
Chapter X

A Priori Voting Power When One Vote Counts in Two Ways, With Application

to Two Variants of the U.S. Electoral College

Nicholas R. Miller

The President of the United States is elected, not by a direct national popular vote, but by a two-tier

Electoral College system in which (in almost universal practice since the 1830s) separate state

popular votes are aggregated by adding up state electoral votes awarded, on a winner-take-all basis,

to the plurality winner in each state.  Each state has electoral votes equal in number to its total

representation in Congress and since 1964 the District of Columbia has three electoral votes. At the

present time, there are 435 members of the House of Representatives and 100 Senators, so the total

number of electoral votes is 538, with 270 required for election (with a 269-269 tie possible). The

U.S. Electoral College is therefore a two-tier electoral system: individual voters cast votes in the

lower-tier to choose between rival slates of ‘Presidential electors’ pledged to one or other

Presidential candidate, and the winning elector slates then cast blocs of electoral votes for the

candidate to whom they are pledged in the upper tier.  The Electoral College therefore generates the

kind of weighted voting system that invites analysis using one of the several measures of a priori

voting power.  With such a measure, we can determine whether and how much the power of voters

may vary from state to state and how individual voting power may change under different variants

of the Electoral College system.

X.1 Individual Voting Power under the Electoral College

Several years ago, I had a commission to write an encyclopedia entry on “Voting Power in the U.S.

Electoral College” (Miller, 2011), and I decided to include a chart (resembling Figure 1) displaying

individual voting power by state under the apportionment of electoral votes based on the 2000

census.  Having been introduced some years earlier to Dan Felsenthal and Moshe Machover’s

magnificent treatise on The Measurement of Voting Power (1998), I was confident that I had a

reasonably precise understanding of the properties and proper interpretations of the various voting

power measures (with which I had been broadly familiar since graduate school).   I also believed

that I could make the necessary calculations using the immensely useful website on Computer

Algorithms for Voting Power Analysis created and maintained by Dennis Leech and Robert Leech.1

I was persuaded by Felsenthal and Machover’s emphatic advice that the absolute Banzhaf

measure is the proper measure of a priori voting power in the context of ordinary two-candidate or

two-party elections.  Given n voters, there are 2 n !1 bipartitions (i.e., complementary pairs of

subsets) of voters (including the pair consisting of the set of all voters and the empty set).  A voter

(e.g., a state) is critical in a  bipartition if the set to which the voter belongs is winning (e.g., a set

of states with at least 270 electoral voters) but would not be winning if the voter belonged to the

1    The website may be found at http://www.warwick.ac.uk/~ecaae/ .
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complementary set.  A voter’s Banzhaf score is the total number of bipartitions in which the voter

is critical.  A voter's absolute Banzhaf voting power is the voter’s Banzhaf score divided by the

number of bipartitions.

Felsenthal and Machover show that the absolute Banzhaf measure (unlike the ‘relative’

Banzhaf index or the Shapley-Shubik index) has the following directly meaningful and analytically

useful probabilistic interpretation.  Suppose we know nothing about individual voters except their

positions with respect to the formal properties of a voting system (in this case, what state they live

in) but nothing about their political inclinations, voting habits, etc., and that, from behind this ‘veil

of ignorance,’ we wish to assess their voting power.  For this purpose (though certainly not for many

others), our a priori expectation must be that individuals vote randomly, i.e., as if they are 

independently flipping fair coins in what may be called a random (or Bernoulli) election.  On this

assumption, Felsenthal and Machover show that a voter’s absolute Banzhaf voting power is the

probability that he or she casts a decisive vote that determines the outcome of such a random

election (e.g., that, given all other votes, breaks what would otherwise be a tie).

Now suppose likewise that we know nothing about U.S. Presidential elections other than the

formal rules of the Electoral College — specifically, we know the population of each state, the total

number of electoral votes, the formula for apportioning these electoral votes among the states on the

basis of population, and the fact that each state’s electoral votes are cast as bloc for the candidate

who wins the most popular votes in the state.  Absent any further information, we must assume that

the total number of votes cast in a state is equal to some fixed percent of the state’s apportionment

population.  In a two-tier voting system such as the Electoral College, voter i’s a priori voting power

is the probability that i casts a doubly decisive vote, i.e., one that creates or breaks what would

otherwise be a tie in the  popular vote in the voter’s state, which in turn breaks what would otherwise

be a deadlock in the Electoral College.  Put otherwise, the a priori voting power of a voter under the

existing Electoral College is:

The probability that the voter casts a decisive vote within his state

times

The probability that the state casts a decisive bloc of electoral votes in the Electoral College,

Given that the voter is decisive within his state.

The probability that a voter casts a decisive vote in the state is essentially the probability that

the state vote is tied, which is equal (to excellent approximation given a modestly large number n

of voters) to %2& /&π&n&.  The probability that the voter’s state casts a decisive block of votes in the

Electoral College is equal to the state’s absolute Banzhaf power in the weighted voting game

51:538(270: 55, 34, . . . , 3), i.e., one with 51 voters, a total weight of 538, a winning quota of 270,

a weight of 55 for the largest player (California), 34 for the next largest (Texas), through 3 for the

smallest state (Wyoming).  The Banzhaf value for each state can be calculated using the appropriate

algorithm (namely, ipgenf ) from the  Computer Algorithms for Voting Power Analysis website. 

Since (absolute) Banzhaf values are equivalent to the relevant probabilities, overall two-tier voting

power for any voter is the product of these two quantities. Moreover, the probability that a state casts

a decisive bloc of votes in the Electoral College is not conditional on the popular vote outcome

within the state, so the condition ‘given that the voter is decisive within his state’ in the formulation

above is unnecessary.  
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In this manner, I could readily produce a chart such as Figure 1 for my encyclopedia entry;

it shows how individual voting power varies across states with different populations (based on the

2000 census).  Since probabilities of individual decisiveness are very small, it is convenient to

rescale voting power so that individual voting power in the least favored state (namely, Montana,

the largest state with a single House seat) is set at 1.0 and in other states as multiples of this.  The

figure show that voters in California have about 3.5 times the voting power of those in Montana. 

The two horizontal lines show mean individual voting power under the Electoral College and

individual voting power under direct popular vote — the latter of course being the same for all

voters and, perhaps surprisingly, substantially greater that mean voting power under the Electoral

College (indeed, greater than the power of voters in every state other than most favored California).

Having completed my encyclopedia entry, I thought it would be interesting and straight-

forward to make similar charts for other variants of the Electoral College.  The variants I considered

fell into three categories: those that keep the state-level winner-take-all practice but use a different

formula for apportioning electoral votes among states (e.g., basing electoral votes on House seats

only, giving all states equal electoral votes, etc.), those that keep the existing apportionment of

electoral votes but use something other than winner-take-all for the casting of state electoral votes,

and a range of ‘national bonus’ plans.  

All variants in the first category and also the Pure District Plan (under which each state is

divided into as many equally populated electoral districts as it has electoral votes, and a candidate

wins one electoral vote for each district carried) in the second category are simple two-tier systems,

in which voting power calculations can be made in just the same way as for the existing Electoral

College.  The Pure Proportional Plan (under which each state’s electoral votes are fractionally

apportioned among candidates in a way that is precisely proportional to their popular vote shares

in that state) and the Whole Number Proportional Plan (under which each state’s electoral votes

state are apportioned among the candidates on the basis of their popular vote shares, but in whole

numbers using an apportionment formula in the manner of proportional representation electoral

systems) require somewhat different but still straightforward calculations.2  However, the Modified

District Plan (under which a candidate wins one electoral vote for each Congressional District he

carries and two electoral votes for each state he carries) and any National Bonus Plan (under which

electoral votes are apportioned and cast as under the existing system but the candidate who wins the

most popular votes nationwide is awarded a bonus of some fixed number additional electoral votes)

present special difficulties.  This is because each voter casts a single vote that counts in two ways:

in the voter’s district and state under the Modified District Plan, and in the voter’s state and the

nation as a whole under the National Bonus Plan.  This means that the probability that a state casts

a decisive pair of votes in the Electoral College (under the Modified District Plan), or the bonus is

decisive (under the National Bonus Plan) depends in some degree  on whether the voter casts a

decisive vote at the district or state level respectively.  In this event, the condition ‘given that the

2   Such calculations reveal that the Modified District and Pure Proportional plans both give a substantial advantage

to voters in small states (due to their advantage in the apportionment of electoral votes) .  The voting power

implications of the Whole Number Proportional Plan are truly bizarre: voters in states with an even number of

electoral votes have (essentially) zero voting power, while voters in states with an odd number of electoral votes

have voting power as if electoral votes were equally apportioned among these states (Beisbart and Bovens, 2008). 

All these findings are presented in Miller (2009) using charts similar to Figure 1.
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voter is decisive within his state’ in the earlier formulation of double decisiveness is now necessary

(at least in principle — one might speculate that it would make little difference in practice).

In his original work on voting power in the Electoral College, Banzhaf (1968) attempted to

calculate individual two-tier voting power under the Modified District Plan by (i) calculating

individual voting power through the voter’s district, (ii) separately calculating individual voting

power through the voter’s state, and then (iii) adding these two probabilities together.  Figure 2

displays voting power under the Modified District Plan (based on the 2000 census) when calculated

in the Banzhaf manner.  While the relative voting power of voters in different states appears

reasonable and turns out to be approximately correct, Figure 2 displays a major anomaly in that

mean individual voting power exceeds individual voting power under direct popular vote. This is 

anomalous because Felsenthal and Machover (1998, pp. 58-59) demonstrate that, within the class

of ordinary voting systems, mean individual voting power under direct popular vote maximizes the

total Banzhaf score of all voters and therefore also maximizes mean voting power.  This anomaly

was not evident in Banzhaf’s work, because he reported only relative voting power across states and

never made comparisons of absolute individual voting power across Electoral College variants or

with the direct popular vote system.3  

More recent work by Edelman (2004) clarifies the nature of this problem but does not itself

point to a solution.  Edelman argued that individual voting power in two-tier voting systems of a

representative nature (e.g., council or legislature) can be enhanced by providing some at-large

representation in addition to single-member district representation.  Edelman further showed that

if voters cast separate and independent votes for their district and at-large representatives, and if the

at-large representatives are elected on winner-take-all slates and vote as a bloc in the top tier,

individual voting power may be determined by separately calculating individual voting power

through the voter’s district representation and through at-large representation and the adding the two

probabilities together (essentially as Banzhaf tried to calculate voting power under the Modified

District Plan).  Edelman further shows that individual voting power so calculated is maximized

when the number of at-large representatives is equal to the (approximate) square root of the total

number of representatives and that such voting power exceeds individual voting power when all

members are elected at-large.  

The key assumption in Edelman's analysis is that voters cast separate and independent votes

for district and at-large representation.  Edelman claims that allowing separate and independent

votes gives a voter more power because “he has more flexibility in the way he casts his vote.”  In

many contexts, greater “flexibility” in casting votes may be valuable to voters, but only if possible

election outcomes have multiple attributes that voters care about, e.g., if voters care, not only about

what party controls the council, but also about its ideological balance, ethnic diversity, geographical

representation, etc.  But the foundational assumption of standard voting power theory is that “the

measurement of voting power . . . concerns any collective body that makes yes-or-no decisions by

vote” (Felsenthal and Machover, 1998, p. 1; emphasis added), i.e., the setup is based on votes and

outcomes that are both binary in nature.  Edelman himself notes that the assumption of separate and

independent votes does not apply to the Modified District Plan for Electoral College in which a voter

3     Recalculation of Banzhaf's (1968) results shows that the same anomaly existed under the 1960 apportionment of

electoral votes.
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casts a single vote that counts in two ways, though he speculates that,  if the number of voters is

large enough, voting power under this plan may be just about the same as when votes are separate

and independent.  In any event, even if the Modified District Plan or the National Bonus were

modified to allow separate and independent votes, voters would never have reason to use their new-

found “flexibility” to “split” these votes, given the binary nature of Presidential election outcomes

— that is to say, there is no reason to vote for a Democratic-pledged elector at the district (or state)

level and a Republican pledged-elector at the state (or national) level (or vice versa).  

This gives us some insight into why the Banzhaf-style calculations for the Modified District

and National Bonus Plans allows mean individual voting power to exceed what it would be under

direct popular vote — they in effect assume, not only that voters can “split” their district (or state)

and state (or national) votes in this manner, but also that they actually do “split” their votes half the

time, thereby removing the correlation that would otherwise exist between district (or state) and state

(or national) votes.

X.2 A Simple Example

As a warm-up exercise, let us consider the simplest case in which nine voters are partitioned into

three uniform districts.  Elections are held under four distinct voting rules, each of which is

symmetric with respect to both voters and two candidates A and B.  Under all rules, voters cast a

single vote that counts in two ways, i.e., first in the ‘district’ part of upper-tier and second in the ‘at-

large’ part of upper-tier. With the U.S. Electoral College in mind, we may refer to lower-tier votes

as ‘popular votes’ and upper-tier votes as ‘electoral votes.’  These are the four voting rules:

(1) Pure District System:  each district casts 1 electoral vote, and the candidate winning a

majority of electoral votes (2 out of 3) is elected;

(2) Small At-Large Bonus System: each district casts 1 electoral and 1 additional electoral vote

is cast at-large, and the candidate winning a majority electoral votes (3 out of 4) is elected

(ties may occur in the upper tier);

(3) Large At-Large Bonus System: each district casts one electoral vote and a ‘winner-take-all’

bloc of 2  electoral votes is cast at-large, and the candidate winning a majority of electoral

votes (3 out 5) is elected; and

(4) Pure At-Large System: there no districts or, in any case, a bloc of 4 or more electoral votes

is cast at-large, so the districts are superfluous and the candidate winning a majority of the

popular votes (5 out of 9) is elected.

Let us consider things from the point of view of a focal voter i in District 1, who confronts

28 = 256 distinct combinations of votes that may be generated by the other eight voters.  We want

to determine, for each voting rule, in how many of the 256 combinations voter i is decisive, in the

sense that i’s vote tips the election outcome one way or the other.4  The number of such

4     If the number of voters n is even (e.g., n = 100), the interpretation of a decisive vote differs somewhat according

to whether the voting context is parliamentary or electoral.  Under usual parliamentary rules, a tie vote defeats a

motion, so voter i is decisive in any voting combination in which 50 other voters vote ‘yes’ and 49 vote ‘no,’ as the



Voting Power page 6

combinations is voter i’s Banzhaf score, and the number of such combinations divided by 256 is

voter i’s (absolute) Banzhaf voting power in the two-tier voting game.  If each combination is

equally likely, voter i’s Banzhaf power is equal to the probability that i casts a vote that is doubly

decisive, which can occur in three ways: (i) the individual vote is decisive in i’s district and the

district vote is decisive in the upper tier, (ii) the individual vote is decisive in the at-large component

and the at-large bloc is decisive in the upper tier, and (iii) the individual vote is decisive in both i’s

district and the at-large component and these combined votes are decisive in the upper tier.

Table 1 accounts for all 256 possible voting combinations by listing and enumerating each

of the 58 distinct (anonymous) vote profiles giving rise to each combination and indicates for each

whether voter i’s vote is decisive under each of the four rules.  At the bottom, Table 1 reports voter

i’s Banzhaf score and voting power for each rule.  We see that Banzhaf voting power increases as

the weight of the at-large component increases.5  The bottom of the table shows Banzhaf voting

power calculated (in the manner of Edelman) on the assumption that voters cast separate and

independent votes at the district and at-large levels.  In the Edelman setup, individual voting power

is maximized with a mixture of district and at-large electoral votes such that the at-large component

is approximately the square root of the total number of electoral votes.  The Edelman setup does not

generate an ordinary simple voting game, and therefore Edelman voting power values cannot be

calculated in the manner of Table 1; however, they can be readily calculated, as shown in the third

note at the foot of the table.  Any district vote profile may occur in conjunction with any popular

vote split and, in particular, a candidate can win the at-large vote without carrying any district.

Table 2 is derived from Table 1 and has two types of entries in each cell.  First, it

crosstabulates the 256 voting combinations with respect to whether voter i’s district vote (DV) is

tied, thereby making i’s vote decisive within the district (column variable), and whether the popular

(at-large) vote (PV) is tied, thereby making i’s vote decisive with respect to the at-large vote (row

variable).  We call each cell a contingency, and the lower number in each cell indicates number of

voting combinations giving rise to that contingency.  The contingencies themselves pertain to

characteristics of the first-tier vote only.  However, the four top numbers in each cell pertain to the

four distinct upper-tier voting rules and indicate, for each voting rule, the number of combinations

in which i’s vote is doubly decisive and that thereby contribute to i’s Banzhaf score.  

motion passes or fails depending on whether i votes ‘yes’ or ‘no.’  However, in elections between two candidates

(our present concern), voting rules are typically neutral between the candidates, so a tie outcome might be decided

by the flip of a coin.  In this event, a voter i is “half decisive” in any voting combination in which 50 other voters

vote for A and 49 for B (A wins if i votes for A and each candidate wins with .5 probability if i votes for B) and also

in any voting combination in which 49 other voters vote for A and 50 for B.  The upshot is that voter i’s total

Banzhaf score (and voting power) is the same under either interpretation.  Thus we can (and will) speak loosely “the

probability of a tie vote” even when the number of other voters is even.  More obviously, we can (and will) speak

interchangeably between “the probability of voter i breaking what would otherwise be a tie vote” and “the

probability of a tie vote” when the number of voters is large.

5       However, with only nine voters, the Large At-Large System with a single vote that counts in two ways is

effectively equivalent to the Pure At-Large System, because the candidate who wins the at-large vote must win at

least one district and thus 3 out of 5 electoral votes.
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The numbers in Table 2 were determined by consulting Table 1, and Table 1 in turn was easy

(if tedious) to construct.  But if the number of voters expands even slightly, it becomes impractical

to replicate Table 1 (for example, with 25 voters the number of possible combinations facing voter

i is 224 = 16,777,216), so some less direct method for enumerating (or estimating) Banzhaf scores

and voting power values must be devised.  We now turn to a larger-scale example, though still

simplified relative to either Electoral College variant.

X.3 A Large-Scale Example with Uniform Districts

We now consider an example in which n =100,035 voters are uniformly partitioned into k = 45

districts with 2223 voters, each with a single electoral vote and with a bloc of 6 additional electoral

votes elected at-large.

We note two relevant baselines.  Given 51 districts and no at-large seats and using the

standard approximation %2& /&π&n&, with n = 100,035/51 = 1961.47, for the probability of a tie vote,

individual voting power within a district is .0180156.  Using the Leech website, the voting power

of each district in the second tier is .112275.  Thus individual voting power (the probability of

double decisiveness) is .0180156 ×  .112275 = .0020227.  At the other extreme, with 25 or fewer

districts (i.e., effectively direct popular vote), individual voting power is simply  %2& /&π&n&, with n

= 100,035, or .0025227. 

We begin with Table 3A, set up in the same manner as Table 2 and initially pertaining to

lower-tier votes only.  Since the number of voting combinations is impossibly large, proportions

rather than counts of combinations are displayed and, given random voting, these are also 

probabilities.  We first calculate the probability that the popular vote is tied, which gives us the total

in the first row.  As noted just above, this probability is .0025227.  Using the same approximation

with n = 100,035/45 = 2223,  we calculate the probability that the vote in i’s district is tied to be

.0169227, which gives us the first column total.  Subtraction from 1.0000000 gives us the totals in

the second row and second column.

So far as Edelman-style calculations are concerned, we are almost done.  If district and at-

large votes are separate and independent, we can calculate the probabilities of contingencies simply

by multiplying the corresponding row and column probabilities, as shown in Table 3B.  But, given

Edelman’s assumptions, we need not be concerned with the interior cells at all. We need look only

at the marginal proportions in the first row and first column and then take account of voting in the

upper tier.  Upper-tier voting is given by the voting rule 46:51(26:6,1, . . . ,1) — that is, it is a

weighted voting game with 46 players (45 districts plus the at-large bloc), a total of 51 electoral

votes, a quota of 26 (a bare majority of the total of 51 electoral votes), and voting weights of 6 for

the at-large bloc and 1 for each district.  The Leech website produces .628702 and .080083 as the

voting power for the at-large bloc and each district respectively.  The voting power of voter i

through district representation is his probability of being decisive within his district times the

probability that is district is decisive in the second tier, i.e., .0169227 × .080083 =  .0013552, and

i’s voting power through at-large representation is his probability of being decisive in the popular

vote times the probability that the at-large bloc is district is decisive in the second tier, i.e., .0025227

× .628702  = .0015860.  Within Edelman’s setup, the overall voting power of each voter is simply
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the sum of these probabilities, i.e., .0029412, as also shown in Table 3A.6   Note that this is greater

than voting power under direct popular election, i.e., .0025227.  Figure 3 shows Edelman-style

voting power for all magnitudes of at-large representation, illustrating Edelman’s result that such

voting power is maximized when the size of the at-large component is set at the square root of the

total size of the representative body. 

If, in contrast to the Edelman setup, each voter has a single vote that counts for both district

and at-large representation, we have an ordinary simple voting game, and individual two-tier voting

power cannot exceed the .0025227 level resulting from direct popular (Pure At-Large) election

(Felsenthal and Machover, 1998, pp. 58-59).   However, voting power calculations become far more

complex. 

We first return to Table 3A and observe that, in the single-vote setup, the marginal proba-

bilities are the same, as is shown in Table 4A.  However, the fact that voters cast the same vote for

both district and at-large representation induces a degree of correlation between the vote in any

district and the at-large vote, so the probability that both votes are tied is greater than the .0000426

in the Edelman setup.  

We can directly calculate the conditional probability that the at-large vote is tied given that

a district vote is tied.  Given that the vote in i’s district is tied, the overall at-large vote is tied if and

only if there is also a tie in the residual at-large vote after the votes cast in voter i’s district are

removed.  The probability of this event is given by the standard approximation %2& /&π&n&, where n

is now 100,035 !2223 = 97812, and is equal to .0025512 as shown in Table 4A.  We can now derive

the unconditional probability that both types of ties occur simultaneously by multiplying this

conditional probability by the probability that the district vote is tied in the first place, i.e., .0025512

× .0169227 = .0000431.  With this piece of the puzzle in place, the probabilities of the other

contingencies are determined by subtraction.  Comparing Tables 4A and 3B, we observe that the

probabilities of the contingencies differ only slightly, with the probability of ties at one level but not

the other being slightly less in the single-vote setup, so the substantially lower overall voting power

arising from this setup relative to Edelman’s evidently results mostly from the workings of upper-

tier voting.

In any event, voter i is decisive in the two-tier voting process only if the at-large and district

votes are both tied (Contingency 1), the at-large vote only is tied (Contingency 2), or the district vote

only is tied (Contingency 3).  Having determined the probabilities of these contingencies, our next

— and much more difficult — task is to determine, given each of these contingencies, the

probability that voter i’s vote is decisive in the upper tier as well. 

First, let’s form some general expectations.  Contingency 1, being the conjunction of two 

already unlikely circumstances, is extraordinarily unlikely to occur but, if it does occur, voter i is

very likely to be doubly decisive.  Voter i is doubly decisive if and only if neither candidate has won

6      Taking the sum of the voting powers associated with each of the voter’s (district and at-large) votes may appear

to double-count those voting combinations in Contingency 1 in which both of i’s two votes are doubly decisive, but

at the same time it misses voting combinations in Contingency 1 in which neither vote by itself is doubly decisive

but the two votes together are, and it turns out that these combinations exactly balance out (Beisbart, 2007).
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a majority of 26 electoral votes from the 44 other districts — put otherwise, if each candidate has

won between 19 and 25 districts.  By breaking a tie in both his district and at-large vote, voter i is

tipping 7 electoral votes one way or the other, thereby giving one or other candidate the 26 electoral

votes required for election.  Given random individual voting, the electoral votes of the other 44

districts are likely to be quite evenly divided.  Since each candidate is likely to have won about half

of them, it likely that neither has won as many as 26 out of 44 districts, thereby making voter i

doubly decisive.  

Contingency 2 is considerably more likely to occur than Contingency 1, while voter i’s

probability of double decisiveness is only slightly less, since the voter is tipping almost as many

electoral votes (6 rather than 7) one way or the other in Contingency 2 as in Contingency 1.  Voter

i is now doubly decisive if and only if neither candidate has won a majority of 26 electoral votes

from all 45 districts — put otherwise, if each candidate has won between 20 and 25 districts.  By

breaking an at-large vote tie, voter i is tipping 6 electoral votes one way or the other and thereby

gives one or other candidate the 26 electoral votes required for election. Again, given random

voting, the electoral votes of the 45 districts are likely to be quite evenly divided, so it quite likely

that neither candidate has won as many as 26 districts.  

Contingency 3 is still more likely to occur than Contingency 2, but voter i is far less likely

to be doubly decisive in this contingency, since he is tipping only a single electoral vote one way

or the other.  Voter i is doubly decisive if and only if neither candidate has won a majority of 26

electoral votes from the other 44 districts and the at-large bloc of 6 votes, i.e., in the event that there

is an overall 25-25 electoral vote tie.  Such a tie results if and only if one candidate has carried 25

districts, while the other candidate has carried 19 districts and the at-large vote.  The probability of

such an event is very small for three reasons:

(1) an exact tie in the second-tier electoral vote tie is required, because i is tipping only a single

electoral vote; 

(2) the split in district electoral votes must be unequal in a degree that depends on the number

of at-large seats (here 25 to 19 with 6 at-large seats) in order to create a tie in overall

electoral votes, and such an unequal split is less likely than an equal split, since random

voting always produces 50-50 expectations; and 

(3) this rather unlikely 25-19 split in favor of one candidate in terms of district electoral votes

must come about in the face of a popular vote majority in favor of the other candidate

(which earned him the at-large bloc).

The last point implies that, in Contingency 3, voter i is doubly decisive only if i’s vote can

bring about the kind of election inversion (or ‘reversal of winners,’ ‘wrong winner,’ ‘referendum

paradox,’ etc.) in which the candidate who wins with respect to district electoral votes at the same

time loses with respect to overall at-large (popular) votes (Miller, 2012).  It is characteristic of

districted election systems such as U.S. Presidential elections and U.K. general elections that such

election inversions may occur, but they are quite unlikely unless the (at-large or popular vote)

election is very close.  But we must bear in mind that almost all large-scale random elections are

extremely close.  Indeed, if district and at-large votes are cast separately and independently in the

Edelman manner so there is no correlation between them, it is evident that 50% of all random
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elections produce election reversals.  This is shown in Figure 4A, which is based on a sample of

30,000 random elections in which the at-large vote and the district votes were generated

independently.  In contrast, when the popular vote is the district vote summed over all districts, a

substantial correlation is induced between district and at-large votes, which considerably reduces

the incidence of election inversions.  This is shown in Figure 4B, which is based on the same sample

of 30,000 random elections when the at-large popular vote is the sum of the district votes.  In this

sample, election inversions occurred in 20.4% of the elections, very closely matching the rate of

20.5% found by Feix et al. (2004) in a sample of one million random (or ‘Impartial Culture’)

elections.7

X.4 Random Election Simulations

Having formed expectations about the probability of double decisiveness in each contingency, we

must now assign numbers to these probabilities. While it may be possible to proceed analytically,

I have found the obstacles to be formidable and have instead proceeded on the basis of large-scale

simulations.  For the present case with 45 districts and 6 at-large seats, I have generated a sample

of 1.2 million random elections.8

The next question is how to use the results of the simulation to estimate the relevant

probabilities.  The most direct approach is to produce the crosstabulation depicted in Table 4B,

which shows the absolute frequencies produced by these simulations.  The number in the lower part

of each cell is the number of times that the contingency arose.  The number in the upper part of each

cell is the number of times voter i was doubly decisive in that contingency. Overall, voter i was

doubly decisive (DD) in 2970 elections out of 1,200,000.  Thus the  estimated a priori voting power

of voter i (and every other voter, given the overall symmetry) is 2970/1,200,000 or .002475, a figure

that sits comfortably between the lower bound of .0020227 for district only voting and the upper

bound of .0025227 for direct popular voting.  Our confidence in the simulated elections is reinforced

by comparing Table 4C, in which all absolute frequencies in Table 4B are converted into proportions

(and estimated probabilities), with Table 4A.  It is evident that the relative frequency of each

contingency closely matches the exact probabilities calculated earlier.

A second approach is to replace the estimated probabilities of each contingency in the lower

part of each cell in Table 4C by the known probabilities displayed in Table 4A.  In this case, the

numbers are so similar that the substitution makes essentially no difference, as voter i’s estimated

voting power becomes .0024880, in contrast to .0024750 using simulated data only.  

7      The correlation between the number of uniform districts carried by a candidate and the candidate’s national

popular vote is about +0.784.  This degree of associations appears to be essentially constant regardless of the number

of voters or districts, provided the latter is more than about 20 and the former is more than a thousand or so per

district.

8       As before, each of the 45 districts has 2223 voters, a number selected so that both district and at-large vote ties

may occur before focal voter i (in District 1) casts his vote and so that no ties occur after i has voted.  The

simulations, which are generated by SPSS syntax files, operate at the level of the district: the vote for candidate A in

each district is a number drawn randomly from a normal distribution with a mean of 2223/2 = 1111.5 and a standard

deviation of o .&2&5&&× 2&2&2&3& , i.e., the normal approximation to the binomial distribution with p = 0.5, and then rounded

to the nearest integer. 
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A third approach is suggested if we examine the frequency distributions underlying the cells

in Table 4B.  With respect to Contingency 1, Figure 5A shows the frequency distribution of districts

won by Candidate A in the 51 elections in which both the at-large vote and the vote in an (arbitrarily

selected) District 1 are tied.  A voter in District 1 is doubly decisive provided that the number of

districts won by either candidate lies within the range of 19-25.  This was true in 49 elections out

of the 51 elections, giving voter i a .960785 probability of double decisiveness in this contingency. 

But it evident that another sample of 1.2 million random elections (including about 50 belonging

to Contingency 1) might produce a substantially different statistic.  And, given a larger sample size,

we would expect this distribution to fit a more or less normal pattern, rather than the bimodal pattern

that happens to appear in the Figure 5A. So, given the present sample of elections, a more reliable

estimate of voter i’s probability of double decisiveness may be derived by supposing that the

underlying distribution of districts won by Candidate A is normally distributed with a known mean

of 22 (i.e., one half of the other 44 districts), rather than the sample statistic of 22.294118, and with

the standard deviation of 2.032674 found in this sample.  (From this point of view, the main purpose

of the simulation is to get an estimate of this standard deviation.)  The estimated proportion of times

voter i is doubly decisive is therefore equal the proportion of the area under a normal curve that lies

within 3.5/2.032674 = 1.72187 standard deviations from the mean, which is .914907.  This suggests

that the direct result of the simulation of .960785 is too high, and indeed Figure 5A suggests that it

was only by ‘good luck’ that Candidate A never won fewer than 19 districts.

A fourth approach — which is especially appealing with respect to Contingency 1 — is to

exploit the symmetry resulting from the uniformity of districts and to use the simulated data set to

make parallel calculations for voters in all 45 districts and average them.  This results in a rate of

double decisiveness of .919027, slightly higher than the previous result, and this is probably the best

estimate given the simulated data set.

In like manner, Figure 5B shows the frequency distribution of districts won by Candidate

A in the contingency that the at-large vote only is tied.  The actual distribution closely matches a

normal distribution with a mean of 22.5 (i.e., one half of all the 45 districts).  Given the much larger

(2960) sample of elections in Contingency 2, it is unsurprising that the normal curve approach to

estimating voter i’s double decisiveness produces essentially the same result (.859592) as the sample

statistic itself (.862838), and in this case the statistic is probably more reliable.  

Figure 5C shows the frequency distribution of (district plus at-large) electoral votes won by

Candidate A in the contingency that the vote in District 1 only is tied.  Since the distribution is

clearly bimodal (resulting from the fact that the at-large vote is not tied, as in Figures  5A and 5B,

and one or other candidate has won the block of 6 at-large votes), we obviously cannot use the

normal curve approach.  However, Contingency 3 is by far the most likely of the three contingencies

that allow voter i to be doubly decisive, so the sample size is very large (n = 20,167) and the sample

statistic for a 25-25 electoral vote tie (367/20,167 = .018198) should be highly reliable.

Putting this altogether in Table 4D, by pooling the results from all districts to estimate

probability of double decisiveness in Contingency 1, using the sample statistics in Contingencies

2 and 3, and using the known probabilities for the contingencies themselves, we get an estimate of

voter i’s voting power of .0024863, compared with .0024750 using sample statistics only (and

.0024880 using the sample statistics for probabilities of decisiveness in conjunction with the known
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probabilities for the contingencies themselves).  In sum, we can be pretty confident that the true

value of voter i’s voting power is just about .0024786, putting it slightly but clearly below the value

of .002523 that results from direct popular vote.   This contrasts of the Edelman value of .0029412

that results when voters cast separate and independent votes at the district and at-large levels.

Comparing Figures 5A-C with Figure 6A-C that results in the Edelman setup makes evident

how the Edelman setup produces a greater probability of double decisiveness.  We see that each

contingency occurs with virtually the same probability in the two setups (as we saw before in the

calculations displayed in Tables 3B and 4A).  In the first two contingencies, a voter is actually less

likely to be doubly decisive in the Edelman setup, as the spread in districts won by either candidate

is substantially larger.  This results from the absence of a correlation between popular votes won and 

number of districts won that results when each voter casts a single vote that counts twice (Figure 4B)

rather that two separate and independent votes (Figure 4A).  But this effect is more than wiped out

in Contingency 3, where two setups result in quite different distributions of electoral votes won.  In

the single-vote setup, the distribution is strikingly bimodal (the distance between the modes

depending on the number of at-large electoral votes relative to the total) because, as a candidate wins

more districts, he is more likely to win the at-large vote as well, whereas in the Edelman setup no

such correlation exists.  Given the parameters we are working with (6 at-large electoral votes out

of 51), the Edelman setup produces a distribution that is unimodal but, relative to a normal curve,

slightly ‘squashed’ in the center (Figure 6C).  If the relative magnitude of the at-large component

were increased, the ‘squashing’ effect would be increased and would in due course produce

bimodality, but it would always be substantially less than in the single-vote setup with the same at-

large component.  Thus, unless at-large component is wholly controlling (e.g., 26 electoral votes out

of 51), the Edelman setup makes an even split of electoral votes far more likely than does the single-

vote setup and thereby greatly enhances the probability of double decisiveness in Contingency 3,

which in turn is by far the most probable contingency that (in either setup) allows double

decisiveness.

I have duplicated the same kinds of simulations, with varying sample sizes, for other odd

values of the at-large component within a fixed total of 51 electoral votes.  The results (with sample

sizes) are displayed in Figure 7.9  The general pattern of the relationship between the magnitude of

the at-large component and individual power is very clear and is in sharp contrast with the pattern

of the same relationship in the Edelman setup shown in Figure 3.

X.5 The National Bonus Plan for the U.S. Electoral College

The previous analysis pertained to voting systems with  uniform districts, all of which have

the same number of voters and electoral votes.  The most direct Electoral College application of the

kind of analysis set out above pertains to variants of the National Bonus Plan, under which 538

electoral votes are cast in the present manner but the national popular vote winner is awarded a

9      The vertical axis in Figure 7 (and  9A and 9B) must show actual, rather than rescaled, voting power, because the

voting power of the least favored voter varies as the bonus (at-large) component varies.
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bonus of some number of (‘at-large’) electoral votes.10   However, in this case the ‘districts’ (i.e.,

the states) are not uniform, having different numbers of both voters and electoral votes.

Like the previous example, under the National Bonus Plan votes count in two distinct upper

tiers, i.e., the voter’s state and the nation as a whole, with the result that doubly decisive votes can

arise in three distinct contingencies: (1) a vote is decisive at both the state and national levels and

the combination of the state’s electoral votes and the national bonus is decisive in the Electoral

College; (2) a vote is decisive at the national level only and the national bonus is decisive in the

Electoral College; and (3) a vote is decisive at the state level only and the state’s electoral votes are

decisive in the Electoral College. However, under the bonus plan, the relevant probabilities and

simulation estimates must be separately determined for voters in each state, each with its own

number of voters and electoral votes.  While the calculations and simulations are in this respect more

burdensome, the procedure is a straightforward extension of that set out in the previous section.  The

following simulation results were  based on a sample of 256,000 random elections, each with about

122 million voters.11  

Figure 8A displays individual voting power, when calculated in the Banzhaf/Edelman

manner, under a National Bonus Plan with a bonus of 101 electoral votes for the national popular

vote winner.  At first blush, Figure 8A may look very similar to Figure 1 for the existing Electoral

College.  But inspection of the vertical axis reveals that the inequalities between voters in large and

small states are considerably compressed relative to the existing system.  Moreover, the same

anomaly occurs here as with Banzhaf’s calculations for the Modified District Plan, in that mean

individual voting power (considerably) exceeds that under direct popular vote.  Figure 8B displays

individual voting power with a 101 electoral vote national bonus calculated in the manner set out

in Section 4.12

Figure 9A displays individual voting power with a national bonus of varying magnitude,

again calculated in the Banzhaf/Edelman manner, while Figure 9B shows the same when voting

power is measured in the manner set out in Section 4.  A bonus of zero is equivalent to the existing

10      Though this idea had been around earlier, it was most notably proposed by Arthur Schlesinger, Jr. (2000)

following the 2000 election.  He proposed a national bonus of 102 electoral votes --- two for each state plus the

District of Columbia.  However, given an even number (538) of ‘regular’ electoral votes, it would seem sensible to

make the bonus an odd number in order to definitively eliminate the possibility of electoral vote ties (though ties

would be far less likely than at present given any substantial nation bonus).  It is clear that the motivation for a

national bonus is to reduce the probability of election inversions, not to redistribute voting power.

11      Given such a large electorate size, few if any elections were tied at the state or national level, so electoral vote

distributions were taken from a somewhat wider band of elections, namely those that fell within 0.2 standard

deviations of an precise tie in the state or national popular vote.  (Random elections with many voters are very close,

so the standard deviation is very small.  Moreover, the ordinate of a normal curve at a standard score of ± 0.2 is

about 0.98 times that at a standard score of zero, so the density of elections is essentially constant in the neighbor-

hood of a tie.)

12    The plotted points in Figure 8B, unlike those in Figures 8A, are estimates subject to some sampling error, but its

effects are probably invisible.
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Electoral College system and a bonus of at least 533 (like an at-large component of four or more

electoral votes in the simple example considered in Section 3) is logically equivalent to direct

popular vote.13  However, Figure 9B indicates that a bonus greater than about 150 is essentially

equivalent to direct popular vote. 

A comparison of Figures 8A and 8B indicates that, under the National Bonus Plan with a

bonus of 101 electoral votes, the relative voting power of voters in different states as calculated here 

is about the same —  though small-state voters are slightly more favored —  as under the Banzhaf-

Edelman calculations, but the latter considerably overestimate voters’ absolute voting power.  

X.6 The Modified District Plan for the U.S. Electoral College

Under the Modified District Plan, a candidate wins one electoral vote for each Congressional

District he carries and two electoral votes for each state he carries.14  Individual voting power within

each state is equal, because (we assume) each district has an equal number of voters.  All districts

have equal voting power in the Electoral College,  because they have equal weight, i.e., a single

electoral vote; and all states have equal voting power in the Electoral College, because they have

equal weight, i.e., two electoral votes.  But individual voting power across states is not equal,

because districts in different states have different numbers of voters (because House seats must be

apportioned in whole numbers) and states with different populations (and numbers of voters) have

equal electoral votes.  As in the previous discussions, doubly decisive votes can be cast in three

distinct contingencies: (1) a vote is decisive in both the voter’s district and state and the combined

three electoral votes are decisive in the Electoral College; (2) a vote is decisive in the voter’s state

and the state’s two electoral votes are decisive in the Electoral College; and (3) a vote is decisive

in the voter’s district and the district’s one electoral vote is decisive in the Electoral College.

The logic of the Modified District Plan is more complicated than it may at first appear. 

Because each individual vote counts in two ways, there are logical interdependencies in the way in

which district and state electoral votes may be cast.  Whichever candidate wins the statewide popular

vote must also win at least one district electoral vote but, at the same time, need not win more than

one.  Put otherwise, any statewide winner must win at least three of the state’s electoral votes but

need not win more than that.  It follows that the three electoral votes cast by the smallest states are

always undivided, just as under the existing ‘winner-take-all’ Electoral College.  In states with four

electoral votes, the state popular vote winner is guaranteed a majority of the state’s electoral votes

(i.e., at least three, with an even split  precluded).  In states with five electoral votes, the state

popular vote winner is guaranteed  majority of electoral votes.  But in states with six electoral votes,

the state popular vote winner may do no better than an even split and, in states with seven or more

13        With each vote counting the same way at the state and national levels, the national popular vote winner must

win at least one state with at least three electoral votes, and 533 is the smallest number B such B + 3 > .5 (538 + B).

14      This system is used at present by Maine (since 1972) and Nebraska (since 1992).  The 2008 election for the

first time produced a split electoral vote in one of these states, namely Nebraska, where Obama carried one

Congressional District.  A proposed constitutional amendment (the Mundt-Coudert Plan) in the 1950s would have

mandated the Modified District Plan for all states.
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electoral votes, the state popular vote winner may win fewer than half of them — that is, ‘election

inversions’ may occur at the state, as well as the national, level. 

However, the preceding remarks pertain only to logical possibilities.  Probabilistically, the

casting of district and statewide electoral votes is to some degree aligned in random elections (and

more so in actual ones).  Given that a candidate wins a given district, the probability that the

candidate also wins statewide is greater than 0.5 — that is to say, even though individual voters cast

statistically independent votes, the fact that they are casting individual votes that count in the same

way in two ways (both districts and states) induces a correlation between popular votes at the district

and state levels within the same state.  As we have seen, this correlation is perfect in the states with

only three electoral votes and diminishes as a state’s number of electoral votes increases.  This

implies that the Modified District Plan enhances individual voting power in small states even more

than the Pure District Plan does.

Again we follow the procedure outlined earlier. In this case, I generated a sample of

1,080,000 random elections, each with about 122 million voters, in which electoral votes were

awarded to the candidates on the basis of the Modified District Plan.15  For each state, a

crosstabulation was constructed and the relevant second-tier probabilities inferred.16  While the

probability of each contingency (straightforwardly calculated) varies considerably with the size of

the state, it turns out that the probabilities of double decisiveness in each contingency are essentially

constant regardless of state size — namely about 0.0736 in Contingency 1, 0.0502 in Contingency

2, and 0.0253 in Contingency 3 — because the same number of electoral votes (three, two, or one,

respectively) are at stake regardless of the size of the state.

Figure 10A shows individual voting power across the states under the Modified District

Plan.17   This chart invites comparison with Figure 10B, showing individual voting power by state

population under the Pure District Plan.  It can be seen that, as anticipated, the winner-take-all effect

15     Again these simulations were generated at the level of the 436 districts, not individual voters.  For each random

election, the popular vote for one candidate was generated in each Congressional District by drawing a random

number from a normal distribution with a mean of n/2 and a standard deviation of %2& /&π&n&, where n is the number of

voters in the district, i.e., the normal approximation to the Bernoulli distribution with p = 0.5.   The winner in each

district was determined, the district votes in each state were added up to determine the state winner, and electoral

votes were allocated accordingly. 

16     Even given this very large sample of elections, the large electorate size meant that few elections were tied at the

district or state level, so the relevant electoral vote distributions were taken from a somewhat wider band of

elections, in this case those falling within about 0.1 standard deviations of an exact tie.

17    Unlike those in Figure 10B, the plotted points in Figure 10A are subject to some sampling error (though its

effects are probably almost invisible), as well as errors due to other approximations noted in the text.  However, the

most prominent apparent anomalies in Figure 10A, where voters in a slightly more populous state (e,g., Rhode

Island or Iowa) may have somewhat greater voting power than voters is slightly less populous states (e.g., Montana

or Kansas) primarily reflect real discrepancies affecting voters in states with approximately similar populations that

happen to fall  on opposite sides of a threshold in the (whole-number) apportionment of electoral votes.  For

example, Rhode Island is the smallest state with 4 electoral votes, while Montana is the largest state with 3 electoral

votes.  (Such discrepancies are found in all Electoral College variants that apportion electoral votes into whole

numbers.) 
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for three-electorate vote states and the ‘winner-take-most’ effect for other small-electoral vote states

under the Modified District Plan further enhances the voting power of voters in these small states

relative to that under the Pure District Plan.  In addition, states that are relatively small but not

among the smallest (with a population of about 2.5 to 5 million) are more favored relative to both

the smallest states and larger states under the Modified District Plan than the Pure District Plan.  Put

otherwise, the implicit “voting power by state population curve” in Figure 10A bends less abruptly

in the vicinity of the “southwest” corner of the chart than in Figure 10B.

Figure 10A also invites comparison with Figure 2 showing individual voting power under

the Modified District plan when calculated in the Banzhaf/Edelman manner.  While inequality in

voting power is slightly less in Figure 10A, the main difference is that the (absolute and not

rescaled) voting power of all voters is substantially less in Figure 10A than in Figure 2, as is

indicated by the position of the lines showing (rescaled) individual voting power under direct

popular vote.  Figure 11 depicts this more directly, by overlaying the two scattergrams and showing

absolute, not relative, voting power on the vertical axis.  Indeed, we can readily get a good approxi-

mation of individual voting power under the Modified District Plan by using the (more straight-

forward but in principle incorrect) Banzhaf-Edelman mode of calculation in the first instance and

then reducing each value by about 20%.  With this correction factor added, Edelman’s (2004)

conjecture that, with a large number of voters (and states and districts), voting power under the

Modified District Plan may be just about the same as when individuals cast two separate and

independent votes is sustained.

X.7 Summary and Conclusions

When we try to measure the a priori voting power of individual voters under proposed variants of

the two-tier U.S. Electoral College system, two plans present special difficulties: the ‘Modified

District Plan,’ under which a candidate is awarded one electoral vote for each Congressional District

he carries and two electoral votes for each state he carries, and the ‘National Bonus Plan,’ under

which a candidate is awarded all the electoral votes of each state he carries (as at present) plus a

‘national bonus’ of some fixed number of electoral votes if he wins the national popular vote.  This

difficulty arises because, under these arrangements, each voter casts a single vote that counts in two

ways: in the voter’s district and state under the Modified District Plan, and in the voter’s state and

the nation as a whole under the National Bonus Plan.

In his original analysis of voting power under Electoral College variants, Banzhaf (1968)

evaluated voting power under the Modified District Plan by calculating a voter’s two-stage voting

power first through the district vote and then through the state vote and then adding the two values

together.  Unfortunately, this approach cannot be justified, because it ignores interdependencies in

the way district and state electoral votes may be cast — in particular, while individuals are casting

statistically independent votes, the fact that each is casting a vote that counts in two different upper

tiers induces a correlation between popular votes at different  levels.  That this problem is serious

is indicated by the fact that mean individual voting power under the Modified District system, when

calculated in the Banzhaf manner, exceeds individual voting power under direct national popular

vote, which Felsenthal and Machover (1998) show is a logical impossibility for a simple voting

game. 
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While an analytic solution to this problem may be possible, the difficulties appear to be

formidable.  Instead, I have proceeded computationally by generating very large samples of random

elections, with electoral votes awarded to the candidates on the basis of each plan.  This generates

a database that can be manipulated to determine the expected distributions of electoral votes for a

candidate under specified contingencies with respect to first-tier voting, from which relevant second-

tier probabilities can be inferred.  

We conclude that the Banzhaf-Edelman calculations get the relative voting power of

individual voters just about right but considerably overestimate their absolute voting power.
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Table 1.   All Possible Vote Profiles Confronting Focal Voter i in District 1, 

Given Nine Voters Uniformly Partitioned into Three Districts

[continues on next page]

Number of Times Voter i is Decisive (Total is i’s Bz Score)

Pop.

Vote
District Vote Profile k*

(1)

Pure District

(2)

Small AL

(3)

Large AL

(4)

All AL

8-0 (2-0)  (3-0)  (3-0) 1 0 0 0 0

Total 1 0 0 0 0

7-1 (1-1)  (3-0)  (3-0) 2 0 0 0 0

(2-0)  (2-1)  (3-0) 3 0 0 0 0

(2-0)  (3-0) (2-1) 3 0 0 0 0

Total 8 0 0 0 0

6-2 (0-2)   (3-0)   (3-0) 1 0 0 0 0

(1-1)  (2-1)   (3-0) 6 0 0 0 0

(1-1)   (3-0)   (2-1) 6 0 0 0 0

(2-0)   (3-0)   (1-2) 3 0 0 0 0

(2-0)   (2-1)   (2-1) 9 0 0 0 0

(2-0)   (1-2)   (3-0) 3 0 0 0 0

Total 28 0 0 0 0

5-3 (0-2)   (3-0)   (2-1) 3 0 0 0 0

(0-2)   (2-1)   (3-0) 3 0 0 0 0

(1-1)   (3-0)   (1-2) 6 6 3** 0 0

(1-1)   (2-1)   (2-1) 18 0 0 0 0

(1-1)   (1-2)   (3-0) 6 6 3** 0 0

(2-0)   (3-0)   (0-3) 1 0 0 0 0

(2-0)   (2-1)   (1-2) 9 0 0 0 0

(2-0)   (1-2)   (2-1) 9 0 0 0 0

(2-0)   (0-3)   (3-0) 1 0 0 0 0

Total 56 0 6** 0 0
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4-4 (0-2)   (3-0)   (1-2) 3 0 1.5** 3 3

(0-2)   (2-1)   (1-2) 9 0 4.5** 9 9

(0-2)   (1-2)   (3-0) 3 0 1.5** 3 3

(1-1)   (3-0)   (0-3) 2 2 2 2 2

(1-1)   (2-1)   (1-2) 18 18 18 18 18

(1-1)   (1-2)   (2-1) 18 18 18 18 18

(1-1)   (0-3)   (3-0) 2 2 2 2 2

(2-0)   (2-1)  (0-3) 3 0 1.5** 3 3

(2-0)   (1-2)   (1-2) 9 0 4.5** 9 9

(2-0)   (0-3)   (2-1) 3 0 1.5* 3 3

Total 70 40 55 70 70

3-5 Dual of 5-3 56 12 6 0 0

2-6 Dual of 6-2 28 0 0 0 0

1-7 Dual of 7-1 8 0 0 0 0

0-8 Dual of 8-0 1 0 0 0 0

 Total [Bz Score] 256 64 67 70 70

Bz Power .25 .26172 .27344 .27344

Edelman Bz

Power***
.25 .29004 .33008 .27244

* k is the number of distinct voter combinations giving rise to the specified district vote profile.

**     In these profiles, Banzhaf awards voter i  “half credit,” as i’s vote is decisive with respect to whether a

particular candidate wins or there is a tie between the two candidates.  (Under the other voting rules, ties cannot

occur.)

                                                 Prob. decisive        Prob. district           Prob. decisive         Prob at-large
*** Edelman Bz Power  =                          ×                               +                            ×                             

                                        in district         decisive in Tier 2           at-large             decisive in Tier 2

      AL = 1:     5     ×  .375 +      .27344 ×       .375            =  .29004

       AL = 2:    .5     ×         .25 +      .27344           ×       .7                =  .33008
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Table 2.  Summary of Table 1 Identifying Contingencies 1-3

DV Tied DV Not Tied Total

PV

Tied

40/40/40/40

Contingency 1

40

0/15/30/30 

Contingency 2

30

40/55/70/70

70

PV Not

Tied

24/12/0/0 

Contingency 3

88

0/0/0/0

98

24/12/0/0

186

Total
64/52/40/40

128

0/15/30/30 

128

64/67/70/70

256

Pure District / 1 A-L / 2 A-L / All A-L
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Table 3A.  Marginal Proportions in Large-Scale Example

DV Tied DV Not Tied Total

PV Tied Contingency 1 Contingency 2   .0025227

PV Not Tied Contingency 3   .9974773

Total .0169227 .9830773 1.0000000

Table 3B.  Contingency Proportions in Large-Scale Example Plus Edelman Calculations

DV Tied DV Not Tied Total

PV 

Tied .0000426 .0024900

× .628702 =.001586

.0025227

PV Not

Tied .0168801 .9805972 .9974773

Total
× .080083 = .0013552

.0169227 .9830773

.0029412

1.0000000  
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Table 4A.  Marginal and Contingency Probabilities with One Vote Counting in Two Ways

DV Tied DV Not Tied Total

PV

Tied

.0025512

„

.0000431 .0024796 .0025227

PV Not 

Tied .0168796 .9805977 .9974773

Total .0169227 .9830773 1.0000000

Table 4B.  Crosstabulation of District and At-Large Ties in 1.2 Million Random Elections

(Case Counts)

DV Tied DV Not Tied Total

PV

Tied

49

Prob. of DD = .960784

51

2554

Prob. of DD = .862838

2960

2603

3011

PV

Not

Tied

367

Prob. of DD = .018198

20,167

0

1,176,822

367

1,196,989

Total

416

20,218

2554

1,179,782

2970

Prob. of DD = .002475

1,200,000
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Table 4C  Crosstabulation of District and At-Large Ties in 1.2 Million 

Random Elections (Proportions)

DV Tied DV Not Tied Total

PV 

Tied

.0000408

.0000425

.0021283

.0024667

 .0021692

 .0025092

PV 

Not Tied

 .0003058

.0168058

.0000000

.9806850

  .0003058

  .9974908

Total
.0003467

.0168483

.0021283

.9831517

  .0024750

1.0000000

Table 4D  Final Estimate of Individual Voting Power in Large Scale Example

DV Tied DV Not Tied Total

PV

Tied

× .919027 = .0000397

.0000432

× .862836 = .0021394

.0024795

  .0021791

  .0025227

PV

Not Tied

× .018198 = .0003072

.0168795

.0000000

.9805978

  .0003058

  .9974773

Total
.0003467

.0169227

.0021314

.9830773

  .0024863

1.0000000
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Figures

Fig. X.1 Individual voting power by state population under the existing

apportionment of electoral votes

Fig. X.2 Individual voting power by state population under the Modified District Plan

(Banzhaf calculations)

Fig. X.3 Individual voting power by magnitude of the at-large bloc (Edelman

calculations)

Fig. X.4 Two-tier random election outcomes 

(a) Separate and independent votes in each tier (Edeleman)

(b) When one vote counts the same way in both tiers

Fig. X.5 Distribution of electoral votes won by Candidate A

(a) In Contingency 1

(b) In Contingency 2

(c) In Contingency 3

Fig. X.6 Distribution of electoral votes won by Candidate A (Edelman setup)

(a) In Contingency 1

(b) In Contingency 2

(c) In Contingency 3

Fig. X.7 Individual voting power by magnitude of at-large component

Fig. X.8 Individual voting power by state population under the National Bonus Plan

(Bonus = 101)

(a) By Banzhaf-Edelman calculations

(b) By present calculations

Fig. X.9 Individual voting power by state population by magnitude of national bonus

(a) By Banzhaf-Edelman calculations

(b) By present calculations

Fig. X.10 Individual voting power by state population

(a) Under the Modified District Plan

(b) Under the Pure Proportional Plan

Fig. X.11 Present and Banzhaf-Edelman calculations compared for Modified District

Plan
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Figure 1
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Figure 2
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Figure 3
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Figure 4
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Figure 6
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Figure 7
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Figure 8
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Figure 9
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Figure 10
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Figure 11


