
Big Data Applications using Workflows for Data Parallel Computing

Jianwu Wang, Daniel Crawl, Ilkay Altintas, Weizhong Li
University of California, San Diego

Abstract
In the Big Data era, workflow systems need to embrace data parallel computing techniques for
efficient data analysis and analytics. We present an easy-to-use, scalable approach to build and
execute Big Data applications using actor-oriented modeling in data parallel computing. We use
two bioinformatics use cases for next-generation sequencing data analysis to verify the feasibility
of our approach.

Keywords
Big data workflow, Actor-oriented programming, Data parallelization, Bioinformatics application

1. Introduction

As the Internet of Things [1] and other data acquisition and generation technologies advance,
data being generated is growing at an exponential rate at all scales in many online and scientific
platforms. This mostly unstructured and variable data growing and moving between different
applications dynamically in vast quantities is often referred to as "Big Data". The amount of
potentially valuable information buried in Big Data is of interest to many data science
applications ranging from natural sciences to marketing research. In order to analyze and digest
such heterogeneous data, challenges for integration and distributed analysis should overcome
include: scalable data preparation and analysis techniques; new and distributed programming
paradigms; and innovative hardware and software systems that can serve applications based on
their needs.

An important aspect of Big Data applications is the variability of technical needs based on
applications being developed. These applications typically involving data ingestion, preparation
(e.g., extract, transform, and load), integration, analysis, visualization and dissemination are
referred to as Data Science Workflows [2]. A data science workflow development is the process
of combining data and processes into a configurable, structured set of steps that implement
automated computational solutions of an application with capabilities including provenance
management, execution management and reporting tools, integration of distributed computation
and data management technologies, ability to ingest local and remote scripts, and sensor
management and data streaming interfaces. Data science workflows have a set of technology
challenges that can potentially employ a number of Big Data tools and middleware. Rapid
programmability of applications on a use case basis requires workflow management tools that can
interface to and facilitate integration of other tools. New programming techniques are needed for
building effective and scalable solutions span across the data science workflows. Flexibility of
workflow systems to combine tools and data together makes it an ideal choice for the
development of data science applications involving common Big Data programming patterns.

Big Data workflows have been an active research area since the introduction of scientific
workflows [2]. After the development and general adoption of MapReduce [3] as a Big Data
programming pattern, a number of workflow systems were built or extended to enable
programmability of MapReduce applications including Oozie [4], Nova [5], Azkaban1 and

1 Azkaban Project: http://azkaban.github.io/azkaban2/, 2014

Digital Object Indentifier 10.1109/MCSE.2014.50 1070-9924/$26.00 2014 IEEE

This article has been accepted for publication in Computing in Science and Engineering but has not yet been fully edited.
Some content may change prior to final publication.

Cascading2. In this article, we present programming extensions on MapReduce and other Big
Data programing patterns to the well-adopted Kepler Workflow Environment (https://kepler-
project.org/) and the engines built on top of Hadoop3 and Stratosphere4 systems to execute
workflows including these patterns. The unique part of our approach is: (i) its heterogeneous
nature in which Big Data programming patterns are placed as part of other workflow tasks; (ii) its
visual programming approach that does not require scripting of Big Data patterns; (iii) its
adaptability for executing data parallel applications on different execution engines.

Our tools presented in this article are applicable to Big Data workflows in all domains. By
leveraging the workflow composition and management capabilities of Kepler [6], and the
execution characteristics of distributed data parallel (DDP) patterns like MapReduce, we provide
a general and easy-to-use framework and tool to facilitate Big Data applications in scientific
workflow systems. Users can easily create DDP workflows, connect them with other tasks using
Kepler, and execute them efficiently and transparently via available DDP execution engines.
Parallel execution performance can be achieved transparently by our execution engine without
user intervention.

This approach scales to all forms of Big Data including structured, non-structured and semi-
structured data. We provide two example use cases on analysis of next-generation sequencing
data and other bioinformatics data using community developed bioinformatics tools. The
approach is applicable on a range of computing resources including Hadoop clusters, XSEDE and
Amazon's EC2. A typical data size for such applications is within gigabyte (GB) to terabyte (TB)
range.

2. Data Parallel Computing in Distributed Environments
From algorithmic perspective, several design structures are commonly used in data parallel

analysis and analytics applications. To generalize and reuse these design structures in more
applications, many DDP patterns have been identified to easily build efficient data parallel
applications. Such DDP patterns include Map, Reduce, Match, CoGroup, and Cross. DDP
patterns enable programs to execute in parallel by splitting data in distributed computing
environments. Originating from higher-order functional programming [7], each DDP pattern
executes user-defined functions (UF) in parallel over input datasets. Since DDP execution
engines often provide many features for execution, including parallelization, communication, and
fault tolerance, application developers only need to select the appropriate DDP pattern for their
specific data processing tasks, and implement the corresponding UFs.

The definitions and key properties of the DDP patterns are listed below and are illustrated in
Fig. 1. Map and Reduce process a single input, while CoGroup, Match, and Cross process two
inputs. For all patterns, each input data is a list of key-value pairs. These pairs are partitioned and
shuffled based on the pattern definition and are sent to UF to process. One UF is instantiated for
each independent input data and these UF instances can run in parallel. The formal definitions of
these patterns can be found in [8].

• Map: Independently processes each key-value pair from the input. Consequently, the UF
instances are called independently for the key-value pairs of the input list.

• Reduce: Partitions the key-value pairs by their keys. All pairs with the same key are
grouped and handled together in one UF instance.

• CoGroup: Partitions the key-value pairs of the two input lists according to their keys and
groups values for each key. For each input, all pairs with the same key form one list. So

2 Cascading Project: http://www.cascading.org/, 2014
3 Hadoop Project: http://hadoop.apache.org, 2014
4 Stratosphere Project: http://www.stratosphere.eu, 2014

Digital Object Indentifier 10.1109/MCSE.2014.50 1070-9924/$26.00 2014 IEEE

This article has been accepted for publication in Computing in Science and Engineering but has not yet been fully edited.
Some content may change prior to final publication.

each UF instance gets inputs as a key and two value lists for the key. If a key is only at
one input list, the value list for this key from the other input will be empty.

• Match: Partitions the key-value pairs of the two input lists according to their keys
without value grouping. A Cartesian product of the two value lists for the same key is
generated, and each value pair from the product and the key will be processed by a
separate UF instance. If a key is only in one input list, the UF will not be executed for
this key.

• Cross: Processes all elements from the Cartesian product of the key-value pairs of the
two input lists. Each UF instance processes one element from the Cartesian product and
its inputs are two key-value pairs from the two input lists respectively.

Fig. 1. Distributed Data Parallel Patterns to execute user-defined functions in parallel
over input datasets.

Due to the increasing popularity and adoption of these DDP patterns, a number of execution
engines have been implemented to support one or more of them. These DDP execution engines
manage underlying communications and data transfers, and execute UF instances in parallel.
When running on distributed resources, DDP engines can achieve good scalability and
performance acceleration. Hadoop is the most popular MapReduce execution engine.
Additionally, Cloud MapReduce 5 and MapReduce-MPI 6 can also run applications built by
MapReduce patterns. The Stratosphere system [8] supports all of the DDP patterns illustrated in
Fig. 1. The CoGroup, Match, and Cross may be transformed into Map and Reduce to run on
Hadoop as described in Section 4.2. Since each DDP execution engine defines its own API for
how UFs should be implemented, an application implemented for one engine may be difficult to

5 Cloud MapReduce: http://code.google.com/p/cloudmapreduce/, 2014
6 MapReduceMPI: http://mapreduce.sandia.gov/, 2014

Map
<k1, v1>

<k2, v2>

<k3, v3>

<k4, v4>

UF(k1, v1)

UF(k2, v2)

UF(k3, v3)
UF(k4, v4)

Reduce
<k1, v1>

<k1, v2>

<k2, v3>

<k3, v4>

UF(k1, list(v1,v2))

UF(k2, list(v3))

UF(k3, list(v4))

CoGroup
<k1, v1>

<k1, v2>

<k1, v3>

<k2, v4>

In1

In2

UF(k1, list(v1,v2), list(v3))

UF(k2, list(), list(v4))

Match
<k1, v1>

<k1, v2>

<k1, v3>

<k2, v4>

In1

In2

UF(k1, v1, v3)

UF(k1, v2, v3)

Cross
<k1, v1>

<k1, v2>

<k1, v3>

<k2, v4>

In1

In2

UF(k1, v1, k1, v3)

UF(k1, v1, k2, v4)
UF(k1, v2, k1, v3)

UF(k1, v2, k2, v4)

Digital Object Indentifier 10.1109/MCSE.2014.50 1070-9924/$26.00 2014 IEEE

This article has been accepted for publication in Computing in Science and Engineering but has not yet been fully edited.
Some content may change prior to final publication.

run on other engines. The visual programming approach employed by workflow systems can help
to overcome this difficulty using the approach described in this article.

3. Actor-Oriented Programming and Kepler Scientific Workflow System

Unlike object-oriented programming where the basic elements are objects, actor-oriented
programming is built on top of actors and inherits parallelization among actors. An actor provides
an independent function, such as job submission or web service invocation. Actors can be
connected via links that determine how data flows from one actor to another. Actors are
categorized into atomic actors and composite actors, where composite actors, also called sub-
workflows, are composed of atomic and/or other composite actors. In this way, we can achieve
hierarchical modeling. Actor execution is data-driven: at runtime, each actor execution consumes
a set of input data and generates a set of output data, and an actor repeatedly executes as long as it
keeps receiving input data.

The Kepler open-source scientific workflow system is a cross-project collaboration to serve
scientists from different disciplines. Kepler inherits from and extends Ptolemy II7 to follow the
actor-oriented paradigm to manage, process, and analyze scientific data. Kepler provides a
graphical user interface (GUI) for designing, managing and executing scientific workflows,
where each step is an actor. Actors are linked together to implement a computational solution to a
scientific problem.

Actor-oriented programing decouples components from execution orchestration. Kepler and
Ptolemy provide a special type of entity, called Director, to manage the execution of the linked
actors. Each director specifies a model of computation that governs the interaction between
actors. At runtime, the director determines when and how to send data to each actor and trigger its
execution. Different directors have been defined in Kepler and Ptolemy to support different
models of computation [9]. For instance, the SDF (Synchronous Data-Flow) director has fixed
data production and consumption rates for each actor execution and the workflow execution is
done in one thread. The PN (Process Network) director supports dynamic data production and
consumption rates and each actor executes in its own thread.

The decoupling of actors and directors greatly enhances actor reuse with different directors.
The same set of actors may be executed by different directors to have different behaviors.
Further, the hierarchical structure of a workflow enables coexistence of multiple directors within
one workflow. It makes the actor-oriented approach an ideal choice for heterogeneous Big Data
applications where different steps have different scalability and execution needs. For instance, a
sub-workflow that executes MPI jobs can be connected to a sub-workflow that executes
MapReduce jobs within one workflow if proper directors are employed for the sub-workflows.

4. Actor-Oriented DDP Workflows in Kepler

4.1 Actors for DDP Patterns

The DDP framework fits actor-oriented programming very well. Since each DDP pattern
expresses an independent higher-order function, we can define a separate DDP actor for each
pattern. Unlike other actors, these higher-order DDP actors do not process the input data sent to
them as a whole. Instead, they first partition the input data and then process each partition
separately.

The UF for the DDP patterns is an independent component and can naturally be encapsulated
within a DDP actor. The logic of the UF can either be expressed as a sub-workflow or compiled
code. In the latter case, if users already implemented their UFs using the API for a DDP engine,
they just need to configure this information in the DDP actor. Otherwise, users can compose a

7 Ptolemy II website: http://ptolemy.berkeley.edu/ptolemyII/, 2014.

Digital Object Indentifier 10.1109/MCSE.2014.50 1070-9924/$26.00 2014 IEEE

This article has been accepted for publication in Computing in Science and Engineering but has not yet been fully edited.
Some content may change prior to final publication.

sub-workflow for their UF in the Kepler GUI using specific auxiliary actors for the DDP pattern
and any other general actors. Since the sub-workflow is not specific to any engine API, different
DDP engines in Kepler can execute it. As with other actors, multiple DDP actors can be linked to
construct bigger applications.

4.2 Director for DDP Patterns

Each DDP pattern defines its execution semantics, i.e., how data is partitioned and processed
by the pattern. This clear definition enables decoupling between a DDP pattern and its execution
engine. To execute DDP workflows on different DDP execution engines, we have implemented a
DDP director in Kepler. Currently, this director can execute DDP workflows with either Hadoop
or Stratosphere. At runtime, the director will detect the availability of Hadoop or Stratosphere
execution engine and transform workflows into their corresponding jobs. The adaptability of the
director makes it user-friendly since it hides the underlying execution engines from users.

All the DDP patterns described in Section 2 are supported by Stratosphere, and there is a one-
to-one mapping between DDP workflows in Kepler and Stratosphere jobs. The DDP director can
directly convert DDP workflows to jobs executable by Stratosphere. If a UF implementation
code, and not a sub-workflow, is specified in DDP actors, the Stratosphere execution engine can
invoke it directly. For DDP actors containing a sub-workflow, the Kepler engine is called with
the partitioned data to process sub-workflows in the Stratosphere jobs. The DDP director also
handles the necessary data type conversion between Kepler and Stratosphere during their
interactions.

Table 1. Algorithm to transform a DDP workflow into Hadoop jobs
1. List transformToHadoopJobs(workflow) {
2. List sinkActorsList = getSinkActors(); //get the list of actors that have no downstream actors
3. List hadoopJobList = new List();
4. for (each actor in sinkActorsList) {
5. hadoopJobList.add(getHJobs(actor, emptyList));
6. }
7. }

8. List getHJobs(actor, tmpHJList) {
9. if (actor is null)
10. return tmpHJList; //return the current job list if there is no upstream actor.
11. else if (actor is Map) {
12. if (tmpHJList is empty) {
13. Job job = new Job();
14. job.setMapper(actor); //create a job whose Mapper runs the sub-workflow of the actor
15. } else
16. tmpHJList.getFirst().mergeMap(actor); // merge the Map into the current job.
17. return getHJobs(actor.getUpstreamActor(), tmpHJList);
18. } else { //actor could be Reduce, Match, CoGroup or Cross
19. Job job = new Job();
20. if (actor is Reduce) {
21. job.setReducer(actor);
22. tmpHJList.addToFront(job); //add job in front of the current jobs.
23. return getHJobs(actor.getUpstreamActor(), tmpHJList);
24. } else { //actor could be Match, CoGroup or Cross. All have two upstream actors.
25. if (actor is Match) {
26. job.setMapper(TaggingMapper); // TaggingMapper tags different values to the two

inputs.
27. job.setReducer(MatchReducer); // MatchReducer differentiates two inputs based tags

and calls Match sub-workflow.

Digital Object Indentifier 10.1109/MCSE.2014.50 1070-9924/$26.00 2014 IEEE

This article has been accepted for publication in Computing in Science and Engineering but has not yet been fully edited.
Some content may change prior to final publication.

28. } else if (actor is CoGroup) {
29. job.setMapper(TaggingMapper);
30. job.setReducer(CoGroupReducer); // CoGroupReducer differentiates two inputs

based tags and calls CoGroup sub-workflow.
31. } else if (actor is Cross) {
32. Job job2 = new Job();
33. job2.setMapper(CacheWritterMapper); // CacheWritterMapper writes the first input

data into Hadoop distributed cache.
34. job.setMapper(CrossMapper); // CrossMapper gets the second input data from

interface and the first input data from distributed cache, and calls Cross sub-workflow.
35. tmpHJList.addToFront(job2);
36. }
37. tmpHJList.addToFront(job);
38. tmpHJList.addToFront(getHJobs(actor.getFirstUpstreamActor(), tmpHJList)); //process

the first upstream actor
39. return getHJobs(actor.getSecondUpstreamActor(), tmpHJList); //process the second

upstream actor and return
40. }
41. }
42. }

The DDP director can also execute DDP workflows on Hadoop. Since the CoGroup and
Cross patterns are not supported by Hadoop, the director must convert these into Map and Reduce
patterns. Unlike Map and Reduce patterns that process all input datasets in the same way, Match,
CoGroup, and Cross differentiate inputs into two sets. Table 1 shows how to transform a DDP
workflow into Hadoop jobs. It first finds all actors without any downstream actors (Line 2) and
then traverses the workflow to add Hadoop jobs (Line 5). The function getHJobs() is called
recursively until no upstream actors can be found. For Map actors, a new Hadoop job is generated
with the Map actor if there are no Hadoop jobs yet (Line 14). Otherwise, the Map actor is merged
into the current first Hadoop job (Line 16). By merging consecutive Map actors into one Hadoop
job, the algorithm minimizes data staging on the Hadoop Distributed File System among the Map
actors. For other DDP actors, a new Hadoop job has to be generated since output data needs
cross-node shuffling before the next job. For Match and CoGroup, a special Map task is used to
tag input values to indicate that they are from different sources (Lines 26 and 29). Next, a special
Reduce task is used to split its input data into two lists based on their value tags, and calls the
Kepler engine to execute the sub-workflow defined in the Match or CoGroup actor based on the
semantics of the corresponding pattern (Lines 27 and 30). However, this approach does not work
for Cross since the inputs of each Cross UF instance may have different keys. Two Hadoop jobs
are generated for each Cross actor. The first job writes the first input dataset into Hadoop’s
Distributed Cache using a Map (Line 33). Next, the second job reads the second input dataset,
and the first from the Distributed Cache, and executes the Cross sub-workflow with the combined
key-value pairs.

4.3 Support Multiple Alternative DDP Choices

While each DDP pattern focuses on a type of data parallel execution, there might be multiple
or combinations of DDP patterns suitable to accelerate execution of one specific tool [10]. It
brings a challenge on how to enable end users to easily select and switch DDP patterns. In our
ongoing bioKepler project 8 [11], we address this challenge by implementing a special actor in
Kepler, called Execution Choice, to include all possible DDP patterns as sub-workflows and

8 bioKepler website: http://www.biokepler.org/ 2014.

Digital Object Indentifier 10.1109/MCSE.2014.50 1070-9924/$26.00 2014 IEEE

This article has been accepted for publication in Computing in Science and Engineering but has not yet been fully edited.
Some content may change prior to final publication.

provide an easy way to switch the patterns. The Execution Choice actor also facilitates
connecting with other components to build bigger applications. Fig. 2 shows the configuration
dialogue for the actor where the Choice parameter lists three available DDP pattern combinations
for a task. The sub-workflows for this actor are in different tabs of the actor and their details will
be discussed in Section 6.2. End users only need to make the proper DDP choices for their
executions by setting the Choice parameter.

Fig. 2. Multiple alternative DDP choices in Kepler via Execution Choice actor.

5. Performance Analysis for Legacy Tool Parallelization in DDP

The DDP patterns provide a simple and efficient way to parallelize standalone legacy tools if
their executions fit the patterns. One DDP job can spawn many worker tasks that run in parallel
on distributed nodes. Yet there are many configuration factors affecting execution performance.
We identify three factors and analyze their relationships in order to know how to get the best
performance based on the information of legacy tools, input data, and available computation
resources.

The first configuration factor is how to partition the data based on available computation
resource information. The default data partition policy in Hadoop splits data into 64MB blocks
and tries to do MapReduce processing in parallel for the blocks. Our experiences with many
legacy tools, mostly from the bioinformatics domain, show load balancing is often more
important when parallelizing legacy tools since each execution of the legacy tool may take a very
long time even when the input data is small. So we define a parameter in our DDP actors, called
ParallelNum, to tell how many partitions the input data should be split into. By this way, we can
get even data partitions and balanced execution if the number is a multiple of the available worker
node number.

The second factor is the data size to be processed by the legacy tool for each of its execution.
The DDP implementations of Big Data analytics applications often try to process minimal input
data, such as one line, for each execution of the DDP UF. We find this approach to be inefficient
mainly due to the overhead of running legacy tools. Each legacy tool needs a separate
process/thread to run. If each execution only processes minimal input data, we will get maximal
legacy tool execution times. Too many legacy tool execution times could cause a lot of overhead
for loading the tool and input data. In our experience, the execution performance will be better

Available Execution Choices

Digital Object Indentifier 10.1109/MCSE.2014.50 1070-9924/$26.00 2014 IEEE

This article has been accepted for publication in Computing in Science and Engineering but has not yet been fully edited.
Some content may change prior to final publication.

when we send relatively large input for each tool execution. In our DDP framework, we define
specific parameters for each data format, which tells how much data will be sent to each tool
execution.

The third factor is resource allocation for worker tasks and legacy tool execution. Because the
legacy tools execute in separate processes/threads, besides resource (CPU, memory, etc.)
allocated for worker tasks for distributed job and data management, we also need to allocate
resources for legacy tool executions. At each worker node, each worker task will keep invoking
the legacy tool until all the data split assigned for the worker task is processed. But at any time,
each worker task will only have one running process for the legacy tool. We will explore the
proper relationship between available core number and worker task number in the experiment
section.

The relationships between the above factors are as follows. The value of the ParallelNum
parameter will be same with the split number of the input data and the number of worker tasks.
Each worker task will process one data split whose size is the quotient of the total data size by
ParallelNum. Inside of each worker task, the execution number of legacy tool is the ceiling of the
quotient of data split size by data size per execution. For instance, if input data has forty lines and
the ParallelNum value is four, there will be four parallel worker tasks and each job processes ten
lines. Each parallel worker task calls the legacy tool to process its data. If we set the line number
for each the legacy tool execution to be six, each parallel worker task will call the legacy tool
twice: six line for the first execution and four lines for the second. During the execution, there
will be four worker tasks and four external processes for legacy tool running in parallel.

6. Applications in Bioinformatics

We are applying the DDP approach in bioinformatics to parallelize existing community-built
bioinformatics tools. We first identify execution bottlenecks of a bioinformatics tools for its
scalability. If a tool can be parallelized via DDP patterns, we wrap the tool within suitable DDP
actors based on the identified execution requirements. Among the 42 bioinformatics tools we
investigated so far, 14 of them can be parallelized using one or more DDP patterns. We will
explain two use cases as examples of this study. The first one re-implements the RAMMCAP
workflow [12] in Kepler to demonstrate how to build large-scale DDP applications in Kepler. The
second one is built on top of CloudBurst [13] to show how multiple DDP patterns can work to
parallelize the execution of the same tool.

6.1 RAMMCAP
The RAMMCAP (Rapid Analysis of Multiple Metagenomes with a Clustering and

Annotation Pipeline) workflow addresses the computational challenges imposed by the huge size
and large diversity of metagenomic data [12]. RAMMCAP includes many bioinformatics tools
for different functions, including function annotation, clustering, and open reading frame
prediction. Only some of the tools can be parallelized using DDP patterns, which makes it
difficult to build such an application directly using Hadoop or Stratosphere. Since Kepler
supports multiple models of computations within one workflow, it is easy to build and execute
RAMMCAP in Kepler.

Fig. 3 shows a simplified RAMMCAP workflow in Kepler. The hierarchical structure shows
different directors are employed at different layers to coordinate actor execution accordingly. The
workflow includes nine bioinformatics tools where three of them can be parallelized, namely,
tRNAscan-SE, rpsblast_for_COG and rpsblast_for_KOG. The parallelization is done by first
partitioning input data, then running the tool in parallel with partitioned inputs, and merging
results in the end. It fits the semantics of DDP Map pattern, so we employ the Map actor. Data
partitioning and merging is configured in DDP DataSource and DataSink actors. The sub-
workflow inside of the Map actor first reads a fraction of input data sent by execution engine, and

Digital Object Indentifier 10.1109/MCSE.2014.50 1070-9924/$26.00 2014 IEEE

This article has been accepted for publication in Computing in Science and Engineering but has not yet been fully edited.
Some content may change prior to final publication.

then calls the bioinformatics tool with the data fraction. At runtime, the DDP director coordinates
with the available DDP execution engine to enable data partitioning/merging and parallel
processing of the sub-workflow inside of the Map actors.

Fig. 3. RAMMCAP workflow in Kepler.

6.2 CloudBurst
CloudBurst is a parallel sequence-mapping tool, which maps query sequences to a reference

sequence dataset to find and locate similar fragments in reference data for each query sequence.
This tool is originally implemented using MapReduce. It has two input datasets and processes
them differently. So the two datasets have to be distinguished internally throughout the
application. We find it is more straightforward and simpler to separate the two datasets at DDP
pattern level. By using Match or CoGroup, we can not only have separate inputs inside of
Match/CoGroup UF, but also use two Maps before Match/CoGroup to process the two data sets
separately. So CloudBurst could be executed using MapReduce, MapMatch, or MapCoGroup
pattern combinations [10]. Fig. 4 shows the top-level workflow and the sub-workflow for each
combination. All these are sub-workflows of the Execution Choice actor for CloudBurst shown in
Fig. 2. Since our re-implementation of CloudBurst already has the Java classes for each pattern,
we just need to configure the DDP actors to use these classes. The GUI of each sub-workflow
also clearly depicts the logic of each DDP pattern combination. At runtime, the DDP Director
will get the sub-workflow selected by users at the Execution Choice actor, transform it, and
execute it via a DDP execution engine.

Digital Object Indentifier 10.1109/MCSE.2014.50 1070-9924/$26.00 2014 IEEE

This article has been accepted for publication in Computing in Science and Engineering but has not yet been fully edited.
Some content may change prior to final publication.

(a). Top-level workflow of CloudBurst.

(b) MapReduce Sub-workflow of CloudBurst.

(c). MapCoGroup Sub-workflow of CloudBurst.

(d). MapMatch Sub-workflow of CloudBurst.

Fig. 4. CloudBurst workflow in Kepler with Multiple DDP Implementations.

7. Execution Experiments and Analysis

7.1 Scalability
We performed several experiments to measure the scalability of the RAMMCAP workflow

and analyze its performances. The input dataset has nine million sequences. The experiments are
done using six compute nodes in a cluster environment, where each node has two eight-core
2.6GHz CPUs, and 64GB of memory. Each node could access the sequence data, and the
bioinformatics tools via a shared file system. The tests were done with Hadoop version 0.22. In
the tests, one node is assigned for task coordination and others for worker tasks.

We first tested the scalability of the workflow with the ParallelNum value always half of the
available worker core numbers. The experiment results, shown in Fig. 5 (a), tell that the execution
has good scalability when we increase the available cores. The reason that the speedup ratio is
less when running on more cores is twofold. First, the communications between the cores will be
more complex in a larger environment and cause more overhead. Second, the workflow has
several tools that cannot run in parallel, these sequential steps have a bigger impact on speedup
ratio in a larger environment.

To understand how the factors described in Section 5 affect workflow performance, we ran
the workflow with different ParallelNum and data sizes per execution (called SeqNumPerExe),

Digital Object Indentifier 10.1109/MCSE.2014.50 1070-9924/$26.00 2014 IEEE

This article has been accepted for publication in Computing in Science and Engineering but has not yet been fully edited.
Some content may change prior to final publication.

values on different worker cores. The experiments results in Fig. 5 (b)-(c) show that: 1) Both
ParallelNum and SeqNumPerExe are important factors in terms of performance; 2) Execution
time first decreases when ParallelNum value increases, and then fluctuates; the best ParallelNum
value is always half available core number; 3) Execution time decreases when the
SeqNumPerExe value increases until some point. After that, increasing data size per execution
does not affect the execution time much.

(a) Performance with different available CPU cores.

(b) Performance changes with different parallel number.

20 30 40 50 60 70 80

10
15

20
25

Core Number for Worker Tasks

To
tal

 E
xe

cu
tio

n T
im

e (
mi

nu
tes

)

20 30 40 50 60 70 80

8
10

12
14

16

Parallel Number

To
ta

l E
xe

cu
tio

n
Ti

m
e

(m
in

ut
es

)

80 cores
64 cores
48 cores

Digital Object Indentifier 10.1109/MCSE.2014.50 1070-9924/$26.00 2014 IEEE

This article has been accepted for publication in Computing in Science and Engineering but has not yet been fully edited.
Some content may change prior to final publication.

(c) Performance with different sequence number per execution (Log scale).

Fig. 5. RAMMCAP workflow scalability experiment and performance analysis.

7.2 Overhead with Kepler Workflow System
We also measured the overhead of executing DDP applications as Kepler workflows with the

same query dataset and execution environment. We compared the performance of the CloudBurst
workflow implemented in Kepler (shown in Fig. 2 and 5) with its native Java implementation.
The reference dataset has over 1.2 million sequences. To check the overhead relation with data
size, we also test with the same reference dataset and only first 5000 sequences for query dataset.
The tests were done with Stratosphere version 0.2. The UFs for Reduce, CoGroup, and Match
were executed from three thousand to eleven billion times.

All of the experiments below were performed with ParallelNum value as 40. Since all of the
available DDP pattern options are in one workflow, we only need to run the same DDP workflow.
The choice parameter value is different for each execution in order to specify which DDP sub-
workflow will be executed.

The experimental results are shown in Fig. 6. From the figure, we can see the overhead is
relatively constant, ranging from 0.05 to 0.1 minutes for both small and large query data. Most of
this overhead lies in Kepler instantiation and workflow parsing, which is independent from the
input dataset sizes. It verifies that Kepler facilitates DDP application development with small
execution overhead. The reason of execution time differences for the three DDP combinations is
analyzed in [10].

4
6

8
10

12

Sequence Number Per Execution (Log)

To
ta

l E
xe

cu
tio

n
Ti

m
e

(m
in

ut
es

)

5x103 5x104 5x105

80 cores
64 cores
48 cores

Digital Object Indentifier 10.1109/MCSE.2014.50 1070-9924/$26.00 2014 IEEE

This article has been accepted for publication in Computing in Science and Engineering but has not yet been fully edited.
Some content may change prior to final publication.

(a) Kepler overhead for large input data.

(b) Kepler overhead for small input data.

Fig. 6. Kepler Overhead for CloudBurst application.

8. Conclusions and Future Work
We presented a new and innovative visual programming approach to scale Big Data

applications on data parallel execution engines, e.g., Hadoop and Stratosphere, by implementing
distributed data parallel execution patterns as actors. We showed application of the presented
approach to next-generation sequence analysis in bioinformatics. The application demonstrated
how the developed programming techniques could be used to achieve data parallel scalability for
some sequence analysis tools while using them in combination with other sequential tools within
workflows. This approach enables users of such scientific tools (and other user functions) to build
and execute applications without the need for writing wrapping scripts using the APIs provided
by different execution engines. Instead, our approach presents a more generalized way to build

To
ta

l E
xe

cu
tio

n
Ti

m
e

(m
in

ut
es

)
0

2
4

6
8

10
12

14

MapReduce MapMatch MapCoGroup

Execution Time
Kepler OverHead

To
ta

l E
xe

cu
tio

n
Ti

m
e

(m
in

ut
es

)
0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

MapReduce MapMatch MapCoGroup

Execution Time
Kepler OverHead

Digital Object Indentifier 10.1109/MCSE.2014.50 1070-9924/$26.00 2014 IEEE

This article has been accepted for publication in Computing in Science and Engineering but has not yet been fully edited.
Some content may change prior to final publication.

the data parallel UFs as sub-workflows in Kepler and execute them on different data parallel
execution engines. Although the presented approach adds a minor overhead to the execution time
compared to the scripted wrappers as concluded by the experiments in Section 7.2, its flexibility
to switch between and mix-and-match multiple DDP patterns and engines has the potential to
actually reduce the execution time when the correct patterns are selected. We also analyzed and
verified three factors affecting executing legacy tools in our DDP framework. Additionally, the
presented approach enables combining the DDP tasks with local tasks and tasks that require other
forms of parallelism within one workflow. In summary, the contributions of this article result in
improved programmability and scaling flexibility of Big Data applications while enabling
applications that are built on the strengths of different parallelization methods without writing
wrapping or bash scripts.

For future work, we will further study load balancing of DDP patterns and how performance
changes based on data location and replication in HDFS and speculative task launching. We will
also apply our approach in more applications and test them in larger environments. In addition,
we plan to improve our approach by profiling user applications and measuring input data to
enable automatic execution optimization.

9. Acknowledgments
The authors would like to thank the rest of Kepler and bioKepler teams for their

collaboration. This work was supported by NSF ABI Award DBI-1062565 for bioKepler.

References
[1] L. Atzori, A. Iera, G. Morabito, “The Internet of Things: A survey”, Computer Networks, 54 (15),

October 2010, pp. 2787-2805, ISSN 1389-1286, http://dx.doi.org/10.1016/j.comnet.2010.05.010.
[2] I. J. Taylor, E. Deelman, D. B. Gannon, M. Shields (Eds.), Workflows for e-Science: Scientific

Workflows for Grids. Springer, December 2006.
[3] J. Dean and S. Ghemawat, “MapReduce: Simplified data processing on large clusters,”

Communications of the ACM 51 (1) (2008), pp. 107-113.
[4] M. Islam, A. K. Huang, M. Battisha, M. Chiang, S. Srinivasan, C. Peters, A. Neumann, and A.

Abdelnur, “Oozie: towards a scalable workflow management system for Hadoop.” In Proceedings of
the 1st ACM SIGMOD Workshop on Scalable Workflow Execution Engines and Technologies, p. 4.
ACM, 2012.

[5] C. Olston, G. Chiou, L. Chitnis, F. Liu, Y. Han, M. Larsson, A. Neumann, V. B. Rao, V.
Sankarasubramanian, S. Seth, C. Tian, T. ZiCornell, X. Wang, “Nova: continuous Pig/Hadoop
workflows”, In Proceedings of the 2011 international conference on Management of data, SIGMOD
’11, ACM, New York, NY, USA, 2011, pp. 1081-1090.

[6] B. Ludaescher, I. Altintas, C. Berkley, D. Higgins, E. Jaeger-Frank, M. Jones, E. A. Lee, J. Tao, Y.
Zhao, “Scientific workflow management and the Kepler system”, Concurrency and Computation:
Practice & Experience, Special Issue on Scientific Workflows 18 (10) (2006), pp. 1039-1065.

[7] B. J. MacLennan, M. Mayer, R. Redhammer. Functional programming: practice and theory. Addison-
Wesley, 1990.

[8] D. Battré, S. Ewen, F. Hueske, O. Kao, V. Markl, D. Warneke, “Nephele/PACTs: A programming
model and execution framework for web-scale analytical processing,” In Proceedings of the 1st ACM
symposium on Cloud computing, SoCC ’10, ACM, New York, NY, USA, 2010, pp. 119-130.

 [9] A. Goderis, C. Brooks, I. Altintas, E. A. Lee, C. Goble, “Heterogeneous composition of models of
computation, Future Generation Computer Systems”, 25(5), May 2009, pp. 552-560,
http://dx.doi.org/10.1016/j.future.2008.06.014.

[10] J. Wang, D. Crawl, I. Altintas, K. Tzoumas, V. Markl, “Comparison of Distributed Data-
Parallelization Patterns for Big Data Analysis: A Bioinformatics Case Study”, In Proceedings of the
Fourth International Workshop on Data Intensive Computing in the Clouds (DataCloud), 2013.

[11] I. Altintas, J. Wang, D. Crawl, W. Li, “Challenges and approaches for distributed workflow-driven
analysis of large-scale biological data”, In Proceedings of the Workshop on Data analytics in the Cloud
at EDBT/ICDT 2012 Conference, DanaC2012, 2012.

Digital Object Indentifier 10.1109/MCSE.2014.50 1070-9924/$26.00 2014 IEEE

This article has been accepted for publication in Computing in Science and Engineering but has not yet been fully edited.
Some content may change prior to final publication.

[12] W. Li. “Analysis and comparison of very large metagenomes with fast clustering and functional
annotation”, BMC Bioinformatics, 10:359, 2009.

[13] M. Schatz, “CloudBurst: Highly sensitive read mapping with MapReduce”, Bioinformatics 25 (11)
(2009), pp. 1363-1369.

Jianwu Wang, Ph.D., is the Assistant Director for Research at the Workflows for Data Science
(WorDS) Center of Excellence at San Diego Supercomputer Center (SDSC), University of
California, San Diego (UCSD), and an Assistant Project Scientist at SDSC, UCSD. He is also an
Adjunct Professor at North China University of Technology, China. He is the main researcher for
distributed architectures of the open-source Kepler Scientific Workflow System. His research
interests include Big Data, Scientific Workflow, Service-Oriented Computing, End-User
Programming and Distributed Computing. Wang received his Ph.D. in Computer Science from
the Chinese Academy of Sciences, China. Contact him at jianwu@sdsc.edu.

Daniel Crawl, Ph.D., is the Assistant Director for Development at the Workflows for Data
Science Center of Excellence at SDSC, UCSD. He is the lead architect for the overall integration
of distributed data parallel execution patterns and the Kepler Scientific Workflow System. He
conducts research and development of execution patterns, bioActors, and distributed directors.
Crawl received his Ph.D. in Computer Science from the University of Colorado at Boulder, U.S.
Contact him at crawl@sdsc.edu.

Ilkay Altintas, Ph.D., is the Director for the Workflows for Data Science Center of Excellence at
SDSC, UCSD. She is a co-initiator of and an active contributor to the Kepler Scientific Workflow
System, and the co-author of publications related to eScience at the intersection of scientific
workflows, provenance, distributed computing, bioinformatics, observatory systems, conceptual
data querying, and software modeling. Altintas received her Ph.D. in Computer Science from the
University of Amsterdam, the Netherlands. Contact her at altintas@sdsc.edu.

Weizhong Li, Ph.D., is an Associate Research Scientist at Center for Research in Biological
Systems, UCSD. He has a background in computational biology and bioinformatics. His research
focuses on developing computational methods for sequence, genomic and metagenomic data
analysis. Li received his Ph.D. in Computational Chemistry, Nankai University, China. Contact
him at liwz@sdsc.edu.

Complete contact information
mailing address [for shipping your complimentary copy of the publication], phone/fax,
email of each author

Jianwu Wang
San Diego Supercomputer Center, University of California, San Diego
9500 Gilman Drive, MC 0505, La Jolla, CA 92093-0505, U.S.A.
Phone : 858-534-5110
Email : jianwu@sdsc.edu

Dan Crawl
San Diego Supercomputer Center, University of California, San Diego
9500 Gilman Drive, MC 0505, La Jolla, CA 92093-0505, U.S.A.

Digital Object Indentifier 10.1109/MCSE.2014.50 1070-9924/$26.00 2014 IEEE

This article has been accepted for publication in Computing in Science and Engineering but has not yet been fully edited.
Some content may change prior to final publication.

Phone : 858-822-3694
Email : crawl@sdsc.edu

Ilkay Altintas

San Diego Supercomputer Center, University of California, San Diego
9500 Gilman Drive, MC 0505
La Jolla, CA 92093-0505, U.S.A.

Phone : 858-822-5453
Email : altintas@sdsc.edu

Weizhong Li

Center for Research in Biological Systems, University of California San Diego
9500 Gilman Drive MC 0446, Atkinson Hall, Room 3113
La Jolla CA 92093-0446, U.S.A.

Phone: (858)-534-4143
Email : liwz@sdsc.edu

Digital Object Indentifier 10.1109/MCSE.2014.50 1070-9924/$26.00 2014 IEEE

This article has been accepted for publication in Computing in Science and Engineering but has not yet been fully edited.
Some content may change prior to final publication.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000500044004600206587686353ef901a8fc7684c976262535370673a548c002000700072006f006f00660065007200208fdb884c9ad88d2891cf62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef653ef5728684c9762537088686a5f548c002000700072006f006f00660065007200204e0a73725f979ad854c18cea7684521753706548679c300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002000740069006c0020006b00760061006c00690074006500740073007500640073006b007200690076006e0069006e006700200065006c006c006500720020006b006f007200720065006b007400750072006c00e60073006e0069006e0067002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f00630068007700650072007400690067006500200044007200750063006b006500200061007500660020004400650073006b0074006f0070002d0044007200750063006b00650072006e00200075006e0064002000500072006f006f0066002d00470065007200e400740065006e002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f0062006500200050004400460020007000610072006100200063006f006e00730065006700750069007200200069006d0070007200650073006900f3006e002000640065002000630061006c006900640061006400200065006e00200069006d0070007200650073006f0072006100730020006400650020006500730063007200690074006f00720069006f00200079002000680065007200720061006d00690065006e00740061007300200064006500200063006f00720072006500630063006900f3006e002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f007500720020006400650073002000e90070007200650075007600650073002000650074002000640065007300200069006d007000720065007300730069006f006e00730020006400650020006800610075007400650020007100750061006c0069007400e90020007300750072002000640065007300200069006d007000720069006d0061006e0074006500730020006400650020006200750072006500610075002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f006200650020005000440046002000700065007200200075006e00610020007300740061006d007000610020006400690020007100750061006c0069007400e00020007300750020007300740061006d00700061006e0074006900200065002000700072006f006f0066006500720020006400650073006b0074006f0070002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea51fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e3059300230c730b930af30c830c330d730d730ea30f330bf3067306e53705237307e305f306f30d730eb30fc30d57528306b9069305730663044307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020b370c2a4d06cd0d10020d504b9b0d1300020bc0f0020ad50c815ae30c5d0c11c0020ace0d488c9c8b85c0020c778c1c4d560002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken voor kwaliteitsafdrukken op desktopprinters en proofers. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200066006f00720020007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c00690074006500740020007000e500200062006f007200640073006b0072006900760065007200200065006c006c00650072002000700072006f006f006600650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020007000610072006100200069006d0070007200650073007300f5006500730020006400650020007100750061006c0069006400610064006500200065006d00200069006d00700072006500730073006f0072006100730020006400650073006b0074006f00700020006500200064006900730070006f00730069007400690076006f0073002000640065002000700072006f00760061002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a00610020006c0061006100640075006b006100730074006100200074007900f6007000f60079007400e400740075006c006f0073007400750073007400610020006a00610020007600650064006f007300740075007300740061002000760061007200740065006e002e00200020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740020006600f600720020006b00760061006c00690074006500740073007500740073006b0072006900660074006500720020007000e5002000760061006e006c00690067006100200073006b0072006900760061007200650020006f006300680020006600f600720020006b006f007200720065006b007400750072002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents for quality printing on desktop printers and proofers. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /NoConversion
 /DestinationProfileName ()
 /DestinationProfileSelector /NA
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure true
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /NA
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /LeaveUntagged
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

