each preference profile producesaparticular mg ority preference pattern over thealternatives
X, Y, and Z. Apart from the possibility of ties in majority preference, there are eight possible
majority preference patterns over the three alternatives: the six orderings X1, .. ., Z2 listed above,
plus two cyclical patterns commonly referred to as the forward cycle (X > Y -~ Z — X) and the
backward cycle (X - Z > Y — X).1°

Social choice theory has identified a number conditions on preference profiles over three
alternativesthat are sufficient to preclude the two cyclical patterns of majority preference. Herewe
state such conditions using the the framework and terminology of the geometrical preference
partition displayed in Figures 1-3.

Theconditionsare of two types. Popularity conditions pertainto thethe proportion of voters
that have particular orderings. Strong popul ation dominance holdsif morethan half theideal points
lie in a single sector (i.e., a mgority of voters have the same ordering), in which case majority
preference simply the dominant ordering, so a cycle is precluded regardless of the relative
popularities of the remaining sectors. Weak population dominance holdsif morethan half theideal
points lie in two adjacent sectors. In terms of preference orderings, this means that there is one

° Note that, provided the candidate locations form atriangle (i.e., are distinct and non-collinear), voter idea points may
bedistributed in such away that all logically possible preference orderings of the three candidates occur in the el ectorate — indeed,
provided that the number of votersisreasonably large and that candidates are not more extreme ideol ogically than the most extreme
voters, it is essentially guaranteed that all preference orderings occur in the electorate

10 Tiescan result if the number of votersniseven or (regardless of whether niseven or odd) if somevotersareindifferent

between some candidates. Allowing for ties (i.e., “majority indifference”) means that majority rule may additionally produce the
seven weak orderings noted in footnote 6 plus six “quasi-transitive” and six “acyclical” patterns. (See Sen and Pattanaik, 1969).
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candidate who is the highest preference of amajority of voters or who isthe lowest preference of a
majority of voters, in either event precluding a cycle.

Exclusion (or value-restriction) conditions stipulate that certain sectors be entirely unpop-
ulated (i.e., excluded) but stipulate nothing about therel ative popul arity of the non-excluded sectors.
Exclusion conditions sufficient to preclude voting cycles were set out comprehensively by Sen
(1966). Firstwenotethat, if only Type 1 sectors are popul ated and popul ation dominance does not
hold (i.e., no Type 1 sector includes amajority of ideal points), theforward cycle X > Y —> Z > X
results; likewiseif only Type 2 sectors are popul ated and popul ation dominance does not hold, the
backward cycle X > Z — Y - Xresults.

Moreimportantly, it can be verified that avoting cycle can result only if al three alternating
sectors(either Typelor Type2) arepopulated. To seethis, notethat every (cyclical or non-cyclical)
magj ority preference pattern must include a candidate who both beats and is beaten by another candi-
date, e.g., Ywhere X > Y — Z. By definition X - Y if and only if

n(X1) + n(Z2) + n(Y1) > n(X2) + n(Z1) + n(Y2)
and Y~ Zif and only if
n(Y1) + n(X2) + n(Z1) > n(Y2) + n(X1) + n(Z2).

If X~ YandY — Z, both inequalities hold, from which it follows that n(Y1) > n(Y2). Sincen(Y2)
> O, it further follows that n(Y1) > 0. Thustheforward cycle X ->Y — Z — X can occur only if

n(X1) >0 and n(Y1l) >0 and n(Z1) >0
and the backward cycle X -~Z — Y — X can occur only if
n(X2) >0 and n(Y2) >0 and n(Z2) > 0.

Putting the matter the other way around, avoting cycleis precluded if at least one sector of
each type is unpopulated. This can result if (i) two adjacent sectors are unpopulated or (ii) two
opposite sectors are unpopulated. Condition (i) is called single-peakedness in the event the two
adjacent unpopul ated sectors share the samelast preference. In thisevent, the populated sectorsare
“vaue-restricted” in that there is a candidate that no voter ranks last, so that candidate beats both
other candidates unless the population dominance condition comes into play, and in either case a
voting cycle is precluded. Condition (i) is called single-cavedness in the event the two adjacent
unpopul ated sectors share the samefirst preference. In thisevent, thereisacandidate that no voter
ranks first, so that candidate is beaten by both other candidates unless the population dominance
condition comes into play, and in either case a voting cycle is precluded. Condition (ii) may be
called polarization. Inthisevent, thereisacandidate that no voter ranks medium. Since opposite
sectors are unpopulated, there are two pairs of adjacent (possibly) populated sectors, one pair of
which must include a majority of ideal points, so weak population dominance holds.*

1 Note that “single peakedness’ in this context is defined specifically with respect to preferences over a triple of

alternatives, not over dl pointson aline. Though we are assuming that all voter preferences over the two-dimensional space are
Euclidean (a generalization of single-peakedness in the latter sense), it is quite possible for voter preferences over three (non-
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Each of these conditions is sufficient by itself to preclude a voting cycle. But even the
conjunction of population dominance and an exclusion condition fails to be necessary to preclude
acycle. Moreover, given even amodestly large number of voters, it is unlikely that any sector of
the preference partition will be entirely unpopulated,” especialy if (as seems plausible) the
candidate triangle is more or less centrally located relative to the distribution of ideal points.
However, many years ago Niemi (1969) showed that orderings need not be entirely excluded to
preclude avoting cycle, provided some orderings are relatively unpopular. Subsequently, Feld and
Grofman (1986) pushed Niemi’ sideato the limit by developing the concept of “net preferences.”

Clearly a profile in which two opposite orderings have the same popularity produces the
same majority preference pattern as the reduced profile that excludes both of these orderings, as
voters with the two opposite orderings cancel each other out at every pairwise choice. More
generally, any profile n(X1), ..., n(Z2) produces the same mgjority preference pattern as the net
preference profile n’(X1), ..., n’(Z2) in which only the "surplus"’ orderings in each of the three
pairsof opposite orderingsremain. That is, if n(X1) > n(X2) intheoriginal profile, n’(X1) =n(X1) -
n(X2) and n’(X2) = 0in the net preference profile, and likewise for the Y and Z sectors.”* We call
the sum of these surpluses the net population, composed of “net voters.”

We can now apply net popul ation dominanceand net exclusion conditionsto anet preference
profile to state a necessary and sufficient condition to preclude a voting cycle.

In anet preference partition, the opposite of anet popul ated sector must be net unpopul ated.
Thus at most three sectors can be occupied by net voter ideal points, and the possible combinations
of such net populated sectors are distinctly limited. Thusthere are just two structural possibilities
for anet preferences partition: (i) afragmented pattern, in which no bisector has all net populated
sectorsto one side of it (and three alternating sectors are net populated); and (ii) acompact pattern,
in which all net populated sectors lie on the same side of some bisector (so that, if there are three
net populated sectors, they are adjacent). There are two possible fragmented patterns: all Type 1
sectorsor all Type2 sectorsarenet popul ated, which— in the absence of net popul ation dominance,
i.e., unlessone sector includesamajority of the net popul ation — producethe forward and backward
cycles respectively. There are six possible compact patterns in which three adjacent sectors are
populated, inwhich case majority preference correspondsto the ordering associated with themiddle
sector, unless net popul ation dominance comes into play, and in any case avoting cycle over X, Y,
and Z is precluded.*

collinear) candidate locations to be polarized or single-caved.
12 This observation is congruent with more formal and generd results set out by Kramer, 1973.

13 Fdld and Grofman (1986) say that n’(X2) = n(X2) - n(X1), i.e., the net popularity of an ordering is simply the negative
of itsopposite. Thisisneater mathematically but may less clearly capture the intuition of preferencescanceling out” that underlies
the net preference construction. In any case, the difference is merely a matter of presentation.

4 A net preference partition is unlikely to have fewer than three populated sectors is if the number of votersis large,
because this requires that the (gross) population of two opposite sectors be exactly equal. But if there are fewer than three popul ated
sectors, net population dominance assures that acycleis precluded.
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Tosummarize, apreference profile over three candidatesresultsin avoting cycleif and only
if the corresponding net preference partition exhibits a fragmented structure and no sector has a
majority of the net population.

3. The Preference Partition and Voting Cycles

The presence or absence of a voting cycle among the three candidates X, Y, and Z depends
on the population — more particul arly, on the net popul ation — of the six sectors of the preference
partition. The (net) population of the six sectorsisin turn determined jointly by three factors: the
shapeof thecandidatetriangle(i.e., thelocations of the candidatesrel ativeto one another), theloca-
tion of the candidate triangle (relative to the distribution of voter ideal points), and the distribution
of voter ideal points.”®

With respect to the shape of the candidate triangle, we have three broad possibilities. The
candidate triangle may be (approximately) equilateral (asin Figure 1), inwhich caseitshubisat (or
near) the center of the triangle and all sectors are defined by the same (approximately) 60° angle
and, inthat sense, al are (approximately) thesame“size.” Asthe shape of the candidatetriangleis
deformed from equilateral perfection, the angles defining the sectors change, but opposite sectors
necessarily have the same angle.

If the candidate triangle is deformed in the obtuse direction by pulling two “extremist”
candidate locations (say X and Y) apart and/or pushing one “centrist” candidate location (say Z)
toward the XY line, the hub is pulled outside and away from thetriangle onitslong XY side, and the
angle of the Y pair of sectorswidens (approaching 180°), whilethe angles of the other pairs narrow,
resulting in a configuration like Figure 2.

If the candidate triangle is deformed in the opposite fashion by pushing the locations of two
“clone” candidate (say Y and Z) towards each other and/or pulling the location of a third
“distinctive’ candidate (say X) away from the other two, the hub remains within the candidate
triangle but the angles of X pair of sectors narrow while the two others expand (each approaching
90°), resulting in a configuration like Figure 3.

Feld and Grofman refer to such “net value restriction” as “partial single peakedness’ (referring to the original, not the
reduced, profile) Asnoted, anet preference profileincludes at most three orderings. A net profilethat includesall Type 1 orderings
or al Type 2 orderings produces a cycle unless the net population dominance condition is met. Otherwise, anet profile either: (a)
includes fewer than three orderings, or (b) includesthree orderings, at least one of each type. If (a), the net profiletrivialy meetsall
valuerestriction conditionssimultaneoudy. If (b), thenet profileincludesoneordering fromeach pair of opposites. Thusevery alter-
native is ranked medium in some ordering. But since the three orderings cannot all be of the same type, one alternative must never
ranked best and one never ranked worst in the net profile, which thereforeis both single-peaked and single-caved. Thus, when Feld
and Grofman characterize all compact net preference profiles condition single-peaked, they are correct S though such net profiles
meet other value restriction conditions at the same time.

15t isworth observi ng that the size of the candidate triangle (i.e., the degree of “convergence” or “divergence” among

the candidates) need not influencethesize (or population) of the six sectorsof the partition, aseach set of bisectorsisassociated with
aninfinite family of similar candidate triangl es of varying size and with the same hub. However, aswe moveto smaller trianglesin
the same family, they converge on the common hub. Thus, if alargetrianglein agiven family is distant fromits hub (asin Figure
2), smaller triangles in the same family move in the direction of the common hub.
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With respect to the location of the candidate triangle relative to the voter distribution, the
most obviousconsi derationiswhether the candidatetriangleis(approximately) centered onthevoter
distribution or whether itisdistinctly off-center. But the considerationthat turnsout to havedecisive
theoretical relevance whether the hub of the candidate triangle coincides (approximately) with the
center of thevoter distribution. The hub of an equilateral triangle coincideswithits center (however
defined), but in other triangles the hub and the center may diverge— most dramatically in the case
of an obtuse triangle such asin Figure 2.1

Clearly thedistribution of voter ideal points can assume agreat variety of patterns. For the
moment, let us suppose that the distribution is (at least approximately) bivariate normal. If voter
ideal pointsare (approximately) equally dispersed in each dimension and substantially uncorrel ated
between dimensions, the ideal points form a (more or less) “circular” cloud, the density of which
diminishes at the same rate in every direction from the center (i.e., the mode). Let us call thisa
circular voter distribution. Totheextent that ideal pointsare concentratedin onedimensionrelative
to the other and/or there a strong correlation between the two dimensions, the cloud of voter ided
points*condenses’ into an elongated distribution, thedensity of which diminishesin every direction
from the center but at different rates (though at the same rate in opposite directions).

In order to identify conditions that produce a voting cycle, we may imagine plotting a
distribution of ideal points on a board and then placing on top of it a transparency that shows a
particular candidate triangle or, more particularly, the associated preference partition. We then try
to position the transparency in a way that produces a fragmented net voter partition and perhaps a
voting cycle over the three candidate positions. Quick thought experiments reveal that thisisvery
difficult to do. Indeed, given a bivariate normal voter distribution, there is no way to position the
partition that clearly produces a fragmented pattern.

Let usfirst consider the wholly symmetric overall configuration — that is, an equilateral
candidate triangle centered on the mode of acircular distribution of voter ideal points. Inthiscase,
each of the six sectors of the partition is (essentially) equally populated with voter ideal points, and
each typeof net preference partitionisessentially equally likely to occur. Sincethereareeight types,
two fragmented types which produce a voting cycle (forward and backward respectively) and six
compact types which produce the six possible orderings, such a wholly symmetric configuration
produces a fragmented pattern about 25% of thetime. But even if afragmented pattern results, net
population dominanceislikely to hold, asthe overall symmetry of the configurationimpliesthat net
populations are closeto zero, and it isquite likely that one net popul ated sector hasamajority of the
(relatively tiny number of) net ideal points. More precisely, we now have in effect (with respect to
the three candidates) an “impartial culture” (to use anow standard term introduced by Garman and
Kamien, 1969, torefer toasituationinwhichall individual preferenceorderingsof threealternatives
areequally likely), inwhich the probability of avoting cycle approaches0.0877 (from below) asthe

18 principle, we need a precise definitions of the “center” of both the voter distribution and the candidate triangle. If
the voter distribution is bivariate normal, its mode obviously definesits center. More generally, the center of the “yolk” (discussed
in the following section) definesthe center of the voter distribution. Wemight definethe center of the candidatetrianglein aparallel
manner, i.e., asthe center of the circle that can be uniquely inscribed within the candidate triangle. Alternatively, we might define
it asthe overall mean of the candidate locations. (Thesetwo definition give substantially different answersin atriangle such asthat
displayed in Figure 3, but approximately similar onesfor thetrianglesin Figures1and 2.) But sinceit isthe hub, not the “ center,”
of the candidate triangle that plays the decisive theoretical role, we can sidestep this question.
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number of voters becomes very large.’” Thus, even in this most favorable circumstance, the
probability of avoting cycleis quite small.

Of course, if the configuration is “exquisitely” symmetric, so that all sectors have a net
population of zero, the majority preference pattern is the “null ordering” of three-way binary ties.
(If we demand that n be odd, one sector has a net population of one and determines the majority
preference pattern.) But if the symmetry isdlightly lessexquisite, so that the (gross) populations of
all sectors are almost but not exactly equal, each pairwise choice between two candidate is almost
but not quite atie and the resulting majority preference patternis highly fragile, in that shiftsin the
location of a few voter ideal points can easily shift mgority preference from a cyclical to non-
cyclical pattern or vice versa (and from a forward to backward cycle or vice versa or from one
ordering to another). That is, whatever the majority preference pattern, itisdistinctly “weak” inthat
each majority preferencerelationshipiscarried by abare majority and can easily bereversedif afew
voterschangetheir preference. Thus, given an (approximately) circular bivariate normal distribution
of ideal points, avoting cycle can exist anong three candidates only because they virtually tie one
another in pairwise contests. (Inthiscircular case, the candidates are also virtually tied with respect
tofirst preferences, i.e., thekind of three-way virtual tiethat we might observeinaplurality election
or preference poll.)

Second, let usconsider an equilateral candidatetrianglecentered onthemode of an elongated
distribution of voter ideal points. The populations of opposite sectors of the partition still must
(virtually) balance, creating (virtual) ties among the three candidate in pairwise contests, and the
same conclusions apply asinthecircular case. (Inthiselongated case, however, the candidates may
have quite different numbers of first preferences, so avirtual three-way tie typically would not be
observed in a plurality election or poll.)

Third, we observethat shifting an equilateral candidatetriangleeven dightly off-center with
respect to the mode of a circular or elongated distribution of ideal points produces a compact net
profile, precluding a voting cycle.

Next, note that nothing in thisargument rests on the fact that, given an equilatera candidate
triangle, the three sectors of the partition are the same “size” (in terms their defining angles at the
hub), since what matters is the balance of idea points between opposite sectors (which are
necessarily the same “size”). Thusthe considerations outlined in the previous paragraphs apply to
candidatetrianglesof any shape, withthisimportant proviso. Thepreviousanalysisreally wasbased
based not on the location of the center of the candidate triangle relative to the mode of the voter
distribution but onthelocation of the hub of thetrianglerelativeto the mode of the voter distribution
(though the center and the hub coincide in the equilateral case). In general, the center (however
defined) and the hub of the candidate triangle rarely coincide. And except in the case of an
equilateral candidate triangle (itself a somewhat improbable limiting case), there is no particular
reason to expect the hub of the candidate triangle to coincide (even approximately) with the mode
of thevoter distribution. The more reasonabl e expectation (given notions of candidate competition
and survival) isthat the candidate triangleitself may be (approximately) centered on the mode of the

7 The probability cal culations may be found in Garman and Kamien (1969), Niemi and Weisherg (1969) and elsewhere.

| am indebted to James Adams and Christian List for help in developing this connection to prior results.
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voter distribution. And except for the limiting equilateral case, this implies that the hub of the
candidate triangle does not coincide with the the mode of the voter distribution but islocated within
some sector of the voter partition (or possibly on the boundary between two sectors), with theresult
that several adjacent sectors are considerably more densely populated with ideal points than their
opposites. Thus, so long asthe mode of the an (approximately) bivariate normal voter distribution
deviates” substantially” fromthehub of the candidatetriangle, acompact net preference profile must
result, thereby precluding avoting cycle.'®

This conclusion applies most powerfully in the case of an obtuse candidate triangle such as
that in Figure 2. We would certainly expect the mode of the voter distribution to be in the vicinity
of the candidate triangle and thus distant from the hub, so the distant sectors (associated with the
orderings Y1 and X2) would be very sparsely populated compared with their opposites. Thus two
adjacent sectors would be excluded from the net preference partition, precluding avoting cycleis
precluded.®

The kind of candidate triangle depicted in Figure 3 leads to a similar conclusion, though
admittedly lesspowerfully. Again, avoting cycle may occur only if the hub of the candidatetriangle
(virtually) coincideswith themode of the voter distribution. Sincethe hub now islocated withinthe
triangle, thisisnot an entirely implausible possibility. Still, thevicinity of the hub isasmall portion
of the space (and of the candidate triangle) and, if the mode of abivariate normal voter distribution
is located at any “significant” distance from the hub, a cycle is precluded. Probably the most
reasonabl e expectation isthat the mode of thevoter distribution lieswithin the candidate triangle but
somewhat in the direction of the two “clone” candidates Y and Z.°

Tothispoint, considering only bivariate normal (and thusunimodal) voter distributions, we
conclude that in almost circumstances a voting cycle cannot occur and, even in the most favorable
limiting circumstance, thereislessthan onein ten chancethat avoting cycle occurs and then only
as a somewhat flukish result of virtual tiesin the three pairwise contests.

18 | the next secti on, we give precise meaning to the proviso “ substantialy.”

¥ n Niemi's (1969) terminology, voter preferences are “partially unidimensional.” In geometrical terms, either the
candidates hardly differ on one dimension (if the long and thin candidate triangle is oriented horizontally or verticaly) or the
candidates positions on the two dimensions are highly correlated (otherwise). In political terms, the candidates are coming closeto
arranging themselves along asingle dimension. Of course, if the candidates arrange themselvesin a perfectly collinear fashion (so
that the candidate triangle has no area), the three perpendicular bisectors that define the voter partition are parallel lines causing
sectors Y1 and X2 to disappear entirely. Such (nearly or fully) collinear candidate positioning induces (partial or full) single
peakedness on voter preferencesover the three candidates, even though voter preferencesare not so structured over the whole space.
This pattern of nearly unidimensional dlite positions in conjunction with less structured mass preferences seems to occur rather
commonly intheempirica world, asispowerfully illustrated for Britain and Francein the data presented in Adamsand Adams (2000)
and for Germany (and, to alesser extent the Netherlands) in data presented by Schofield et a. (1997).

20 That is, we might expect the candidate triangle to be “ centered” on the voter distribution. If we define the center to be
the overall mean, that center the about 2/3 of theway from X to the YZ line, well away from the hub (which isat about the mid-point
of thisdistance) If we defined the center of the candidate locationsto be the center of the “yolk” of thetriangle (seefootnote 15 and
the next section), it would be even closer to the YZ line and further from the hub.
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Onthe other hand, if we consider “lumpy” multi-modal distributions of ideal points, we can
of course configure candidate triangles that produce a fragmented net preference partitions and
voting cycles. Moreover, they may be “ strong” cyclesin which the pairwise contests are not virtual
ties but are won decisively.

However, not any multimodal distribution will do. For example, a bimodal distribution
composed two superimposed (circular or elongated) unimodal distributions with different centers
will not produce cycles. The configuration required to reliably produce avoting cycleisacandidate
triangle more or less centered on atri-modal voter distribution, where (i) most ideal pointslieclose
to some mode, (ii) approximately one third of theideal points are associated with each mode, and
(iii) the modes are located within aternating sectors of the voter partition, thereby producing a
fragmented pattern.?* We may observethat thisrequiresthat the candidates |ocate where votersare
not concentrated, while it would be more reasonable to expect that each candidate would locate at
(or near) one of the three modes. If one candidate doeslocate at or near each mode and even if this
resultsin an (approximately) equilatera candidatetriangle, avoting cycleisreliably precluded unless
almost exactly one third of the electorate with each node (in which case majority preference again
isfragile). If theshapeof the candidatetriangleisdeformed substantially from equilateral perfection
in the obtuse direction (as in Figure 2), two candidate locations appear in adjacent sectors of the
voter partition; if two modes of the voter distribution are similarly located, a voting cycle is
precluded. If the shape of the candidatetriangleis deformed in the manner of Figure 3, thelocations
of the“clone” candidates appear in adjacent sectors, whilethelocation of the“ distinctive” candidate
lies close to the boundary between the opposite sectors (barely inside Z2 in Figure 3). Unlessthey
are extraordinarily concentrated in the neighborhood of the mode near where the the distinctive
candidate locates, ideal points associated with that mode will be split between the two sectors
opposite those occupied by the clones, so the distinctive candidate (decisively) loses the pairwise
contest with each clone,? thereby precluding acycle.

4. The Preference Partition and the Yolk

The preceding discussion had two important limitations. First, by speaking of the mode (or
modes) of the voter distribution, we in effect assumed that the the distribution of ideal pointsisa
continuous density (i.e., that the number of votersisinfinite). Second, in so far as we focused on
(approximately) bivariate norma distributions we in effect assumed that the condition of “radial
symmetry” sufficient for a Condorcet winner in the space as awhole is (approximately) satisfied.
In this section, we drop all assumptions about the distribution if ideal points and identify sufficient
conditionsfor precluding avoting cycleamong three candidate stated in termsof two parametersthat

21 The most obvious theoretical possihility isto have an electorate of just three voterswhose ideal points define the three
modes|ocated as described. 1f the number of voters at each mode increases equally (or at least sufficiently equally that population
dominance does not occur), the cyclical majority preference is unchanged, as is also true even if ideal points become somewhat
dispersed about the three modes.

22 of course, with respect to the splitting of first preferences, the advantage may well go the other way, and the distinctive
candidate may win a plurality election against the two clones.
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characterize any distribution of ideal points — namely, the location and size of the “yolk” of the
distribution.®

A straight line L through the space partitions voter ideal pointsinto three sets: thosethat lie
ononesideof L, thosethat lie on the other side of L, and thosethat lieon L. A median line M parti-
tions the ideal points so that no more than half of them lie on either side M. Given that n is odd,
fewer than half the ideal points lie on either side of M, and there is exactly one median line
perpendicular to any line through the space.

If all median lineshappen to intersect at acommon point ¢, thispoint isthe Condorcet winner
inthespace. If all votershave distinct ideal points, acommon point of intersection requiresthat the
distribution of ideal points be radially symmetric in the fashion required by Plott’s Theorem and
related results. Thismeansthat it ispossibleto pair off all voters but one so that their ideal points
lie precisely on opposite sides of ¢ and that c istheideal point of the remaining voter.

Whileit is very unlikely that all median lines intersect in a common point, it is likely that
they all pass near the center of the distribution of ideal points, so that there is arelatively small
region (though not a single point) through which all median lines pass. The yolk is the region
bounded by the circle of minimum radiusthat intersects every median line. Thelocation of theyolk
(specified by isitscenter ¢) indicatesthe generalized center (in the sense of the median) of the voter
distribution. The size of the yolk (specified by its radius r) indicates the extent to which the
configuration of ideal points departs from onethat produces a Condorcet winner.

A continuous bivariate normal distribution (with an infinite number of voters) has ayolk of
zero radius coinciding with the mode. But if the number of votersisfinite, amost certainly there
are dight “imperfections’ in the symmetry of the distribution that prevent all median lines from
intersecting precisely at asingle point, so the yolk has a positive but small radius.

If there are just three voters, the three sides of the “voter triangle” are median lines and the
yolk isthe circleinscribed within thistriangle. If the“voter triangle” is approximately equilateral,
the yolk is large relative to the distribution of ideal points, though the yolk shrinks rapidly as the
voter triangle deviates (in either fashion) from equilateral perfection. Moreimportantly, the size of
theyolk diminishesrelativeto thedispersion of ideal points asthe number of ideal pointsincreases,
provided they do not cluster about distinct modes (Feld, Grofman, Miller, 1988; Tovey, 1992a
1992b). Theessential pointisthat theproliferation of ideal pointstendsto makethedistribution less
“lumpy” and more closely approximate a continuous one. Of course, a peculiar distribution with
clusters of points— in particular, atri-modal distribution such as discussed near the end of the last
section— may haveayolk that remainslargerelativeto thedispersion of ideal points(because many
median lines pass through the vicinity of two modes but not the third — put otherwise, because we
are approximately back to the three-voter case) even as the number of ideal points increases.

Given adistribution of ideal pointswith ayolk of zero radius, point X in the spaceismajority
preferred to point Yif and only if Xiscloser tocthanYis(Davis, DeGroot, and Hinich, 1972; Miller

23 Thistermand concept isdueto McKelvey (1986), drawing on earlier work by Ferejohn, McKelvey, and Packel (1984).
For areasonably accessible discussion, from which the present discussion borrows, see Miller, Grofman, and Feld (1989).
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Grofman, and Feld, 1989). That is, the win set of X (i.e., the set of points that beat X)) is the set of
points bounded by acircle centered on ¢ and passing through X. But if theyolk hasapositiveradius
r, the boundary of the win set becomesirregular — in some places falling short of thecircleand in
others pushing beyond it. But there are definite bounds on thisirregularity that depend on the size
of theyolk. The bound that can be most readily stated isthis: Y beats X only if Y isno more than 2r
further from the center c of theyolk than Xis (Miller, Grofman, and Feld, 1989). Thuswe can state
the following.

PROPOSITION 1. Avoting cycleover three candidates X, Y, and Z is precluded if the location of
one candidate, say X, iseither 2r closer to ¢, or 2r further fromc, than the locations of both Y and
Z

Inthisevent, X either beats, or isbeaten by, both Y and Z, and acycleis precluded regardless
of majority preference between Y and Z. The power of this proposition obviously varies inversely
with the magnitude of r. Further the conditionisonly sufficient, and certainly not necessary. Indeed
the 2r bound actually appliesonly if Y and X lie on opposite sides of the yolk (180° apart), though
the bound is not much lessif X and Y are 120° apart (as they would be if they were vertices of an
equilateral candidate triangle centered on ). However, the bound is much tighter if Xand Y lieon
the same side of ¢.*

Probably more significant than Proposition 1 isthe way the yolk relatesto the perpendicul ar
bisectors that define the preference partition.

OBSERVATION 1. If theyolk lies entirely on the X side of the perpendicular bisector of XY,
X =Y, if it lies entirely on the Y side of the perpendicular bisector of XY, Y - X. If the yolk
straddles the bisector, we may have either X > Yor Y - X.

Thereissomemedian lineM perpendicular tothe XY line. By thedefinition of amedianline,
amajority of ideal voter pointslie on M or on the X side of M, and by the definition of the yolk, M
must pass through the yolk. Thus if yolk lies entirely on the X (or Y) side of the perpendicular
bisector, amajority of ideal pointslie on the X side of the bisector, so X > Y (or Y — X).

The following proposition follows directly from Observation 1.

PROPOSITION 2. Iftheyolkliesentirelywithin one sector of the preference partition, majority
preferenceover X, Y, and Zisidentical to the ordering associated with that sector, so a voting cycle
is precluded.

If theyolk lies entirely within some sector, it does not intersect any bisectors, so the conclu-
sion follows from three applications of Observation 1. Note that, while mgority preference is
identical to the preferences of voters in the sector containing the yolk, this sector need not contain

24 More precise bounds on the win set of x aregiven by acardioid centered on ¢ and with x asthe focal point (Ferejohn
et a., 1984; Miller, Grofman, and Feld, 1989).
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(anything like) amajority of voter ideal points (i.e., Strong Population Dominance need not hold).
What istrueis that the sector containing the yolk and both adjacent sectors are net populated and
collectively include a majority of ideal points.

However, evenif theyolk isquite small and/or distant from the hub of the candidatetriangle,
itisstill quitelikely that the center of theyolk c lies close enough to a sector boundary that the yolk
straddles two sectors. In this case (and in the absence of any information about the distribution of
ideal points other than the parameters ¢ and r), majority preference between the two candidates
whose bisector is straddled is indeterminate, but a voting cycleis still precluded.

PROPOSITION 3. If theyolk lies entirely within two sectors of the preference partition, a voting
cycleis precluded.

Clearly the two sectors must be adjacent. By two applications of Observation 1, either one
candidate beats both of the others (if the two adjacent sectors have the samefirst preference) or one
candidate is beaten by both of the others (if the two adjacent sectors have the samelast preference).

Thus we can state the following.

PROPOSITION 4. Therecan bea voting cycle over the three candidate locations only if the yolk
of the distribution of voter ideal points intersectsthree or more sectors of the preference partition.

If the yolk intersects exactly three sectors, the yolk lies entirely on one side of one bisector.
Suppose it lies entirely on the X side of XY. Thuswe know that X — Y but the other two magjority
preference relationships are indeterminate. Thus majority preference must be one of the following
four patterns that include X — Y: ordering X1, Z2, or Y1 or the forward cycle. If the yolk intersects
more than three sectors (and thus includes the hub), any of the eight possible majority preference
patterns may arise.

If the yolk is sufficiently small and/or the center of the yolk is sufficiently distant from the
hub, theyolk cannot intersect morethan two sectorsof the partition. Supposethe center c of theyolk
liesin asector whose defining angleis a.. Let d bethe distance from c to the hub. When cisequi-
distant from the two boundaries of the sector, we have the smallest possibleratio r/d that allowsthe
yolk to straddle both boundaries of the sector (also the largest possibleratio r/d that allowsthe yolk
to lie between both boundaries.) Thiscritical ratio occurs when the yolk is tangent to both spokes,
giving us aright triangle with hypotenuse d, angle «/2, and opposite sider. Thuswe can state the
following.

PROPOSITION 4. Suppose the center of the yolk islocated at distance d from the hub and lies
within a sector of the preference partition with a defining angle «. A voting cycleis precluded if
d< r/sina.

In the case of a sector with a defining angle of 60° (e.g., any sector in a partition resulting
from an equilateral candidatetriangle), avoting cycleisprecluded if the distancefrom the hub to the
center of the yolk cistwicetheyolk radiusr.
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It isworth stressing that these conditions are sufficient to preclude avoting cycle among the
three candidates; they are by no means necessary, and they should be considered in conjunction with
the conditions identified in to preceding section. Suppose, for example, that the yolk lies between
the candidate triangle and the hub and intersects sectors 22, X1, and Y2 in Figure 2. By theanalysis
in this section, there may be avoting cycleamong X, Y, and Z. But by the analysisin the preceding
section, avoting cycle can occur only if fragmented net preference partition and such ayolk does not
imply a such fragmented pattern.

5. Concluding Discussion

The entire analysis focused on the case of three candidates with locations in the same two-
dimensional space over which members of an electorate have Euclidean preferences. The basic
argument has been that, in such a setup, it is quite unlikely that voter preferences over the three
candidates will generate a voting cycle. In concluding, let us consider briefly how the arguments
given in the preceding sections of the paper can be extended.

More than two dimensions. Suppose that voter ideal points occupy a space of three (or
more) dimensions. Provided thenumber of candidatesremain three, the previousarguments remain
undisturbed. The candidate triangle defines a two-dimensional plane, the perpendicular bisectors
defining the preference partition become parallel (hyper)planes perpendicular to this plane. Each
sector has a population of ideal points, and we proceed exactly as before.

Morethan two candidatesin two dimensions. Supposewe remainintwo-dimensional space
but increase the number of candidatesto four (or more). Suppose (for all thereasonsoutlined above)
that thereis no voting cycle among the candidates X, Y, and Z, and suppose in particular that X— Y,
X—>Z,andY — Z. Now suppose afourth candidate P enters the field. This raises the question of
whether the cycle X » Y > Z— P - X may result. But note that this can be true only if the three-
element cycle X > Z » P~ X existsaswell as one of the three-element cycles X > Y - P~ Xand
Y > Z —»> P~ Y). By the previous analyses, such three-element cycles are unlikely. Given a
unimodal voter distribution, such a pair of three-element cycles can occur only if the hub of both
candidate triangles (say XZP and XYP) coincide closely with the mode of the voter distribution and
thus with each other. Thisislogicaly possible but clearly less likely than the same for a single
candidate triangle. And given a trimodal distribution of idea points, an especialy peculiar
configuration of candidate locations would have to exist to generate both three-element cycles.

More than two candidates in more than two dimensions. Given four candidates |ocated in
atwo-dimensional space populated by voters with Euclidean preferences, some of the 24 logically
possible preference orderingsof thefour candidate cannot be associated with any region of the space.
However, if we increase the dimensionality of the space along with the the number of candidates,
all preference orderings can be associated with sectors of the space. Suppose we have four
candidatesin athree-dimensional space. This results a candidate tetrahedron with four triangular
faces. Our present analysis applies to each face (triple of candidates), each of which may produce
acycle.
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Voters with non-Euclidean preferences. The analytical technology of this paper (i.e.,
perpendicular bisectors[generalized cut points], median lines, theyolk, etc.), like much other spatial
modeling, depends on the (vastly) simplifying assumption of Euclidean preferences. My intuition
is that the general thrust of results based on Euclidean preference extends to rather more general
(e.g., strictly quasi-concave) preferences.
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