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Abstract—In the Big Data era, machine learning has more 
potential to discover valuable insights from the data. As an 
important machine learning technique, Bayesian Network (BN) 
has been widely used to model probabilistic relationships among 
variables. To deal with the challenges of Big Data PN learning, 
we apply the techniques in distributed data-parallelism (DDP) 
and scientific workflow to the BN learning process. We first 
propose an intelligent Big Data pre-processing approach and a 
data quality score to measure and ensure the data quality and 
data faithfulness. Then, a new weight based ensemble algorithm 
is proposed to learn a BN structure from an ensemble of local 
results. To easily integrate the algorithm with DDP engines, such 
as Hadoop, we employ Kepler scientific workflow to build the 
whole learning process. We demonstrate how Kepler can 
facilitate building and running our Big Data BN learning 
application. Our experiments show good scalability and learning 
accuracy when running the application in real distributed 
environments. 

Keywords—Big Data; Bayesian network; Distributed computing; 
Ensemble learning; Scientific workflow; Kepler; Hadoop 

I. INTRODUCTION  
With the explosive growth of data encountered in our daily 

lives, we have entered the Big Data era [1]. For the United 
States health care sector alone, the creative and effective use of 
Big Data could bring more than $300 billion potential annual 
value each year [35]. Making the best use of Big Data and 
releasing its value are the core problems that researchers all 
over the world long to solve since the New Millennium. 

Bayesian Network (BN), a probabilistic graph model, 
provides intuitive and theoretically solid mechanisms for 
processing uncertain information and presenting causalities 
among variables. BN is an ideal tool for causal relationship 
modeling and probabilistic reasoning. BN is a widely used in 
modeling [2][3][4], prediction [5][6][7], and risk analysis [8]. 
BNs have been applied in a wide range of domains such as 
Health Care, Education, Finance, Environment, Bioinformatics, 
Telecommunication, and Information Technology [9]. With 
abundant data resources nowadays, learning BN from Big Data 
could discover valuable business insights [4] and bring 
potential revenue value [8] to different domains. 

To efficiently process large quantities of data, a scalable 
approach is needed. Although distributed data-parallelism 
(DDP) patterns, such as Map, Reduce, Match, CoGroup and 
Cross, are promising techniques to build scalable data parallel 
analysis and analytics applications, applying the DDP patterns 
in Big Data BN learning still faces several challenges: (1) How 
can we effectively pre-process Big Data to evaluate its quality 
and reduce the size if necessary? (2) How to design a workflow 
capable of taking Gigabytes of big data sets and learn BNs with 
decent accuracy? (3) How to provide easy scalability support to 
BN learning algorithms? These three questions have not 
received substantial attention in the current research status-quo. 
This is the main motivation for this research: the creation of the 
novel workflow - Scalable Bayesian Network Learning (SBNL) 
workflow. This SBNL workflow has three research novelties 
which contribute to the current literature:  

• Intelligent Big Data pre-processing through the use of a 
proposed data quality score called ArcS  to measure and 
ensure data quality and data faithfulness. 

• Effective BN learning from Big Data by leveraging 
ensemble learning and distributed computing model. A 
new weight based ensemble algorithm is proposed to 
learn a BN structure from an ensemble of local results. 
This algorithm is implemented as an R package and 
reusable by third parties. 

• A user-friendly approach to build and run scalable Big 
Data machine learning applications on top of DDP 
patterns and engines via scientific workflows. Users do 
not need to write programs to fit the interfaces of 
different DDP engines. They only need to build 
algorithm specific components using languages like R 
or Matlab, which they are already familiar with. 

SBNL is validated using three publicly available data sets. 
SBNL obtains significant performance gain when applied to 
distributed environments while keeping the same learning 
accuracy, making SBNL an ideal workflow for Big Data 
Bayesian Network learning. 

The remainder of this paper is organized as follows. Section 
II presents the background of BN learning techniques and 



evaluation. Section III discusses how to build scalable Big Data 
applications via Kepler scientific workflow system. Section IV 
describes SBNL workflow in detail. The evaluation results and 
related work are presented in Section V and VI, respectively. 
Section VII concludes this paper with future work. 

II. BAYESIAN NETWORK LEARNING TECHNIQUES AND 
EVALUATION 

A. Ensemble Learning 
One trend in machine learning is to combine results of 

multiple learners to obtain better accuracy. This trend is 
commonly known as Ensemble Learning. Ensemble Learning 
leverages multiple models to obtain better predictive 
performance than what could be obtained from any of the 
constituent models [19]. There is no definitive taxonomy for 
ensemble learning. Zenko [18] details four methods of 
combining multiple models: bagging, boosting, stacking and 
error-correcting output. In 2009, the Netflix challenge grand 
prizewinner used ensemble learning technique to build the 
most accurate predictive model for movie recommendation and 
won a million dollar1. In this paper, we propose a weight-based 
algorithm to combine local and global learning results to learn 
a BN from Big Data. Main symbols used in the paper are listed 
in Table I. 

TABLE I. SYMBOL TABLE 

Data set Meanings 

B BN structure 
D Data set 

P(B,D) The joint probability of a BN structure (B) given 
the data set (D) 

P(B) Prior probability of the network B 
N’ Prior equivalent sample size 
Xi Variable Xi 

Pa(Xi) Parents of Xi 
Γ Gamma function  

ND The number of rows in D, 
Narc The total number of arcs in B 
SArc Arc Score 

 

B. The BDe Score 
Score functions describe how well the BN structure fits the 

data set. The BDe score function [9] provides a way to 
compute the joint probability of a BN structure (B) given the 
data set (D) denoted as ( , )P B D . The best BN structure 
maximizes the BDe score. Thus BDe score is a good measure 
for data set quality. The BDe score function is derived from 
discrete variables. Let n be the total number of variables, qi 
denotes the number of configurations of the parent set ( )iPa X
and ir  denotes the number of states of variable iX . The BDe 
score function is: 

                                                             
1 Netflix prize, Netflix Inc, http://www.netflixprize.com/ 
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The BDe score function uses a parameter prior that is 
uniform and requires both a prior equivalent sample size N’ 
and a prior structure. In practice, the BDe score function uses 
the value log( ( , ))P B D . BDe score function is decomposable: 
the total score is the sum of the score of each variable iX . This 
study uses BDe score to evaluate the learning accuracy of BN 
learning algorithm as well as the data set quality (Section V.B) 

In order to measure the quality of a data set D, we introduce 
a new measure called Arc Score denoted as SArc 

( , ) /( * )Arc D arcS P B D N N=   (3) 

P(B, D) is the BDe score given data D，and BN structure B, 

DN  is the number of rows in D, arcN  is the total number of 
arcs in B. After empirical study on known BN structures 
(Section V), we discover that the data sets suitable for BN 
learning have SArc larger than -0.5. On the other hand, data sets 
that produce inferior BN structure have very low SArc, generally 
smaller than -0.5, reaching -1 or even -2. Hence, SArc could be 
used as an effective measure for data set quality.  

Under the situation where we only have a data set D, how 
could we obtain SArc? To address this problem, we can use an 
accurate BN learning algorithm like Max-Min Hill Climbing 
(MMHC) [10]. Because BN learning algorithms are neutral, 
given good data set, a structure B with high SArc will be learned, 
and given a bad data set D’, a structure B’ with low S’Arc will 
be learned. Therefore, we can use MMHC, one of the most 
accurate and robust algorithms from the BN learning algorithm 
comparison study [9] to learn a BN from any data set D and 
calculate the corresponding SArc. 

C. Structural Hamming Distance 
Structure Hamming Distance (SHD) [14] is an important 

measure to evaluate the quality of the BN. The learned BN 
structure B is directly compared with the structure of a gold 
standard network (GSN) - the network with a known correct 
structure. Each arc in the learned structure fits one of the 
following cases: 

• Correct Arc: the same arc as the GSN. 

• Added Arc (AA): an arc that does not exist in the GSN. 

• Missing Arc (MA): an arc that exists in the GSN but not 
in the learned structure. 



• Wrongly Directed Arc (WDA): an arc that exists in the 
GSN with opposite direction. 

Since some algorithms may return non-oriented edges as 
the direction of some edges could not be statistically 
distinguished using orientation rules, the learned BN is a 
partially directed acyclic graph (PDAG). SHD is defined as the 
number of the operators required to make two PDAGs identical: 
either by adding, removing, or reversing an arc, or by adding, 
removing or orienting an edge. 

SHD = (#AA + #MA + #WDA +#AE + #ME + #NOE) (4) 

where AE is Added Edges, ME is Missing Edges and NOE is 
Non-Oriented Edges. 

D. Bayesian Network Learning Algorithm 
A comprehensive and comparative survey was carried out 

on BN learning algorithms [9]. Out of more than 50 learning 
algorithms, Max-Min-Hill-Climbing (MMHC) [10], Three-
Phase Dependency Analysis Algorithm (TPDA) [11] and 
Recursive BN learning Algorithm (REC) [12] are shown to 
have superior learning accuracy and robustness. 

Input: 
:D Data set 

:ε  threshold for conditional independence test 

MMHC ( , εD ) 

Phase I: 

1. For all variables iX , Set ( ) MMPC( , )i iPC X X D= ; 

Phase II: 
2. Start from an empty graph; perform greedy hill-climbing  

with operators: add_edge, delete_edge and reverse_edge.  
Only try operator add_edge →Y X  if ( )∈Y PC X ; 

Return the highest scoring DAG found; 
Fig. 1. The MMHC algorithm. 

The Max-Min Hill Climbing (MMHC) algorithm [14] 
combines concepts from Constraint-based [13], and Search-
and-Score-Based algorithms [11]. It takes as input a data set D 
and returns a BN structure with the highest score. MMHC is a 
two-phase algorithm: Phase I identifies the candidate sets for 
each variable Xi by calling a local-discovery algorithm called 
Max-Min Parents and Children (MMPC) and discover a BN’s 
skeleton. Phase II performs a Bayesian-scoring, greedy hill-
climbing search starting from an empty graph to orient and 
delete the edges. Fig. 1 presents a detailed description of the 
MMHC algorithm. 

The major structural search process of MMHC algorithm is 
the MMPC procedure that returns the parents and children of a 
target variable X, denoted as PC(X). By invoking MMPC with 
each variable as the target, one can identify all the edges that 
form the BBN’s skeleton. 

III. BUILDING SCALABLE BIG DATA APPLICATIONS VIA KEPLER 
SCIENTIFIC WORKFLOW SYSTEM 

A. Distributed Data-Parallel Patterns for Scalable Big Data 
Application 

Several DDP patterns, such as Map, Reduce, Match, 
CoGroup, and Cross, have been identified to easily build 
efficient and scalable data parallel analysis and analytics 
applications [27]. DDP patterns enable programs to execute in 
parallel by splitting data in distributed computing 
environments. Originating from higher-order functional 
programming, each DDP pattern executes user-defined 
functions (UDF) in parallel over input data sets. Since DDP 
execution engines often provide many features for execution, 
including parallelization, communication, and fault tolerance, 
application developers only need to select the appropriate 
DDP pattern for their specific data processing tasks, and 
implement the corresponding UDFs. 

Due to the increasing popularity and adoption of these DDP 
patterns, a number of execution engines have been 
implemented to support one or more of them. These DDP 
execution engines manage distributed resources, and execute 
UDF instances in parallel. When running on distributed 
resources, DDP engines can achieve good scalability and 
performance acceleration. Hadoop is the most popular 
MapReduce execution engine. The Stratosphere system [27] 
supports five different DDP patterns. Many of the above DDP 
patterns are also supported by Spark 2 . Since each DDP 
execution engine defines its own API for how UDFs should be 
implemented, an application implemented for one engine may 
be difficult to run on another engine.  

B. Kepler Scientific Workflow 

The Kepler scientific workflow system3 is an open-source, 
cross-project collaboration to serve scientists from different 
disciplines [28]. Kepler adopts an actor-oriented modeling 
paradigm for the design and execution of scientific workflows. 
Kepler has been used in a wide variety of projects to manage, 
process, and analyze scientific data. 

Kepler provides a graphical user interface (GUI) for 
designing, managing and executing scientific workflows, 
which are a structured set of steps or tasks linked together that 
implement a computational solution to a scientific problem. In 
Kepler, Actors provide implementations of specific tasks and 
can be linked together via input and output Ports. Data is 
encapsulated in messages or Tokens, and transferred between 
actors through ports. Actor execution is governed by Model of 
Computations (MoCs), called Directors in Kepler [29]. 

We found the actor-oriented programming paradigm of 
Kepler fits the DDP framework very well [30]. Since each 
DDP pattern expresses an independent higher-order function, 
we define a separate DDP actor for each pattern. Unlike 
normal actors, these higher-order DDP actors do not process 

                                                             
2 Spark Project: http://spark.apache.org/  
3 Kepler Project: https://kepler-project.org/  



its input data as a whole. Instead, they first partition the input 
data and then process each partition separately. 

The UDF for the DDP patterns is an independent 
component and can naturally be encapsulated within a DDP 
actor. The logic of the UDF can either be expressed as a sub-
workflow or compiled code. In the first case, users can 
compose a sub-workflow for their UDF via Kepler GUI using 
specific subsidiary actors for the DDP pattern and any other 
general actors. Since the sub-workflow is not specific to any 
engine API, the same sub-workflow could be executed on 
different DDP engines. Like other actors, multiple DDP actors 
can be linked to construct bigger applications. 

Each DDP pattern defines its execution semantics, i.e., how 
data partitions are processed by the pattern. This clear 
definition enables decoupling between a DDP pattern and its 
execution engines. To execute DDP workflows on different 
DDP execution engines, we have implemented a DDP director 
in Kepler. Currently, this director can execute DDP workflows 
with Hadoop, Stratosphere and Spark. At runtime, the director 
will detect the availability of DDP execution engines and 
transform workflows into their corresponding jobs. The 
adaptability of the director makes it user-friendly since it hides 
the underlying execution engines from users. 

C. Machine Learning Support in Kepler 

There are many popular tools/languages for machine 
learning, such as R, Matlab, Python and Knime [31]. Complex 
machine learning applications might need to integrate different 
components implemented in different tools/languages. Kepler 
supports easy integration of these tools/languages within one 
process. Besides the ExternalExecution actor in Kepler to 
invoke arbitrary binary tools in batch mode, we also have 
actors specifically for many scripting languages. For instance, 
users can embed their own R scripts in the RExpression actor. 
Users can further customize the input/output ports of the 
RExpression actor to connect with other actors and build 
complex applications.  

In addition, we are investigating how to integrate other 
popular machine learning tools, such as Mahout 4, into Kepler. 
Users will be able to use their machine learning 
functions/libraries as actors and connect them with other 
actors. 

IV. PROPOSED APPROACH 

A. Overview of SBNL Workflow 
After introducing the background knowledge in previous 

sections, we give the overview of our SBNL workflow.  

                                                             
4 Mahout: https://mahout.apache.org/  

 
Fig. 2. Overview of the SBNL algorithm. 

As shown in Fig. 2, SBNL workflow consists of four 
components: (1) Data partitioning, (2) Local learner, (3) 
Master learner, (4) Kepler workflow. 

In the data partitioning component, the SBNL workflow 
partitions the data set into data partitions of reasonable size. 
SBNL has a score based algorithm to dynamically determine 
the best partition size to balance both learning complexity and 
accuracy.  Then, data partitions are sent evenly to each local 
learner. The local learner will first use the value of SArc to 
examine the data partition’s quality. If the quality is good, 
SBNL then enters local ensemble learning (LEL) step, each 
local learner will run MMHC algorithm separately on each 
local data partition to learn an individual BN. Then, local 
learner applies our proposed ensemble method on individual 
BNs to generate a final local BN. During local learning, the 
best local data partition is obtained in each local learner.   

Finally, SBNL workflow reaches the master learner 
component. This component receives local BN and best local 
data partitions from all local learners. The best data partition 
can be obtained in master learner. Then, master learner runs 
our proposed ensemble algorithm on the local BN using the 
best data partition. Note that master learner does not run any 
BN learning algorithm, it just gives weight to each local BN 
and ensembles the final BN. So, all the computing heavy lifting 
tasks are distributed among the local learners.  

Details of each component in SBNL workflow are specified 
in the following sub-sections. 

B. Quality Evaluation and Data Partitioning 
First thing SBNL workflow does is evaluating the quality 

of a given big data set. It runs a scoring algorithm to 
incrementally evaluate a partition Dp of the whole data set D. 
Each time the scoring algorithm doubles the size of Dp until a 
threshold is reached. If the SArc value of Dp is larger than 1.0, 
then the whole data set will not be used for SBNL workflow. 

SBNL workflow 
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Data Quality 
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Local Ensemble 
Learning 

Quality Evaluation & 
Data Partitioning Big Data 

Master Learner 
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Final BN 
Structure 
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 Facing Big Data larger than the memory size, a single 
machine could not compute the Bayesian score of the whole 
data set. Therefore, we use distributed computing model in 
SBNL workflow. A big data set is partitioned into K slices of 
size Ns.  

Nd  =  Ns*K  +  Nr   (5) 

where Nd is the size of data set D and Nr is the row number of 
the remainder of D after K partitions. By counting the last Nr 
rows data as another slice, total partition slice is K+1. Given 
the total number of local learners denoted as Nlocal, we try to 
send data slices evenly to the local learners for better load 
balance. 

An important task here is to determine Ns , we propose a 
fast incremental algorithm FindNs to find a proper partition 
size. FindNs is described in Table II.  

TABLE II. THE FINDNS FUNCTION 

function FindNs (data, maxStep, maxSize ){ 
bestScore = 100; currentStep = 1; 
nrowdata= number of rows in data; 
ncoldata = number of column in data; 
Ns = 1000*( ncoldata % 10); 
slicedData = data[1:sliceSize] ; 
score = dataQualityCalculator(slicedData) *(-1);  
while (score < bestScore && currentStep < maxStep && sliceSize < 
maxSize) { 

 bestScore = score; 
Ns= Ns*2; 

 slicedData = data[1: Ns]; 
score = SarcCalculator (slicedData) *(-1); 

 currentStep = currentStep+1; 
   } 
   return Ns; 
} 

 
function SarcCalculator(D, parameters){ 
 network = mmhc(D, parameters); 
 score = score(network, D, type ="BDe"); 
                  SArc = score/(Nd * (# of arcs in network)); 
 return SArc; 
} 

 

 FindNs algorithm begins with the initial slice size:  

Ns =1000*(ncoldata%10)    (7) 

Then it doubles the value of Ns iteratively and evaluate the 
data partition (data[1: Ns]) until its SArc value could no longer 
be improved or the maximum number iteration or partition size 
is reached. In this way, the quality of each data partition is 
ensured by SArc and the data partition size is controlled under a 
threshold. 

C. Local Learner 
 First activity in local learner is the Data Quality Evaluation 
(DQE). During DQE, each data partition is examined with the 
function SarcCalculator. If the data partition’s SArc is less than 
-0.5, then this partition is dropped by SBNL workflow. 

 After DQE, local learner then enters the second activity: 
Local Ensemble Learning (LEL) shown in Table III. In LEL, 
the first step is learning local BNs from data partitions using 

MMHC algorithm. This step also looks at each data partition 
and selects the best partition. Then, LEL calculates learnScores 
for local BNs using the best data partition.  

TABLE III. LOCAL ENSEMBLE LEARNING 

LocalEnsembleLearning(dataPartitions){ 
  # Initialization 

localBNs = learn BNs from dataPartitions using MMHC; 
  learnScores = Bde scores of localBNs using best data partition; 
  finalLocalBN = ensembleBNs(localBNs,learnScores, bestPartition); 
} 
ensembleBNs(localBNs, learnScores, bestPartition){ 

weights = weightCalculator(learnScores, bestPartition); 
mergedMatrix = matrix(0, nnodes,nnodes);  

 
# Transform and merge local BNs 
for ( n in 1:length(localBNs)) { 
adjMatrix = BNToAdjMatrix(localBNs[n]); 
mergedMatrix = adjMatrix * weights[n] + mergedMatrix; 

 } 
 
  # Transform merged matrix into final local BN 

minThreshold = min(weights); 
finalLocalBN = MergedMatrixToBN(mergedMatrix, minThreshold*2); 
return finalLocalBN; 

} 

 Assigning weight to each individual learner is an important 
technique in ensemble learning. LEL leverages the weighting 
technique and proposes a method called ensembleBNs. In 
ensembleBNs, based on the value of localScores, a weight 
vector is calculated. For example, if the localScores = [-0.2, -
0.3, -0.25, -0.25], then the corresponding normalized weight 
vector is [0.306, 0.204, 0.245, 0.245]. Smaller local score in 
absolute value has higher weight. After obtaining the weights, 
ensembleBNs then transforms local BNs into adjacency 
matrixes and merges them into one matrix using the weight 
vector. In the end, ensembleBNs leverages the merged matrix 
to generate the final local BN. A threshold is set as the minimal 
value in the weight vector. Then ensembleBNs iterates the 
merged matrix and identify an arc when mergedMatrix [i , j] > 
minThreshold * 2. This is a voting mechanism to promote and 
discover an arc when it is present in more than two local BNs. 

D. Master Learner 
After describing local learner, we now introduce the final 

component in SBNL workflow – the master learner. Master 
learner adopts similar strategy as the local learner and reuses 
the function ensembleBNs. There are two inputs: final local 
BNs deoted as Slocal, and the best local partition denoted as 
Dlocalbest. Master learner contains four steps: 1) Obtain the 
global best partition from Dlocalbest.; 2) Calculate scores for 
Slocal using Dbest; 3) Call  ensembleBNs function to obtain the 
final BN; 4) Return final BN as the learning result of SBNL 
workflow from Big Data.  

 

 



TABLE IV. MASTER LEARNER 

CentralEnsembleLearner(BNlocal, Dlocalbest) { 
obtain the best data partition Dbest from Dlocalbest 
scores = Bde scores of Slocal using Dbest; 
finalBN= ensembleBNs(BNlocal, scores, Dbest); 
return finalBN; 

} 

E. SBNL Workflow in Kepler 
We build our SBNL workflow by embedding the above 

components in Kepler, which is shown in Fig. 3. All the code 
snippets (namely Table II, III, IV) are implemented in an R 
package as the core of the Kepler big data BN learning 
workflow. Main actors of the top-level workflow, shown in Fig. 
3 (a), are PartitionData and DDPNetworkLearner actors. The 
first actor is a RExpression actor that includes the R scripts for 
the data partitioning component in Fig. 2. The main parts of 
this script are provided in Table II. 

 
Fig. 3 (a): Top-level SBNL workflow. 

 
Fig. 3 (b): DDP sub-workflow. 

 
Fig. 3 (c): Local learner sub-workflow in Map. 

 
Fig. 3 (d): Master learner sub-workflow in Reduce. 

Fig. 3. SBNL workflow in Kepler. 
DDPNetworkLearner is a composite actor whose sub-

workflow is shown in Fig. 3 (b). Map and Reduce DDP actors 
are used here to achieve parallel local learner execution and 
sequential master learner execution. DDP Director is used to 
manage the sub-workflow execution by communicating with 
underlying DDP engines. DDPDataSource actor reads 
partitions generated by PartitionData actor and sends each 

partition to a local learner instance that runs across the 
computing nodes.  

The sub-workflow of the Map actor, shown in Fig. 3 (c), 
mainly calls a RExpression actor to run Local Learner R script. 
The main parts of this script are provided in Table III. The sub-
workflow of the Reduce actor, shown in Fig. 3 (d), mainly calls 
a RExpression actor to run Master Learner R script. The main 
parts of this script are provided in Table IV. Based on the 
dependency between the Map and Reduce actor in Fig. 3 (b), 
the DDP Director can manage their executions so that Reduce 
actor can only be executed after Map actor finishes all local 
learner processing. 

This workflow demonstrates how Kepler can facilitate 
building parallel network learner algorithms. The DDP 
framework of Kepler provides basic building blocks for the 
DDP patterns and supports the dependencies between them. 
RExpression actor can easily integrate user R scripts with other 
parts of the workflow. Kepler also provides subsidiary actors, 
such as Expression and DDPDataSource, for supporting 
operations needed for a complete and executable workflow. 
Overall, Kepler users can build scalable network learner 
workflows without writing programs except needed R scripts. 

V. EVALUATION 
The evaluation results of SBNL are presented in this 

section. Several big data sets are used to evaluate SBNL. The 
goal of the evaluation is to address the following questions: 

1. When constructing the SBNL, what is the best slice size 
for each big data set? 

2. On all big data sets, does SBNL workflow achieve good 
learning accuracy with significant performance improvement?  

A brief description of the data sets and threshold selection 
study are presented in Subsection A. Subsection B answers two 
questions above. 

A. Background 
The background of the empirical study is described in detail 

in this subsection. First, data sets are described and evaluation 
measures are presented. Then threshold selection study is 
shown. The machine specification for the evaluation of all 
results is as follows. Four compute nodes in a cluster 
environment are employed, where each node has two eight-
core 2.6 GHz CPUs, and 64 GB memory. Each node could 
access the input data via a shared file system. 

1) Data sets and measurements 
Three large data sets are used in this empirical study. A 

brief description of each data set is presented below. Properties 
of all data sets are summarized in Table V.  

TABLE V. DATA SETS 

Data set #Rows 
(million) #Arcs #Variables Data size 

(GB) 
Alarm10M 10 46 37 1.9 

HailFinder10M 10 66 56 3.9 
Insurance10M 10 52 27 1.8 

 



• Alarm: A medical BN for patient monitoring. 
• HailFinder: A BN that forecasts severe summer hail in 

the northeastern Colorado area. 
• Insurance: An adaptive BN Network modeling the car 

insurance problem. 
All data sets are generated from well-known Bayesian 

networks as follows using logic sampling [20]: For Alarm 
network, the data set contains 10 millions rows and is called 
Alarm10M. Similarly, For Hailfinder network, the data set is 
called Haifinder10M and for insurance network, the data set is 
called Insurance10M. Since each data set contains 10 million 
rows and all the data set sizes exceed the normal data set size 
applicable for BN learning. It is very time consuming and 
sometime infeasible to learn BN from most of the data sets 
listed above using traditional BN learning algorithm.  

2) Threshold Selection Study 
To measure the BN structures learned by SBNL, we use 

BDe score and SHD described in Section II.B and II.C. 

In Section II, two functions are described. SarcCalculator 
calculates arc score to measure the quality of data set D, 
FindNs uses SarcCalculator to find the ideal data slice size Ns. 
It is critical to study and verify the correctness of the function 
SarcCalculator to make sure that the data preprocess phase of 
SBNL are sound and practical.  

To evaluate the correctness of SArc, we used six different 
data sets: three good data sets without any noise, followed by 
three bad data sets with 5% noise from each BN listed in Table 
VI. Then we calculate SArc for each data set and compare it with 
the SArc of the golden standard network (GSB). SHD is listed 
for each learned BN. Table VI shows that given good data set, 
value of SArc is very close to SArc of GSN. This indicates that 
SArc is indeed an accurate measure for the quality of the data 
sets. Furthermore, it is observed that bad data sets with noise 
have very low SArc : generally lower than -0.5, and the SHD of 
the corresponding bad data set is far away from the correct 
structure. The column Select indicates whether SBNL selects 
the data set in the DQE activity. 

TABLE VI. SARC  OF SIX DIFFERENT DATA SETS 

Date set Rows 
(K) 

SArc 

(MMHC) 
SArc 

(GSN) Select SHD 

Alarm_good 50 -0.30 -0.28 Yes 4 

HailFinder_good 50 -0.36 -0.34 Yes 26 

Insurance_good 50 -0.28 -0.25 Yes 9 

Alarm_Bad 50 -0.87 -0.28 No 12 

HailFinder_Bad 50 -1.1 -0.34 No 58 

Insurance_Bad 50 -1.03 -0.26 No 21 

According to Table VI, we can claim that SBNL has 100% 
data selection accuracy in its local learner component. 
Therefore, we could conclude that SArc is an accurate measure 
to test the faithfulness of data set D. 

After running FindNs on three big data sets, we obtain Ns 
for each big data set (in Table VII). Note that SArc values shown 

in Table VII are very close to SArc of GSN listed in Table VI. 
This ensures the correctness of the partition size Ns . 

TABLE VII. ACCURACY RESULTS OF THREE NETWORKS 

Network Ns SArc 

Alarm 24000 -0.29 

HailFinder 50000 -0.35 

Insurance 20000 -0.27 

B. Experiments 
We conducted our experiments using four compute nodes 

in a cluster environment. The tests were done with Hadoop 
version 2.2. In the tests, one node is assigned to task 
coordination and others to worker tasks. 

We ran our workflow with different worker nodes to see the 
scalability of executions and how its performance changes. We 
also implemented an R program that only uses the original 
MMHC algorithm for the network learning task. Because the R 
program has no parallel execution across multiple nodes, no 
data partition step is needed and it can only run on one node. 
Its execution time will be the baseline for the performance 
comparisons.  

We ran our experiments with three data sets, whose 
execution information is shown in Table VIII, from which we 
can see our workflow achieved good scalability running on 
more worker nodes. Although our SBNL workflow has an 
additional step for data partition, its execution times are still 
better than the base line execution. The overall performance 
shows less improvement when the worker node number 
increases. It is because some steps of the workflow (data 
partition, master leaner) cannot utilize the distributed 
environment for parallel executions. We plan to speedup the 
data partition step by utilizing the parallel data loading and 
partitioning capability of HDFS 5 . We will also do the 
experiments with bigger data sets on larger environments.  

TABLE VIII. EXECUTION PERFORMANCE OF THE NETWORK ANALYSIS 
WORKFLOW AND BASE LINE R PROGRAM (UNIT: MINUTES) 

 

We first give Hailfinder data set to SBNL workflow. In the 
first data evaluation actor, SArc value of Hailfinder remains very 
high around 1.5. So SBNL workflow determines that 
Hailfinder data set is not suitable for BN learning. To confirm 
it, we further apply a data set of Hailfinder to MMHC 

                                                             
5 Hadoop Distributed File System (HDFS) : 
http://wiki.apache.org/hadoop/HDFS  

Data set 
Base line 

(16 Core) 

Parallel executions with Kepler 

32 Core 48 Core 64 Core 

Alarm5M    
(936 MB) 8.16 5.29 4.59 4.09 

Alarm10M   
(1.9 GB) 19.03 15.26 10.67 9.22 

Insurance10M 
(1.9 GB) 22.41 12.19 8.70 7.61 



algorithm. The learned BN is very different from the actual 
Hailfinder network since there are over 30 missing arcs. This 
study affirms the correctness of SBNL workflow. Low quality 
data sets are rejected in the beginning by SBNL so as to ensure 
good learning results.  

We also evaluated the Alarm and Insurance data set. Both 
data sets have good quality. The accuracy analysis is 
summarized in Table IX. Alarm10M data set is partitioned into 
208 partitions and Insurance10M data set is partitioned into 
625 partitions. For Alarm10M data set, we compare SBNL’s 
result with a single 96000 row data set (Alarm96K) applied 
directly to MMHC algorithm on a single machine. Similarly, 
for insurance10M data set, we compare SBNL’s result with a 
single 16000 row data set (Insurance16K) applied to MMHC 
algorithm.  

TABLE IX. NETWORK ACCURACY ANALYSIS 

 SArc AA MA SHD 

Alarm10M (SBNL) 0.28 0 9 9 

Alarm96K (Single) 0.27 2 5 7 

Insurance10M (SBNL) 0.68 2 26 27 

Insurance16K (Single) 0.69 3 24 25 

 

Alarm data set has good data quality with very low SArc, 
therefore, the learned BN is close to the actual network. The 
best partition size of Alarm data set is 96000. We use a 
separate Alarm data set with Alarm96K to compare SBNL’s 
accuracy. It is observed that after applying the Alarm10M data 
set rows to SBNL, we learned a BN with 37 correct arcs, zero 
missing arcs with a structure hamming distance of nine. It is 
close to the learning result of Alarm96K data set, showing 
good learning accuracy of SBNL workflow. Note that there is 
no added arc; this is due to the ensemble weighting mechanism 
of SBNL which selects popular arcs discovered by the local 
learner, resulting in a very compact BN with most of the 
correct arcs.  

On the other hand, Insurance data set has higher SArc value. 
So its learning accuracy is not as good as Alarm network. The 
best partition size of Insurance10M is 16000. It can be 
observed that the learning results of Insurance10M data set 
with SBNL workflow are similar to that of Insurance16K data 
set. Again, this comparison confirms the learning accuracy of 
SBNL workflow.  

VI. RELATED WORK 
To efficiently manage the massive amounts of data 

encountered in big data applications, approaches to in-situ 
analytics have been investigated.  Zou et al. explore the use of 
data reduction via online data compression in [32] and apply 
this idea to large-scale remote visual data exploration [33]. Our 
approach addresses the data set size problem by using a pre-
processing technique to eliminate poor-quality data, and by 
using an approach that leverages an ensemble model coupled 
with distributed processing. 

Learning BN from data is a traditional research area with a 
long history. Chickering et al. [16] show that finding the 
optimal BN structure in the graph search space is NP hard. A 
comprehensive comparative survey was carried out on BN 
learning algorithms [9]. The majority of learning algorithms 
are not designed for Big Data BN learning. The number of 
possible BN structures grows super-exponentially with respect 
to the number of variables. In addition, large data sets can 
hardly fit in the memory of a single machine. Therefore, it is 
advisable to learn BN from Big Data through distributed 
computing methods in a divide-and-conquer fashion. Chen et 
al. [13] study the problem of learning the structure of a BN 
from a distributed heterogeneous data sources, but this 
approach focuses on learning sparsely connected networks with 
different features at each site. In 2010, Na and Yang proposed a 
method for learning the structure of a BN from distributed data 
sources [14], but their local learning is using K2 algorithm with 
medium accuracy and the approach does not scale for big data 
set. In 2011, Tamada et al. proposed a Parallel Algorithm for 
learning optimal BN structure [15], but this approach is limited 
for optimal structure search of BNs, which is not suitable for 
large data sets with millions of records. In Big Data BN 
learning area, current research focus mainly on methods for 
distributed computing and scale-up implementation. To our 
best knowledge, this research is the first to bring workflow 
concept into Big Data BN learning. This is a key contribution 
to the existing research. 

There are several studies to scale up machine learning 
applications. The MapReduce framework has been shown to be 
broadly applicable to many machine learning algorithms [26]. 
Das et al. use a JSON query language, called Jaql, as bridge 
between R and Hadoop [23]. It provides a new package for 
HDFS operations. Ghoting and Pednault propose Hadoop-ML, 
an infrastructure on which developers can build task-parallel or 
data-parallel machine learning algorithms on program blocks 
under the language runtime environment [24]. Budiu et al. 
demonstrate how to use DryadLINQ for machine learning 
applications such as decision tree induction and k-means [34]. 
Yet learning curves of these tools are relatively steep since 
researchers have to learn the architectures and interfaces to 
implement their own data mining algorithms. Wegener et al. 
introduce a system architecture for GUI based data mining of 
large data on clusters based on MapReduce that overcomes the 
limitations of data mining toolkits [25]. It uses an 
implementation based on Weka and Hadoop to verify the 
architecture. This work is similar to our work as both provide 
GUI support and Hadoop integration. Our work is targeted to 
another popular machine learning and data mining tool, namely 
R, and our framework can adapt with different DDP engines. 

There are also some machine learning workflow tools such 
as Knime and Ipython notebook6. For instance, Knime provides 
a lot of machine learning packages. Yet its Big Data extension7 
currently is limited to Hadoop/HDFS access. We have not seen 
how DDP patterns/sub-workflows are supported in these 
workflow tools.  

                                                             
6 Ipython notebook: http://ipython.org/notebook.html  
7 http://www.knime.org/knime-big-data-extension 



VII. CONCLUSIONS 
In the Big Data era, techniques for processing and 

analyzing data must work in contexts where the data set 
consists of millions of samples and the amount of data is 
measured in petabytes. By combining machine learning, 
distributed computing and workflow techniques, we design a 
Scalable Bayesian Network Learning (SBNL) workflow. The 
workflow includes intelligent Big Data pre-processing, and 
effective BN learning from Big Data by leveraging ensemble 
learning and distributed computing model. We also illustrate 
how the Kepler scientific workflow system can easily provide 
scalability to Bayesian network learning. It should be noted 
that this approach can be applied to many other machine 
learning techniques as well to make them scalable and Big 
Data ready. 

For future work, we plan to improve the performance of the 
data partition part by integrating the current data partition 
approach with HDFS to achieve parallel data partition and 
loading. We also plan to apply our work on bigger data sets 
with more distributed resources to further verify its scalability.  
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