
 Procedia Computer Science 9 (2012) 1630 – 1634

1877-0509 © 2012 Published by Elsevier Ltd.
doi: 10.1016/j.procs.2012.04.179

International Conference on Computational Science, ICCS 2012

Early Cloud Experiences with the Kepler Scientific Workflow

System

Jianwu Wang, Ilkay Altintas∗

San Diego Supercomputer Center, UCSD, 9500 Gilman Drive, MC 0505, La Jolla, CA 92093, U.S.A.

Abstract

With the increasing popularity of the Cloud computing, there are more and more requirements for scientific work-

flows to utilize Cloud resources. In this paper, we present our preliminary work and experiences on enabling the

interaction between the Kepler scientific workflow system and the Amazon Elastic Compute Cloud (EC2). A set of

EC2 actors and Kepler Amazon Machine Images are introduced with the discussion on their different usage modes.

Through two bioinformatics usecases, we demonstrate the capability of our work for both Cloud resource coordination

and workflow execution on virtual Cloud resources.

Keywords: Scientific workflows, data-intensive, bioinformatics, Amazon EC2, Cloud computing

1. Introduction

Because of its virtualization, abundance and scalability characteristics, Cloud is becoming a popular environ-

ment for both scientific and business applications. For example, Amazon Elastic Compute Cloud (Amazon EC2)1

provides infrastructure as a service (IaaS), which includes virtualized hardware (including storage and network) and

pre-configured software stack. Users can start one or more virtual instances from one Amazon Machine Image (AMI),

and administrate them as their own machines. Users can also get storage service from Amazon Simple Storage Service

(S3)2 or Elastic Block Store (EBS)3. Instead of making investments to purchase their own computing resources, users

can start using the available Cloud resources for compute and storage instantly via these services and pay as they go

based on their usage.

The popularity of the Cloud computing introduced new requirements for scientific workflows [1]. First, workflow

users should be able to utilize available Cloud resources and packages since more and more domain-specific toolkits

are available on the Cloud, especially on Amazon EC2. As a typical instance, Bio-Linux project4 provides an AMI

containing more than 500 bioinformatics programs. By initiating the Bio-Linux AMI on EC2, users can run these

∗Corresponding author. Tel.: +1-858-822-5453; fax: +1-858-822-3693

Email address: {jianwu, altintas}@sdsc.edu (Jianwu Wang, Ilkay Altintas)
1Amazon EC2: http://aws.amazon.com/ec2/, 2012.
2Amazon S3: http://aws.amazon.com/s3/, 2012.
3Amazon EBS: http://aws.amazon.com/ebs/, 2012.
4Bio-Linux Project: http://nebc.nerc.ac.uk/tools/bio-linux/, 2012.

Available online at www.sciencedirect.com

1631 Jianwu Wang and Ilkay Altintas / Procedia Computer Science 9 (2012) 1630 – 1634

programs directly without a separate installation. A complex application may have to execute toolkits on multiple

AMIs. Workflow systems could provide a way for scientists to utilize these available tools by scheduling tasks

with proper dependency control. The tasks include Cloud instance management (e.g., initiation and termination),

data transfer between Cloud instances, and program execution on Cloud instances. Another new requirement is data-

intensive workflow application execution on the Cloud. For data-intensive applications, localities of data and programs

are important for the overall performance. With virtualization and other techniques, workflow applications could get

both data locality and program locality. We will discuss this in more detail in Section 3.

In this paper, we present our early work utilizing Amazon EC2 for the Kepler scientific workflow System5 [2, 3].

The rest of this paper is organized as follows. In Section 2, we describe our Kepler EC2 Actors and AMIs to to

interact with Amazon Cloud. Different usage modes of these Actors and AMIs are discussed in Section 3. Two

workflow usecases in bioinformatics domain are demostrated in Section 4. In Section 5, we discuss our conclusions

and plans for future work.

2. Kepler Amazon EC2 Actors and Amazon Machine Images

Kepler EC2 Actors. We have implemented an EC2 module in Kepler which contains a set of EC2 actors. These

actors can be used to manage EC2 virtual instances in Amazon Cloud environment and attach EBS Volumes. Users

can use these actors to start, stop, run or terminate EC2 instances. Through these EC2 actors and other actors in

Kepler, users can easily build workflows to run their applications on EC2 Cloud resources. One EC2 workflow can

link a variety of applications residing on different platforms by connecting multiple AMIs, e.g., Hadoop6 and Linux

AMIs. Furthermore, through the Kepler user interface, researchers could analyze bottlenecks of their processes and

accelerate their execution by switching to better AMI instance types or by activating multiple parallel AMI instances

for their tasks.

Figure 1: Configurations of the Kepler RunEC2Instance actor.

Figure 1 shows the configuration parameters for the RunEC2Instance actor. To run an EC2 instance, users need

to provide account information including ’Access Key’, ’Secret Key’ and credential ’Key Pair’ file. ’Image ID’

parameter indicates the AMI ID for the instance. Users can also configure ’Instance Type’, ’Availability Zone’, and

’Minimal Instance Number’ for the instance they want to run. Using these configuration parameter settings, the

RunEC2Instance actor interacts with Amazon EC2 Web service in order to get configured instances. If the actor can

successfully get an instance, the information of the instance, e.g., URL and ID, will be sent out through its output.

Otherwise, the actor will pop up error message dialogue explaining why it cannot run successfully.

Kepler Amazon Machine Images and EBS Volumes. We created a few demonstrative Amazon Machine Images

and EBS Volumes for Kepler. The Images and Volumes contain the Kepler system, demonstrative Kepler workflows

and third-party bioinformatics tools including the BLAST tool [4]. The difference between Kepler Images and Vol-

umes is that Kepler Images can be used directly to run virtual instances, while Kepler Volumes have to be attached

5Kepler website: http://kepler-project.org/, 2012.
6Hadoop Project: http://hadoop.apache.org, 2012.

1632 Jianwu Wang and Ilkay Altintas / Procedia Computer Science 9 (2012) 1630 – 1634

to running instances. These Kepler Images and Volumes can be used to provide scalable and virtualized workflow

execution engine. For example, we discussed how to build a virtual Hadoop and Oracle Grid Engine7 cluster with an

attached Kepler Volume to accelerate certain Kepler workflow executions in [5]. Virtual cluster could also be built

directly based on a Kepler Image using toolkits like StarCluster8 .

3. Usage Modes

The Kepler EC2 actors and Images introduced in Section 2 could be used in different usage modes. We explain

the requirements and capabilities of each usage mode based on example scenarios below.

1) Kepler EC2 Actors + Third Party AMIs : If users want to access tools on third party AMIs, such as the

Bio-Linux Image, they can build workflows to access the related AMIs using the EC2 actors. Some other actors,

e.g., SSHExecution and SSHFileCopier, are also needed to transfer data and call third party programs remotely.

Dependencies can be easily depicted in the workflow. An example for this usage mode is discussed as the first usecase

in Section 4.

2) Kepler EC2 Actors + Kepler AMI: If users want to run their existing local workflows on EC2, they can

build an auxiliary workflow with EC2 actors to call their existing workflows on the virtual Kepler EC2 instance. For

example, a user might have a workflow working locally, and want to run it on a faster compute node. In this usage

mode, the user can find a proper instance type provided by Amazon for the Kepler AMI and configure it in the EC2

actors of the auxiliary workflow. The auxiliary workflow will initiate a Kepler virtual instance for this instance type

from the Kepler AMI, upload his/her original workflows to the instance. Then the auxiliary workflow can remotely

call the Kepler execution engine to execute uploaded workflows on the instance. After the execution on the instance,

the results can be copied back to local machine.

3) Kepler EC2 Actors + Kepler AMI + Third Party AMIs: If users already have workflows for the first usage

mode, they might want to run them via a virtualized Kepler execution engine. An auxiliary workflow can be built to

initiate a Kepler virtual instance from the Kepler AMI, upload the existing workflows and run them on the instance.

Then the uploaded workflows will use the EC2 actors in the workflows to launch other instances and run tools there.

This usage mode can be seen as a special combination of the above two. Particularly in this mode, user account

information needs to be uploaded to the Kepler virtual instance to launch other virtual instances. An example for this

usage mode is discussed as the second usecase in Section 4.

4) Virtual Cluster based on Kepler AMI: This mode is suitable for distributed parallel workflow execution on

the Cloud. Amazon EC2 provisions ’Cluster Compute Instance’ type and there are toolkits like StarCluster to help

setting up virtual clusters based on the Kepler Image. Using such toolkits, a virtual cluster can be generated with

Kepler installed on each node and fast inter-connection. This usage mode fits well with the framework for distributed

data-parallel workflow execution in Kepler [6]. By utilizing distributed data-parallel execution engines like Hadoop,

data can be partitioned and distributed on the virtual cluster. So with both data and Kepler execution engine located

locally on each compute node, the program and data transfer among nodes could be minimized and better performance

could be achieved for data-intensive workflow applications.

Besides the above typically usage modes, there could be other usage modes based on particular requirements. For

instance, a user could launch Kepler virtual instances using the EC2 toolkit and directly login to the instances to run

workflows.

4. Bioinformatics Usecases

To validate the proposed work in scientific applications, two experimental bioinformatics workflows running the

BLAST tool [4] are shown in Figures 2 and 3. The BLAST tool detects the similarities between biological sequence

datasets, and is one of the most widely used tools in bioinformatics.

7Oracle Grid Engine System: http://www.oracle.com/technetwork/oem/grid-engine-166852.html, 2012
8StarCluster Toolkit: http://web.mit.edu/star/cluster/, 2012.

1633 Jianwu Wang and Ilkay Altintas / Procedia Computer Science 9 (2012) 1630 – 1634

Figure 2: A Kepler workflow running BLAST on a third-party virtual instance.

Figure 2 shows a Kepler workflow that runs BLAST on EC2 via the first usage mode in Section 3. The workflow

first runs a virtual instance from the Bio-Linux Image using the RunEC2Instance actor. Because EC2 virtual instance

might take a while to be ready for user access, the workflow uses a loop to monitor its accessibility. After the virtual

instance is accessible, two SSHFileCopier actors are employed to copy the reference database and query sequence file

to the Bio-Linux instance. Then BLAST tool is executed on the instance via a SSHExecute actor. After the execution

is done, its output is copied back to the local machine via another SSHFileCopier actor.

Figure 3: A Kepler workflow running BLAST on a Kepler virtual instance and a third-party virtual instance.

Figure 3 shows a Kepler workflow that runs BLAST on EC2 via the third usage mode in Section 3. First, this

workflow starts a virtual instance of a Kepler AMI. Then similar to the above workflow, it needs to wait until the

virtual instance is accessible. After the virtual instance is running, user credential file to use EC2 resources and the

workflow shown in Figure 2 are uploaded to the Kepler EC2 instance. The credential file copy is necessary to start

another virtual EC2 instance. Then the Kepler engine on the Kepler instance is run in batch mode to execute the

1634 Jianwu Wang and Ilkay Altintas / Procedia Computer Science 9 (2012) 1630 – 1634

uploaded workflow on another EC2 instance based on the Bio-Linux Image. After the execution, the uploaded user

credential file is deleted for account security. In the end, the output file is downloaded to the local machine.

We note that domain scientists do not have to build workflows from scratch like the workflows discussed above

for all their requirements. We can build generic workflow templates or compose the above workflows into composite

actors, only leaving parameters, such as program name and data path, for scientists to configure for their different

requirements.

5. Conclusions and Future Work

Utilizing advantages of Cloud computing, scientific workflows could serve scientific application easier or more

efficiently. In this paper, we discuss our early Cloud experiments with the Kepler scientific workflow system, which

includes our EC2 actors, Kepler AMI and their usage discussion. Through bioinformatics usecases, we demonstrate

how to use our Kepler EC2 actors and Images to coordinate Cloud resources in a workflow and how to execute

workflows on virtual Cloud resources.

The Kepler EC2 actors are in a separate module in the Kepler repository. We will release this module in a new

Kepler suite. Along with the release, the Kepler Images and EBS Volumes will also be updated. We will publish the

information of the Images and Volumes in the Kepler project website.

With the promising results so far, we will improve our work in the future in several directions. First, we will

compare the different usage modes in Section 3 through experiments. We also plan to study how to optimize data-

intensive workflow execution on EC2.

6. Acknowledgments

The authors would like to thank the rest of Kepler and CAMERA teams for their collaboration. This work was

supported by NSF SDCI Award OCI-0722079 for Kepler/CORE, NSF ABI Award DBI-1062565 for bioKepler, the

Gordon and Betty Moore Foundation award to Calit2 at UCSD for CAMERA and an SDSC Triton Research Oppor-

tunities grant. We also thank the AWS in Education Research Grants from Amazon.com, Inc for EC2 usage credit.

References

[1] G. Juve, E. Deelman, Scientific workflows and clouds, Crossroads 16 (2010) 14–18. doi:http://doi.acm.org/10.1145/1734160.

1734166.

[2] I. Altintas, C. Berkley, E. Jaeger, M. Jones, B. Ludaescher, S. Mock, Kepler: An extensible system for design and execution of scientific

workflows, in: Proceedings of 16th International Conference on Scientific and Statistical Database Management (SSDBM 2004), Santorini

Island, Greece, 2004.

[3] B. Ludaescher, I. Altintas, C. Berkley, D. Higgins, E. Jaeger-Frank, M. Jones, E. A. Lee, J. Tao, Y. Zhao, Scientific workflow management and

the Kepler system, Concurrency and Computation: Practice & Experience, Special Issue on Scientific Workflows 18 (10) (2006) 1039–1065.

[4] S. F. Altschul, W. Gish, W. Miller, E. W. Myers, D. J. Lipman, Basic Local Alignment Search Tool, Journal of Molecular Biology 215 (3)

(1990) 403 – 410. doi:10.1016/S0022-2836(05)80360-2.

[5] J. Wang, P. Korambath, I. Altintas, A physical and virtual compute cluster resource load balancing approach to data-parallel scientific workflow

scheduling, in: Proceedings of 2011 IEEE World Congress on Services (SERVICES 2011), 2011, pp. 212 –215. doi:10.1109/SERVICES.

2011.50.

[6] J. Wang, D. Crawl, I. Altintas, A framework for distributed data-parallel execution in the Kepler scientific workflow system, in: Proceedings

of 1st International Workshop on Advances in the Kepler Scientific Workflow System and Its Applications, ICCS 2012, 2012.

