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ABSTRACT
Next-generation DNA sequencing machines are generating
a very large amount of sequence data with applications in
many scientific challenges and placing unprecedented de-
mands on traditional single-processor bioinformatics algo-
rithms. Middleware and technologies for scientific work-
flows and data-intensive computing promise new capabil-
ities to enable rapid analysis of next-generation sequence
data. Based on this motivation and our previous experi-
ences in bioinformatics and distributed scientific workflows,
we are creating a Kepler Scientific Workflow System mod-
ule, called “bioKepler”, that facilitates the development of
Kepler workflows for integrated execution of bioinformatics
applications in distributed environments. This vision paper
discusses the challenges related to next-generation sequenc-
ing data, explains the approaches taken in bioKepler to help
with analysis of such data, and presents preliminary results
demonstrating these approaches.
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1. INTRODUCTION
Next-generation DNA sequencing [23] machines are gen-

erating a very large amount of sequence data with applica-
tions in genomics and metagenomics, biological and biomed-
ical science, environmental science, ecology, and many other
fields. However, these new sequencing technologies pose
even newer data, computation, network, and complexity
management challenges to bioinformatics in comparison to
the previously identified issues [8].

1.1 Challenges
With the introduction of next-generation sequencers, e.g.,

the 454 Sequencer [17], there has been a huge increase in the
amount of DNA sequence data [25]. These second generation
and the emerging third generation sequencing technologies
are providing extremely huge data that overwhelms current
computational tools and resources. For example, the Illu-
mina HiSeq 20001 can produce two billion paired-end reads
per run (200 GB). The traditional bioinformatics scenario of
downloading data locally to analyze it does not scale at these
huge magnitudes. Executing BLAST [4] on datasets of such
sizes would consume thousands of CPU-years. Even with
ultra-fast mapping programs, such as BWA [15], it would
still take months to years of CPU time. In addition, as
datasets get larger, moving data over the network becomes
more complicated and error-prone.

This enormous data growth places unprecedented demands
on traditional single-processor bioinformatics algorithms. Ef-
ficient and comprehensive analysis of the generated data re-
quires distributed and parallel processing capabilities. Bioin-
formaticians often conduct parallel computation by splitting
their queries or databases to turn them into smaller jobs that
are executed in cluster, Grid, or Cloud environments, and
then merge the results. New computational techniques and
e�cient execution mechanisms for this data-intensive work-
load are needed. Technologies like scientific workflows [27]
and data-intensive computing [13] promise new capabilities
to enable rapid analysis of these next-generation sequence
data. These technologies, when used together in an integra-
tive architecture, have great promise to serve many projects

1Illumina HiSeq 2000: http://www.illumina.com/systems/-
hi-seq 2000.ilmn, 2012.



with similar needs on emerging distributed data-intensive
computing resources.

To date, there have been a number of studies for data-
intensive analysis of large-scale bioinformatics datasets on
Cloud computing platforms. For example, the CloudBurst
algorithm [22] has demonstrated the capability of MapRe-
duce [6] to parallelize the execution of the RMAP read-
mapping algorithm [24] on multiple compute nodes. How-
ever, even with the existence of easy access to data and
computational Grid or Cloud resources, there are still sev-
eral obstacles to overcome before domain scientists can ben-
efit from this abundance of data and the powerful computing
technologies. Bioinformaticians and other computational bi-
ologists still face having to learn how to use multiple tech-
nologies to get their science done, leaving non-expert users
in a position of using less e�cient techniques and achiev-
ing lower execution performance, which in turn consumes
more time and resources. New higher-level abstractions like
MapReduce are needed to support the easy expression of dis-
tributed bioinformatics and computational biology analysis
that brings together the best practices for accessing bioinfor-
matics data and for using multiple computing technologies.
This vision paper explains the approaches taken in the new
bioKepler project to help with these challenges and presents
preliminary results demonstrating these approaches.

1.2 Kepler Scientific Workflow System
A scientific workflow is the process of combining data and

processes into a configurable, structured set of steps that im-
plement semi-automated computational solutions to a scien-
tific problem. The Kepler2 scientific workflow system [3, 16],
is developed by a cross-project collaboration to serve scien-
tists from di↵erent disciplines. Since its initiation in 2003,
a diverse set of projects encompassing multiple disciplines
have used Kepler to manage, process, and analyze scien-
tific data [1]. Inherited from Ptolemy II3, Kepler adopts the
actor-oriented modeling [10] paradigm for design and execu-
tion of scientific workflows.

Kepler provides a graphical user interface (GUI) for de-
signing workflows composed of a linked set of components,
called Actors, that may execute under di↵erent Models of
Computations (MoCs) [11] implemented as Directors. Ac-
tors are the implementations of specific functions that need
to be performed and communication between actors takes
place via tokens that contain both data and messages. Di-
rectors specify what flows as tokens between the actors, how
the communication between the actors is achieved, when ac-
tors execute (a.k.a. fire), and when the overall workflow can
stop execution. The designed workflows can then be ex-
ecuted through the same user interface or in batch mode
from other applications. In addition, Kepler also provides
a provenance framework [2] that keeps a record of chain of
custody for data and process products within a workflow
design and execution. This helps track the origin of sci-
entific end products, and validate and repeat experimental
processes that were used to derive these scientific products.

1.3 Vision
As identified in Section 1.1, for enabling bioinformaticians

and computational biologists to conduct e�cient analyses,

2Kepler website: http://kepler-project.org/, 2012.
3Ptolemy II website: http://ptolemy.berkeley.edu/ptolemy-
II/, 2012.

there still remains a need for higher-level abstractions on
top of scientific workflow systems and distributed computing
methods. Specifically, three challenges remain unsolved:

(a) How can large-scale sequencing data be analyzed sys-
tematically in a way that incorporates and enables
reuse of best practices by the scientific community?

(b) How can such analysis be easily configured or pro-
grammed by end users with various skill levels to for-
mulate actual bioinformatics workflows?

(c) How can such workflows be executed in computing re-
sources available to scientists in an e�cient and intu-
itive manner?

Based on this motivation and our previous experiences
in bioinformatics and distributed scientific workflows as ex-
plained above, we are creating a Kepler Scientific Workflow
System module, called “bioKepler”, that facilitates the de-
velopment of Kepler workflows for integrated execution of
bioinformatics applications in distributed environments. To
develop such an environment, we build scientific workflow
components to execute a set of bioinformatics tools using dis-
tributed data-parallel execution patterns. Once customized,
these components are executed on multiple distributed plat-
forms including various Cloud and Grid computing platforms.

1.4 Related Work
Scientific workflows using distributed execution patterns

have been an active area of study over the last couple of
years. Several groups have developed support for distributed
execution patterns, such as Map and Reduce constructs in
VIEW [9], map, foldr and foldl constructs in Martlet [12],
MapReduce [29] and IterateOverArray [16] actors in Kepler,
and implicit iteration in Taverna [20]. The MasterSlave ac-
tor [28] in Kepler and Service Distribution in Triana [26] can
distribute data to multiple remote engines and run them in
parallel. The PACT programming model [5] in the Strato-
sphere system4 supports Cross, Match, and CoGroup data-
parallel patterns in addition to Map and Reduce. A PACT
program is transformed into a dataflow graph that can be
executed by the Nephele execution engine [30] to realize op-
timized processing on Cluster and Cloud environments.

In addition to pattern-based distributed execution, cur-
rent scientific workflow systems also provide distributed exe-
cution support using special built-in architectures and atomic
workflow constructs. Scientific workflow systems like Kepler,
Pegasus [7], Swift [31], and ASKALON [21] also support
distributed job execution in Cluster, Grid or Cloud environ-
ments.

Some frameworks such as CloudBurst [22] and Crossbow
[14] rebuild traditional single-processor bioinformatics tools
into the MapReduce parallel pattern. CloudBurst and Cross-
bow demonstrate the capability of patterns, e.g., MapRe-
duce, to parallelize execution of traditional bioinformatics
tools on multiple compute nodes.

However, to the best of our knowledge, there are no com-
prehensive distributed data-parallel bioinformatics tools and
supporting workflow systems so that the bioinformatics tools
can be easily integrated and e�ciently scheduled for di↵er-
ent computing environments.

4Stratosphere Project: http://www.stratosphere.eu/, 2012.
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Figure 1: Conceptual framework of the bioKepler

module and its interactions of other systems and

tools.

2. CONCEPTUAL FRAMEWORK
The bioKepler module that is under development will en-

able harnessing the potential of distributed computing in
bioinformatics. bioKepler will provide a comprehensive list
of bioinformatics programs and tools that are incorporated
in reusable components, called “bioActors”, that can visu-
ally be linked together and be executed in distributed envi-
ronments. A built-in mechanism to execute bioActors and
bioKepler scientific workflows on diverse distributed plat-
forms using data-parallel patterns is also being implemented
as explained in Section 3.

We believe this approach will enhance the users’ ability to
express their domain-specific data-intensive applications in a
natural way using high-order programming abstractions on
top of a dataflow paradigm. The bioKepler module will also
provide fault-tolerance and provenance support by building
upon the other modules in Kepler.

Figure 1 illustrates a conceptual framework that includes
major components of the bioKepler module along with other
Kepler modules bioKepler interacts with and the computa-
tional and data resources the module is being tested on.
Below, we explain the major system components shown in
Figure 1.

• Data-Parallel Execution Patterns: Several generic ac-
tors have been implemented in Kepler to support data-
parallel execution in distributed environments, e.g.,
MapReduce [29] and MasterSlave [28]. We are extend-
ing this generic higher-order actor set to support more
data-parallel execution patterns, such as All-Pairs [18],
and Match and CoGroup in PACT [5]. These higher-
order actors will reused to build domain-specific bioAc-
tors.

• bioKepler: The bioKepler module contains a special-
ized set of actors, namely bioActors, and a Director to
deploy and e�ciently execute workflows on a diverse
array of computing resources.

bioActors are Kepler actors that implement specific
Bioinformatics Tools such as BLAST and HMMER.
Additionally, each bioActor may implement one or more

of the data-parallel execution patterns, e.g., MapRe-
duce or MasterSlave as shown in Figure 1. Ideally,
every actor should support every pattern, but this is
dependent on the data and computation requirements
and utilization of the underlying tool. During work-
flow construction, the user may choose the pattern for
a particular actor, e.g., use MapReduce for BLAST,
or let the Director make this decision during run-time.
Unlike existing parallelized bioinformatic tools, such
CloudBurst [22] and Crossbow [14], which have a fixed
data-parallel pattern, bioActors can support multiple
data-parallel patterns. The best data-parallel pattern
for each bioActor can be chosen and customized at
runtime based on the characteristics of each concrete
execution, e.g., dataset sizes, and available computa-
tional resources and software. In this case, the user
does not need to know anything about data-parallel
patterns since they are automatically chosen by the
director.

The workflow created by the user integrates many ac-
tors to perform a sequence of tasks. However, the most
e�cient way to perform these tasks depends on the
available computational resources, and the user should
not be burdened with the complexities of distributed
computing and data transfer. The Director is respon-
sible for the overall execution of a workflow. It uses
a Scheduler to transform the workflow created by the
user into an Executable Workflow Plan, and an Ex-
ecution Engine to run the workflow on a set of com-
puting resources. The bioKepler Scheduler will trans-
form a user-created workflow into a Executable Work-
flow Plan that is optimized for the given resources.
The Scheduler may decide that one actor should use
MapReduce while another uses All-Pairs. In addi-
tion to applying the data-parallel execution patterns
to bioActors, the Scheduler may split the execution of
the workflow across di↵erent nodes. The Executable
Workflow Plan can then be deployed and executed by
the Execution Engine, which supports a diverse array
of computational resources including Amazon’s Elas-
tic Compute Cloud5, FutureGrid6, and UCSD’s Triton
Resource7.

• Additional Kepler Modules: The Provenance module
captures provenance information about workflows, in-
cluding the specification or structure of the workflow,
e.g., the actors, directors, parameters, etc., and ex-
ecution information such as the data transferred be-
tween actors. Provenance information is written to
a database and can be retrieved by other modules
through a query API. The Run Manager is a graphi-
cal interface for viewing and organizing workflow runs
stored in the provenance database. The user may tag
past runs with keywords or semantic annotations, and
search for runs based on tags or other metadata. Ad-
ditionally, the Run Manager facilitates sharing work-
flow runs by providing the ability to import and ex-
port from the database. The Reporting module cre-
ates reports based on workflow executions. The re-
port layout and formatting is specified via a graphi-

5Amazon EC2: http://aws.amazon.com/ec2/, 2012.
6FutureGrid Portal: https://portal.futuregrid.org/, 2012.
7Triton Resource: http://tritonresource.sdsc.edu/, 2012.
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sign and execution.

cal user interface called the Report Designer and after
workflow execution is complete, a PDF report is pro-
duced using data from the provenance database. The
Fault-Tolerance module provides error-detection and
handling mechanisms. A Contingency actor facilitates
workflow recovery by allowing the execution of alter-
native sub-workflows when the primary sub-workflow
fails [19].

Through this framework, bioinformaticians and computa-
tional biologists will be able to use parallelized bioinformat-
ics tools directly, compose them into larger scientific work-
flows, and execute them e�ciently on diverse distributed
environments.

3. PRELIMINARY RESULTS
In the first stage of the bioKepler project, we are cur-

rently building bioActors that can use data-parallel pat-
terns for e�cient execution. As illustrated in Figure 2, there
are many frameworks supporting di↵erent data-parallel pat-
terns, e.g., Hadoop and Phoenix8 support Map and Reduce,
and Stratosphere’s PACT/Nephele model [5] includes three
additional patterns as explained in Section 1.4. While Fig-
ure 2 shows only a limited set of parallel execution engines
and distributed environments, our vision is to extend it with
more components as we build them into bioKepler. In addi-
tion, we expect the reusable components and workflows layer
in Figure 2 to not only be easy-to-use for end users but also
be adaptive to di↵erent execution engines and distributed
environments. The challenge we are currently working on is
building and executing bioActors based on these similar but
di↵erent frameworks.

A new director for Kepler has been implemented to use
the Stratosphere system. The StratosphereDirector trans-
lates workflows composed of specialized PACT actors, e.g.,
Map and Reduce actors in Figure 3(a), into PACT programs
and runs them in the Nephele Execution Engine [30]. The
PACT programming model supports several types of input
contracts, e.g., Map, Reduce, Cross, etc., for user-supplied
first-order functions. The StratosphereDirector allows users
to specify these first-order functions either by creating a sub-
workflow in Kepler or choosing from a set of predefined Java
classes. In the former case, the Nephele execution engine
runs the Kepler execution engine as the first-order function,
and in turn the Kepler engine runs the sub-workflow cre-
ated by the user. The Stratosphere Director also supports
actors to read and write data from the file system using the
FileDataSource and FileDataSink actors. These actors have

8Phoenix System: http://mapreduce.stanford.edu/, 2012.
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Figure 3: BLAST workflow.

configurable parameters to specify the file path and how to
split and join the data.

The BLAST tool [4] detects the similarities between two
biological sequences, and is one of the most widely used
tools in bioinformatics. Executing BLAST can be very data-
intensive since the query or reference data may have thou-
sands to millions of sequences. Figure 3(a) shows a Ke-
pler workflow that runs BLAST through a data-parallel ap-
proach. The Kepler actors in the data-parallel BLAST work-
flow, i.e., FileDataSource, Map, Reduce, and FileDataSink,
each have a corresponding Contract [5] in the PACT pro-
gramming model. FileDataSource is configured to read a
query sequence file, and split the query sequences into mul-
tiple subsets. Each subset will have a partial number of
query sequences and the splits can be processed in paral-
lel. Both Map and Reduce have sub-workflows as shown in
Figures 3(b) and 3(c), respectively. The Map sub-workflow
executes BLAST to process a subset of the query sequences
against the reference database, and the Reduce sub-workflow
sorts the BLAST outputs based their key. FileDataSink
writes the sorted BLAST outputs into a single file.

Our preliminary experiments of the above workflow show a
near linear execution acceleration when running on multiple
compute nodes. Additionally, since BLAST can be paral-
lelized by partitioning only the reference database or parti-
tioning both the reference database and query sequence file,
we are composing corresponding workflows support these
two additional parallelization solutions. These workflows use
the Map, Cross, and Reduce Contracts in PACT. We will
compare the performance di↵erences of these three work-
flows and identify the most applicable environment and con-
figuration to run each workflow.

We are re-implementing our Kepler + Hadoop integration



[29] to have a new Hadoop Director, which will convert its
workflow into Hadoop programs that can be executed in a
Hadoop cluster. We expect the Hadoop and Stratosphere
Directors can be used interchangeably to execute the same
workflow on their associated engines simply by just chang-
ing the director. Since this design separates the user-created
workflows from the underlying parallel execution engines,
e.g., Hadoop, Stratosphere, and Phoenix, users can easily
switch from one execution engine to another by just switch-
ing the data-parallel director for their workflows. Further,
we plan to combine the functionality of these directors into
a generic one that automatically chooses and uses the “best”
execution engine based on environmental settings, the user’s
configuration, and dataset sizes.

Figure 2 illustrates this interaction of the above work-
flows with the underlying supporting systems, where users
do not need to know the di↵erent frameworks that support
data-parallel patterns and write separate codes to work with
them. They only need to compose data-parallel workflows
based on existing higher-order actors, e.g., bioActors, via
Kepler’s graphical user interface. The composed workflow
can be executed through various engines supported by the
directors for each data-parallel execution engine. In addi-
tion, through a set of customization parameters, these work-
flows and data-parallel tasks within them can be configured
to run on available distributed resources.

4. CONCLUSIONS
This paper presents the challenges of data analysis for

large-scale biological data and our approaches for answer-
ing some of these challenges using scientific workflows. We
believe that the analysis of next-generation sequencing data
can be accelerated by embracing scientific workflows and
data-intensive techniques. Our preliminary work to proto-
type such a vision shows promising results on facilitating
workflow usability, execution e�ciency, and adaptability.

Based on our previous experience and related work [22,
14], we argue there is no generic methodology that can be
applied to all bioinformatics tools for their parallelization.
Each bioinformatics tool must be examined to determine if
and how it can be parallelized. We are currently collabo-
rating with a group of bioinformaticians to evaluate which
biological tools can be implemented as higher-order data-
parallel actors and to categorize the bioinformatics tools
we evaluate. Based our experience in this process, we plan
to create guidelines to facilitate parallelizing other scientific
tools.

As other next steps, we plan to extend the Kepler +
Hadoop framework as explained in Section 3. Since simi-
lar data-intensive challenges are faced by many other scien-
tific disciplines besides biology, we plan to evaluate how our
practices and results can benefit other scientific domains.

5. ACKNOWLEDGMENTS
The authors would like to thank the rest of Kepler and

CAMERA teams for their collaboration. This work was sup-
ported by NSF SDCI Award OCI-0722079 for Kepler/CORE,
NSF ABI Award DBI-1062565 for bioKepler, the Gordon
and Betty Moore Foundation award to Calit2 at UCSD for
CAMERA, and an SDSC Triton Research Opportunities
grant.

6. REFERENCES

[1] I. Altintas, O. Barney, Z. Cheng, T. Critchlow,
B. Ludaescher, S. Parker, A. Shoshani, and M. Vouk.
Accelerating the scientific exploration process with
scientific workflows. Journal of Physics: Conference
Series, 46:468–478, 2006. SciDAC 2006.

[2] I. Altintas, O. Barney, and E. Jaeger-Frank.
Provenance collection support in the kepler scientific
workflow system. In Proceedings of International
Provenance and Annotation Workshop, pages 118–132,
2006.

[3] I. Altintas, C. Berkley, E. Jaeger, M. Jones,
B. Ludaescher, and S. Mock. Kepler: An extensible
system for design and execution of scientific
workflows. In Intl. Conference on Scientific and
Statistical Database Management (SSDBM), Santorini
Island, Greece, 2004.

[4] S. F. Altschul, W. Gish, W. Miller, E. W. Myers, and
D. J. Lipman. Basic Local Alignment Search Tool.
Journal of Molecular Biology, 215(3):403 – 410, 1990.
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