
A Scalable Data Science Workflow Approach for Big Data
Bayesian Network Learning

Jianwu Wang1, Yan Tang2, Mai Nguyen1, Ilkay Altintas1
1 San Diego Supercomputer Center
University of California, San Diego

La Jolla, CA, USA, 92093
{jianwu, mhnguyen, altintas}@sdsc.edu
2 College of Computer and Information

Hohai University
Nanjing, China, 210098

tangyan@hhu.edu.cn

Abstract—In the Big Data era, machine learning has more
potential to discover valuable insights from the data. As an
important machine learning technique, Bayesian Network (BN)
has been widely used to model probabilistic relationships among
variables. To deal with the challenges of Big Data PN learning,
we apply the techniques in distributed data-parallelism (DDP)
and scientific workflow to the BN learning process. We first
propose an intelligent Big Data pre-processing approach and a
data quality score to measure and ensure the data quality and
data faithfulness. Then, a new weight based ensemble algorithm
is proposed to learn a BN structure from an ensemble of local
results. To easily integrate the algorithm with DDP engines, such
as Hadoop, we employ Kepler scientific workflow to build the
whole learning process. We demonstrate how Kepler can
facilitate building and running our Big Data BN learning
application. Our experiments show good scalability and learning
accuracy when running the application in real distributed
environments.

Keywords—Big Data; Bayesian network; Distributed computing;
Ensemble learning; Scientific workflow; Kepler; Hadoop

I. INTRODUCTION
With the explosive growth of data encountered in our daily

lives, we have entered the Big Data era [1]. For the United
States health care sector alone, the creative and effective use of
Big Data could bring more than $300 billion potential annual
value each year [35]. Making the best use of Big Data and
releasing its value are the core problems that researchers all
over the world long to solve since the New Millennium.

Bayesian Network (BN), a probabilistic graph model,
provides intuitive and theoretically solid mechanisms for
processing uncertain information and presenting causalities
among variables. BN is an ideal tool for causal relationship
modeling and probabilistic reasoning. BN is a widely used in
modeling [2][3][4], prediction [5][6][7], and risk analysis [8].
BNs have been applied in a wide range of domains such as
Health Care, Education, Finance, Environment, Bioinformatics,
Telecommunication, and Information Technology [9]. With
abundant data resources nowadays, learning BN from Big Data
could discover valuable business insights [4] and bring
potential revenue value [8] to different domains.

To efficiently process large quantities of data, a scalable
approach is needed. Although distributed data-parallelism
(DDP) patterns, such as Map, Reduce, Match, CoGroup and
Cross, are promising techniques to build scalable data parallel
analysis and analytics applications, applying the DDP patterns
in Big Data BN learning still faces several challenges: (1) How
can we effectively pre-process Big Data to evaluate its quality
and reduce the size if necessary? (2) How to design a workflow
capable of taking Gigabytes of big data sets and learn BNs with
decent accuracy? (3) How to provide easy scalability support to
BN learning algorithms? These three questions have not
received substantial attention in the current research status-quo.
This is the main motivation for this research: the creation of the
novel workflow - Scalable Bayesian Network Learning (SBNL)
workflow. This SBNL workflow has three research novelties
which contribute to the current literature:

• Intelligent Big Data pre-processing through the use of a
proposed data quality score called ArcS to measure and
ensure data quality and data faithfulness.

• Effective BN learning from Big Data by leveraging
ensemble learning and distributed computing model. A
new weight based ensemble algorithm is proposed to
learn a BN structure from an ensemble of local results.
This algorithm is implemented as an R package and
reusable by third parties.

• A user-friendly approach to build and run scalable Big
Data machine learning applications on top of DDP
patterns and engines via scientific workflows. Users do
not need to write programs to fit the interfaces of
different DDP engines. They only need to build
algorithm specific components using languages like R
or Matlab, which they are already familiar with.

SBNL is validated using three publicly available data sets.
SBNL obtains significant performance gain when applied to
distributed environments while keeping the same learning
accuracy, making SBNL an ideal workflow for Big Data
Bayesian Network learning.

The remainder of this paper is organized as follows. Section
II presents the background of BN learning techniques and

evaluation. Section III discusses how to build scalable Big Data
applications via Kepler scientific workflow system. Section IV
describes SBNL workflow in detail. The evaluation results and
related work are presented in Section V and VI, respectively.
Section VII concludes this paper with future work.

II. BAYESIAN NETWORK LEARNING TECHNIQUES AND
EVALUATION

A. Ensemble Learning
One trend in machine learning is to combine results of

multiple learners to obtain better accuracy. This trend is
commonly known as Ensemble Learning. Ensemble Learning
leverages multiple models to obtain better predictive
performance than what could be obtained from any of the
constituent models [19]. There is no definitive taxonomy for
ensemble learning. Zenko [18] details four methods of
combining multiple models: bagging, boosting, stacking and
error-correcting output. In 2009, the Netflix challenge grand
prizewinner used ensemble learning technique to build the
most accurate predictive model for movie recommendation and
won a million dollar1. In this paper, we propose a weight-based
algorithm to combine local and global learning results to learn
a BN from Big Data. Main symbols used in the paper are listed
in Table I.

TABLE I. SYMBOL TABLE

Data set Meanings

B BN structure
D Data set

P(B,D) The joint probability of a BN structure (B) given
the data set (D)

P(B) Prior probability of the network B
N’ Prior equivalent sample size
Xi Variable Xi

Pa(Xi) Parents of Xi
Γ Gamma function

ND The number of rows in D,
Narc The total number of arcs in B
SArc Arc Score

B. The BDe Score
Score functions describe how well the BN structure fits the

data set. The BDe score function [9] provides a way to
compute the joint probability of a BN structure (B) given the
data set (D) denoted as (,)P B D . The best BN structure
maximizes the BDe score. Thus BDe score is a good measure
for data set quality. The BDe score function is derived from
discrete variables. Let n be the total number of variables, qi
denotes the number of configurations of the parent set ()iPa X
and ir denotes the number of states of variable iX . The BDe
score function is:

1 Netflix prize, Netflix Inc, http://www.netflixprize.com/

∏ ∏∏
= == Γ

+Γ

+Γ

Γ

=
i iq

j

r

k

ii

ijk
ii

ij
i

i
n

i

qr
N

N
qr
N

N
q
N
q
N

BPDBP
1 1

'

'

'

'

1)(

)(
.
)(

)(
)(),(

 (1)

where ijkN is the number of instances in D for which iX k=

and ()iPa X is in the j th configuration

∑
=

=
ir

ik
ijkij NN

 (2)

The BDe score function uses a parameter prior that is
uniform and requires both a prior equivalent sample size N’
and a prior structure. In practice, the BDe score function uses
the value log((,))P B D . BDe score function is decomposable:
the total score is the sum of the score of each variable iX . This
study uses BDe score to evaluate the learning accuracy of BN
learning algorithm as well as the data set quality (Section V.B)

In order to measure the quality of a data set D, we introduce
a new measure called Arc Score denoted as SArc

(,) /(*)Arc D arcS P B D N N= (3)

P(B, D) is the BDe score given data D，and BN structure B,

DN is the number of rows in D, arcN is the total number of
arcs in B. After empirical study on known BN structures
(Section V), we discover that the data sets suitable for BN
learning have SArc larger than -0.5. On the other hand, data sets
that produce inferior BN structure have very low SArc, generally
smaller than -0.5, reaching -1 or even -2. Hence, SArc could be
used as an effective measure for data set quality.

Under the situation where we only have a data set D, how
could we obtain SArc? To address this problem, we can use an
accurate BN learning algorithm like Max-Min Hill Climbing
(MMHC) [10]. Because BN learning algorithms are neutral,
given good data set, a structure B with high SArc will be learned,
and given a bad data set D’, a structure B’ with low S’Arc will
be learned. Therefore, we can use MMHC, one of the most
accurate and robust algorithms from the BN learning algorithm
comparison study [9] to learn a BN from any data set D and
calculate the corresponding SArc.

C. Structural Hamming Distance
Structure Hamming Distance (SHD) [14] is an important

measure to evaluate the quality of the BN. The learned BN
structure B is directly compared with the structure of a gold
standard network (GSN) - the network with a known correct
structure. Each arc in the learned structure fits one of the
following cases:

• Correct Arc: the same arc as the GSN.

• Added Arc (AA): an arc that does not exist in the GSN.

• Missing Arc (MA): an arc that exists in the GSN but not
in the learned structure.

• Wrongly Directed Arc (WDA): an arc that exists in the
GSN with opposite direction.

Since some algorithms may return non-oriented edges as
the direction of some edges could not be statistically
distinguished using orientation rules, the learned BN is a
partially directed acyclic graph (PDAG). SHD is defined as the
number of the operators required to make two PDAGs identical:
either by adding, removing, or reversing an arc, or by adding,
removing or orienting an edge.

SHD = (#AA + #MA + #WDA +#AE + #ME + #NOE) (4)

where AE is Added Edges, ME is Missing Edges and NOE is
Non-Oriented Edges.

D. Bayesian Network Learning Algorithm
A comprehensive and comparative survey was carried out

on BN learning algorithms [9]. Out of more than 50 learning
algorithms, Max-Min-Hill-Climbing (MMHC) [10], Three-
Phase Dependency Analysis Algorithm (TPDA) [11] and
Recursive BN learning Algorithm (REC) [12] are shown to
have superior learning accuracy and robustness.

Input:
:D Data set

:ε threshold for conditional independence test

MMHC (, εD)

Phase I:

1. For all variables iX , Set () MMPC(,)i iPC X X D= ;

Phase II:
2. Start from an empty graph; perform greedy hill-climbing

with operators: add_edge, delete_edge and reverse_edge.
Only try operator add_edge →Y X if ()∈Y PC X ;

Return the highest scoring DAG found;
Fig. 1. The MMHC algorithm.

The Max-Min Hill Climbing (MMHC) algorithm [14]
combines concepts from Constraint-based [13], and Search-
and-Score-Based algorithms [11]. It takes as input a data set D
and returns a BN structure with the highest score. MMHC is a
two-phase algorithm: Phase I identifies the candidate sets for
each variable Xi by calling a local-discovery algorithm called
Max-Min Parents and Children (MMPC) and discover a BN’s
skeleton. Phase II performs a Bayesian-scoring, greedy hill-
climbing search starting from an empty graph to orient and
delete the edges. Fig. 1 presents a detailed description of the
MMHC algorithm.

The major structural search process of MMHC algorithm is
the MMPC procedure that returns the parents and children of a
target variable X, denoted as PC(X). By invoking MMPC with
each variable as the target, one can identify all the edges that
form the BBN’s skeleton.

III. BUILDING SCALABLE BIG DATA APPLICATIONS VIA KEPLER
SCIENTIFIC WORKFLOW SYSTEM

A. Distributed Data-Parallel Patterns for Scalable Big Data
Application

Several DDP patterns, such as Map, Reduce, Match,
CoGroup, and Cross, have been identified to easily build
efficient and scalable data parallel analysis and analytics
applications [27]. DDP patterns enable programs to execute in
parallel by splitting data in distributed computing
environments. Originating from higher-order functional
programming, each DDP pattern executes user-defined
functions (UDF) in parallel over input data sets. Since DDP
execution engines often provide many features for execution,
including parallelization, communication, and fault tolerance,
application developers only need to select the appropriate
DDP pattern for their specific data processing tasks, and
implement the corresponding UDFs.

Due to the increasing popularity and adoption of these DDP
patterns, a number of execution engines have been
implemented to support one or more of them. These DDP
execution engines manage distributed resources, and execute
UDF instances in parallel. When running on distributed
resources, DDP engines can achieve good scalability and
performance acceleration. Hadoop is the most popular
MapReduce execution engine. The Stratosphere system [27]
supports five different DDP patterns. Many of the above DDP
patterns are also supported by Spark 2 . Since each DDP
execution engine defines its own API for how UDFs should be
implemented, an application implemented for one engine may
be difficult to run on another engine.

B. Kepler Scientific Workflow

The Kepler scientific workflow system3 is an open-source,
cross-project collaboration to serve scientists from different
disciplines [28]. Kepler adopts an actor-oriented modeling
paradigm for the design and execution of scientific workflows.
Kepler has been used in a wide variety of projects to manage,
process, and analyze scientific data.

Kepler provides a graphical user interface (GUI) for
designing, managing and executing scientific workflows,
which are a structured set of steps or tasks linked together that
implement a computational solution to a scientific problem. In
Kepler, Actors provide implementations of specific tasks and
can be linked together via input and output Ports. Data is
encapsulated in messages or Tokens, and transferred between
actors through ports. Actor execution is governed by Model of
Computations (MoCs), called Directors in Kepler [29].

We found the actor-oriented programming paradigm of
Kepler fits the DDP framework very well [30]. Since each
DDP pattern expresses an independent higher-order function,
we define a separate DDP actor for each pattern. Unlike
normal actors, these higher-order DDP actors do not process

2 Spark Project: http://spark.apache.org/
3 Kepler Project: https://kepler-project.org/

its input data as a whole. Instead, they first partition the input
data and then process each partition separately.

The UDF for the DDP patterns is an independent
component and can naturally be encapsulated within a DDP
actor. The logic of the UDF can either be expressed as a sub-
workflow or compiled code. In the first case, users can
compose a sub-workflow for their UDF via Kepler GUI using
specific subsidiary actors for the DDP pattern and any other
general actors. Since the sub-workflow is not specific to any
engine API, the same sub-workflow could be executed on
different DDP engines. Like other actors, multiple DDP actors
can be linked to construct bigger applications.

Each DDP pattern defines its execution semantics, i.e., how
data partitions are processed by the pattern. This clear
definition enables decoupling between a DDP pattern and its
execution engines. To execute DDP workflows on different
DDP execution engines, we have implemented a DDP director
in Kepler. Currently, this director can execute DDP workflows
with Hadoop, Stratosphere and Spark. At runtime, the director
will detect the availability of DDP execution engines and
transform workflows into their corresponding jobs. The
adaptability of the director makes it user-friendly since it hides
the underlying execution engines from users.

C. Machine Learning Support in Kepler

There are many popular tools/languages for machine
learning, such as R, Matlab, Python and Knime [31]. Complex
machine learning applications might need to integrate different
components implemented in different tools/languages. Kepler
supports easy integration of these tools/languages within one
process. Besides the ExternalExecution actor in Kepler to
invoke arbitrary binary tools in batch mode, we also have
actors specifically for many scripting languages. For instance,
users can embed their own R scripts in the RExpression actor.
Users can further customize the input/output ports of the
RExpression actor to connect with other actors and build
complex applications.

In addition, we are investigating how to integrate other
popular machine learning tools, such as Mahout 4, into Kepler.
Users will be able to use their machine learning
functions/libraries as actors and connect them with other
actors.

IV. PROPOSED APPROACH

A. Overview of SBNL Workflow
After introducing the background knowledge in previous

sections, we give the overview of our SBNL workflow.

4 Mahout: https://mahout.apache.org/

Fig. 2. Overview of the SBNL algorithm.

As shown in Fig. 2, SBNL workflow consists of four
components: (1) Data partitioning, (2) Local learner, (3)
Master learner, (4) Kepler workflow.

In the data partitioning component, the SBNL workflow
partitions the data set into data partitions of reasonable size.
SBNL has a score based algorithm to dynamically determine
the best partition size to balance both learning complexity and
accuracy. Then, data partitions are sent evenly to each local
learner. The local learner will first use the value of SArc to
examine the data partition’s quality. If the quality is good,
SBNL then enters local ensemble learning (LEL) step, each
local learner will run MMHC algorithm separately on each
local data partition to learn an individual BN. Then, local
learner applies our proposed ensemble method on individual
BNs to generate a final local BN. During local learning, the
best local data partition is obtained in each local learner.

Finally, SBNL workflow reaches the master learner
component. This component receives local BN and best local
data partitions from all local learners. The best data partition
can be obtained in master learner. Then, master learner runs
our proposed ensemble algorithm on the local BN using the
best data partition. Note that master learner does not run any
BN learning algorithm, it just gives weight to each local BN
and ensembles the final BN. So, all the computing heavy lifting
tasks are distributed among the local learners.

Details of each component in SBNL workflow are specified
in the following sub-sections.

B. Quality Evaluation and Data Partitioning
First thing SBNL workflow does is evaluating the quality

of a given big data set. It runs a scoring algorithm to
incrementally evaluate a partition Dp of the whole data set D.
Each time the scoring algorithm doubles the size of Dp until a
threshold is reached. If the SArc value of Dp is larger than 1.0,
then the whole data set will not be used for SBNL workflow.

SBNL workflow

Local Learner

Data Quality
Evaluation

Local Ensemble
Learning

Quality Evaluation &
Data Partitioning Big Data

Master Learner

MasterEnsemble
Learning

Final BN
Structure

Kepler Workflow

 Facing Big Data larger than the memory size, a single
machine could not compute the Bayesian score of the whole
data set. Therefore, we use distributed computing model in
SBNL workflow. A big data set is partitioned into K slices of
size Ns.

Nd = Ns*K + Nr (5)

where Nd is the size of data set D and Nr is the row number of
the remainder of D after K partitions. By counting the last Nr
rows data as another slice, total partition slice is K+1. Given
the total number of local learners denoted as Nlocal, we try to
send data slices evenly to the local learners for better load
balance.

An important task here is to determine Ns , we propose a
fast incremental algorithm FindNs to find a proper partition
size. FindNs is described in Table II.

TABLE II. THE FINDNS FUNCTION

function FindNs (data, maxStep, maxSize){
bestScore = 100; currentStep = 1;
nrowdata= number of rows in data;
ncoldata = number of column in data;
Ns = 1000*(ncoldata % 10);
slicedData = data[1:sliceSize] ;
score = dataQualityCalculator(slicedData) *(-1);
while (score < bestScore && currentStep < maxStep && sliceSize <
maxSize) {

 bestScore = score;
Ns= Ns*2;

 slicedData = data[1: Ns];
score = SarcCalculator (slicedData) *(-1);

 currentStep = currentStep+1;
 }
 return Ns;
}

function SarcCalculator(D, parameters){
 network = mmhc(D, parameters);
 score = score(network, D, type ="BDe");
 SArc = score/(Nd * (# of arcs in network));
 return SArc;
}

 FindNs algorithm begins with the initial slice size:

Ns =1000*(ncoldata%10) (7)

Then it doubles the value of Ns iteratively and evaluate the
data partition (data[1: Ns]) until its SArc value could no longer
be improved or the maximum number iteration or partition size
is reached. In this way, the quality of each data partition is
ensured by SArc and the data partition size is controlled under a
threshold.

C. Local Learner
 First activity in local learner is the Data Quality Evaluation
(DQE). During DQE, each data partition is examined with the
function SarcCalculator. If the data partition’s SArc is less than
-0.5, then this partition is dropped by SBNL workflow.

 After DQE, local learner then enters the second activity:
Local Ensemble Learning (LEL) shown in Table III. In LEL,
the first step is learning local BNs from data partitions using

MMHC algorithm. This step also looks at each data partition
and selects the best partition. Then, LEL calculates learnScores
for local BNs using the best data partition.

TABLE III. LOCAL ENSEMBLE LEARNING

LocalEnsembleLearning(dataPartitions){
 # Initialization

localBNs = learn BNs from dataPartitions using MMHC;
 learnScores = Bde scores of localBNs using best data partition;
 finalLocalBN = ensembleBNs(localBNs,learnScores, bestPartition);
}
ensembleBNs(localBNs, learnScores, bestPartition){

weights = weightCalculator(learnScores, bestPartition);
mergedMatrix = matrix(0, nnodes,nnodes);

Transform and merge local BNs
for (n in 1:length(localBNs)) {
adjMatrix = BNToAdjMatrix(localBNs[n]);
mergedMatrix = adjMatrix * weights[n] + mergedMatrix;

 }

 # Transform merged matrix into final local BN

minThreshold = min(weights);
finalLocalBN = MergedMatrixToBN(mergedMatrix, minThreshold*2);
return finalLocalBN;

}

 Assigning weight to each individual learner is an important
technique in ensemble learning. LEL leverages the weighting
technique and proposes a method called ensembleBNs. In
ensembleBNs, based on the value of localScores, a weight
vector is calculated. For example, if the localScores = [-0.2, -
0.3, -0.25, -0.25], then the corresponding normalized weight
vector is [0.306, 0.204, 0.245, 0.245]. Smaller local score in
absolute value has higher weight. After obtaining the weights,
ensembleBNs then transforms local BNs into adjacency
matrixes and merges them into one matrix using the weight
vector. In the end, ensembleBNs leverages the merged matrix
to generate the final local BN. A threshold is set as the minimal
value in the weight vector. Then ensembleBNs iterates the
merged matrix and identify an arc when mergedMatrix [i , j] >
minThreshold * 2. This is a voting mechanism to promote and
discover an arc when it is present in more than two local BNs.

D. Master Learner
After describing local learner, we now introduce the final

component in SBNL workflow – the master learner. Master
learner adopts similar strategy as the local learner and reuses
the function ensembleBNs. There are two inputs: final local
BNs deoted as Slocal, and the best local partition denoted as
Dlocalbest. Master learner contains four steps: 1) Obtain the
global best partition from Dlocalbest.; 2) Calculate scores for
Slocal using Dbest; 3) Call ensembleBNs function to obtain the
final BN; 4) Return final BN as the learning result of SBNL
workflow from Big Data.

TABLE IV. MASTER LEARNER

CentralEnsembleLearner(BNlocal, Dlocalbest) {
obtain the best data partition Dbest from Dlocalbest
scores = Bde scores of Slocal using Dbest;
finalBN= ensembleBNs(BNlocal, scores, Dbest);
return finalBN;

}

E. SBNL Workflow in Kepler
We build our SBNL workflow by embedding the above

components in Kepler, which is shown in Fig. 3. All the code
snippets (namely Table II, III, IV) are implemented in an R
package as the core of the Kepler big data BN learning
workflow. Main actors of the top-level workflow, shown in Fig.
3 (a), are PartitionData and DDPNetworkLearner actors. The
first actor is a RExpression actor that includes the R scripts for
the data partitioning component in Fig. 2. The main parts of
this script are provided in Table II.

Fig. 3 (a): Top-level SBNL workflow.

Fig. 3 (b): DDP sub-workflow.

Fig. 3 (c): Local learner sub-workflow in Map.

Fig. 3 (d): Master learner sub-workflow in Reduce.

Fig. 3. SBNL workflow in Kepler.
DDPNetworkLearner is a composite actor whose sub-

workflow is shown in Fig. 3 (b). Map and Reduce DDP actors
are used here to achieve parallel local learner execution and
sequential master learner execution. DDP Director is used to
manage the sub-workflow execution by communicating with
underlying DDP engines. DDPDataSource actor reads
partitions generated by PartitionData actor and sends each

partition to a local learner instance that runs across the
computing nodes.

The sub-workflow of the Map actor, shown in Fig. 3 (c),
mainly calls a RExpression actor to run Local Learner R script.
The main parts of this script are provided in Table III. The sub-
workflow of the Reduce actor, shown in Fig. 3 (d), mainly calls
a RExpression actor to run Master Learner R script. The main
parts of this script are provided in Table IV. Based on the
dependency between the Map and Reduce actor in Fig. 3 (b),
the DDP Director can manage their executions so that Reduce
actor can only be executed after Map actor finishes all local
learner processing.

This workflow demonstrates how Kepler can facilitate
building parallel network learner algorithms. The DDP
framework of Kepler provides basic building blocks for the
DDP patterns and supports the dependencies between them.
RExpression actor can easily integrate user R scripts with other
parts of the workflow. Kepler also provides subsidiary actors,
such as Expression and DDPDataSource, for supporting
operations needed for a complete and executable workflow.
Overall, Kepler users can build scalable network learner
workflows without writing programs except needed R scripts.

V. EVALUATION
The evaluation results of SBNL are presented in this

section. Several big data sets are used to evaluate SBNL. The
goal of the evaluation is to address the following questions:

1. When constructing the SBNL, what is the best slice size
for each big data set?

2. On all big data sets, does SBNL workflow achieve good
learning accuracy with significant performance improvement?

A brief description of the data sets and threshold selection
study are presented in Subsection A. Subsection B answers two
questions above.

A. Background
The background of the empirical study is described in detail

in this subsection. First, data sets are described and evaluation
measures are presented. Then threshold selection study is
shown. The machine specification for the evaluation of all
results is as follows. Four compute nodes in a cluster
environment are employed, where each node has two eight-
core 2.6 GHz CPUs, and 64 GB memory. Each node could
access the input data via a shared file system.

1) Data sets and measurements
Three large data sets are used in this empirical study. A

brief description of each data set is presented below. Properties
of all data sets are summarized in Table V.

TABLE V. DATA SETS

Data set #Rows
(million) #Arcs #Variables Data size

(GB)
Alarm10M 10 46 37 1.9

HailFinder10M 10 66 56 3.9
Insurance10M 10 52 27 1.8

• Alarm: A medical BN for patient monitoring.
• HailFinder: A BN that forecasts severe summer hail in

the northeastern Colorado area.
• Insurance: An adaptive BN Network modeling the car

insurance problem.
All data sets are generated from well-known Bayesian

networks as follows using logic sampling [20]: For Alarm
network, the data set contains 10 millions rows and is called
Alarm10M. Similarly, For Hailfinder network, the data set is
called Haifinder10M and for insurance network, the data set is
called Insurance10M. Since each data set contains 10 million
rows and all the data set sizes exceed the normal data set size
applicable for BN learning. It is very time consuming and
sometime infeasible to learn BN from most of the data sets
listed above using traditional BN learning algorithm.

2) Threshold Selection Study
To measure the BN structures learned by SBNL, we use

BDe score and SHD described in Section II.B and II.C.

In Section II, two functions are described. SarcCalculator
calculates arc score to measure the quality of data set D,
FindNs uses SarcCalculator to find the ideal data slice size Ns.
It is critical to study and verify the correctness of the function
SarcCalculator to make sure that the data preprocess phase of
SBNL are sound and practical.

To evaluate the correctness of SArc, we used six different
data sets: three good data sets without any noise, followed by
three bad data sets with 5% noise from each BN listed in Table
VI. Then we calculate SArc for each data set and compare it with
the SArc of the golden standard network (GSB). SHD is listed
for each learned BN. Table VI shows that given good data set,
value of SArc is very close to SArc of GSN. This indicates that
SArc is indeed an accurate measure for the quality of the data
sets. Furthermore, it is observed that bad data sets with noise
have very low SArc : generally lower than -0.5, and the SHD of
the corresponding bad data set is far away from the correct
structure. The column Select indicates whether SBNL selects
the data set in the DQE activity.

TABLE VI. SARC OF SIX DIFFERENT DATA SETS

Date set Rows
(K)

SArc

(MMHC)
SArc

(GSN) Select SHD

Alarm_good 50 -0.30 -0.28 Yes 4

HailFinder_good 50 -0.36 -0.34 Yes 26

Insurance_good 50 -0.28 -0.25 Yes 9

Alarm_Bad 50 -0.87 -0.28 No 12

HailFinder_Bad 50 -1.1 -0.34 No 58

Insurance_Bad 50 -1.03 -0.26 No 21

According to Table VI, we can claim that SBNL has 100%
data selection accuracy in its local learner component.
Therefore, we could conclude that SArc is an accurate measure
to test the faithfulness of data set D.

After running FindNs on three big data sets, we obtain Ns
for each big data set (in Table VII). Note that SArc values shown

in Table VII are very close to SArc of GSN listed in Table VI.
This ensures the correctness of the partition size Ns .

TABLE VII. ACCURACY RESULTS OF THREE NETWORKS

Network Ns SArc

Alarm 24000 -0.29

HailFinder 50000 -0.35

Insurance 20000 -0.27

B. Experiments
We conducted our experiments using four compute nodes

in a cluster environment. The tests were done with Hadoop
version 2.2. In the tests, one node is assigned to task
coordination and others to worker tasks.

We ran our workflow with different worker nodes to see the
scalability of executions and how its performance changes. We
also implemented an R program that only uses the original
MMHC algorithm for the network learning task. Because the R
program has no parallel execution across multiple nodes, no
data partition step is needed and it can only run on one node.
Its execution time will be the baseline for the performance
comparisons.

We ran our experiments with three data sets, whose
execution information is shown in Table VIII, from which we
can see our workflow achieved good scalability running on
more worker nodes. Although our SBNL workflow has an
additional step for data partition, its execution times are still
better than the base line execution. The overall performance
shows less improvement when the worker node number
increases. It is because some steps of the workflow (data
partition, master leaner) cannot utilize the distributed
environment for parallel executions. We plan to speedup the
data partition step by utilizing the parallel data loading and
partitioning capability of HDFS 5 . We will also do the
experiments with bigger data sets on larger environments.

TABLE VIII. EXECUTION PERFORMANCE OF THE NETWORK ANALYSIS
WORKFLOW AND BASE LINE R PROGRAM (UNIT: MINUTES)

We first give Hailfinder data set to SBNL workflow. In the
first data evaluation actor, SArc value of Hailfinder remains very
high around 1.5. So SBNL workflow determines that
Hailfinder data set is not suitable for BN learning. To confirm
it, we further apply a data set of Hailfinder to MMHC

5 Hadoop Distributed File System (HDFS) :
http://wiki.apache.org/hadoop/HDFS

Data set
Base line

(16 Core)

Parallel executions with Kepler

32 Core 48 Core 64 Core

Alarm5M
(936 MB) 8.16 5.29 4.59 4.09

Alarm10M
(1.9 GB) 19.03 15.26 10.67 9.22

Insurance10M
(1.9 GB) 22.41 12.19 8.70 7.61

algorithm. The learned BN is very different from the actual
Hailfinder network since there are over 30 missing arcs. This
study affirms the correctness of SBNL workflow. Low quality
data sets are rejected in the beginning by SBNL so as to ensure
good learning results.

We also evaluated the Alarm and Insurance data set. Both
data sets have good quality. The accuracy analysis is
summarized in Table IX. Alarm10M data set is partitioned into
208 partitions and Insurance10M data set is partitioned into
625 partitions. For Alarm10M data set, we compare SBNL’s
result with a single 96000 row data set (Alarm96K) applied
directly to MMHC algorithm on a single machine. Similarly,
for insurance10M data set, we compare SBNL’s result with a
single 16000 row data set (Insurance16K) applied to MMHC
algorithm.

TABLE IX. NETWORK ACCURACY ANALYSIS

 SArc AA MA SHD

Alarm10M (SBNL) 0.28 0 9 9

Alarm96K (Single) 0.27 2 5 7

Insurance10M (SBNL) 0.68 2 26 27

Insurance16K (Single) 0.69 3 24 25

Alarm data set has good data quality with very low SArc,
therefore, the learned BN is close to the actual network. The
best partition size of Alarm data set is 96000. We use a
separate Alarm data set with Alarm96K to compare SBNL’s
accuracy. It is observed that after applying the Alarm10M data
set rows to SBNL, we learned a BN with 37 correct arcs, zero
missing arcs with a structure hamming distance of nine. It is
close to the learning result of Alarm96K data set, showing
good learning accuracy of SBNL workflow. Note that there is
no added arc; this is due to the ensemble weighting mechanism
of SBNL which selects popular arcs discovered by the local
learner, resulting in a very compact BN with most of the
correct arcs.

On the other hand, Insurance data set has higher SArc value.
So its learning accuracy is not as good as Alarm network. The
best partition size of Insurance10M is 16000. It can be
observed that the learning results of Insurance10M data set
with SBNL workflow are similar to that of Insurance16K data
set. Again, this comparison confirms the learning accuracy of
SBNL workflow.

VI. RELATED WORK
To efficiently manage the massive amounts of data

encountered in big data applications, approaches to in-situ
analytics have been investigated. Zou et al. explore the use of
data reduction via online data compression in [32] and apply
this idea to large-scale remote visual data exploration [33]. Our
approach addresses the data set size problem by using a pre-
processing technique to eliminate poor-quality data, and by
using an approach that leverages an ensemble model coupled
with distributed processing.

Learning BN from data is a traditional research area with a
long history. Chickering et al. [16] show that finding the
optimal BN structure in the graph search space is NP hard. A
comprehensive comparative survey was carried out on BN
learning algorithms [9]. The majority of learning algorithms
are not designed for Big Data BN learning. The number of
possible BN structures grows super-exponentially with respect
to the number of variables. In addition, large data sets can
hardly fit in the memory of a single machine. Therefore, it is
advisable to learn BN from Big Data through distributed
computing methods in a divide-and-conquer fashion. Chen et
al. [13] study the problem of learning the structure of a BN
from a distributed heterogeneous data sources, but this
approach focuses on learning sparsely connected networks with
different features at each site. In 2010, Na and Yang proposed a
method for learning the structure of a BN from distributed data
sources [14], but their local learning is using K2 algorithm with
medium accuracy and the approach does not scale for big data
set. In 2011, Tamada et al. proposed a Parallel Algorithm for
learning optimal BN structure [15], but this approach is limited
for optimal structure search of BNs, which is not suitable for
large data sets with millions of records. In Big Data BN
learning area, current research focus mainly on methods for
distributed computing and scale-up implementation. To our
best knowledge, this research is the first to bring workflow
concept into Big Data BN learning. This is a key contribution
to the existing research.

There are several studies to scale up machine learning
applications. The MapReduce framework has been shown to be
broadly applicable to many machine learning algorithms [26].
Das et al. use a JSON query language, called Jaql, as bridge
between R and Hadoop [23]. It provides a new package for
HDFS operations. Ghoting and Pednault propose Hadoop-ML,
an infrastructure on which developers can build task-parallel or
data-parallel machine learning algorithms on program blocks
under the language runtime environment [24]. Budiu et al.
demonstrate how to use DryadLINQ for machine learning
applications such as decision tree induction and k-means [34].
Yet learning curves of these tools are relatively steep since
researchers have to learn the architectures and interfaces to
implement their own data mining algorithms. Wegener et al.
introduce a system architecture for GUI based data mining of
large data on clusters based on MapReduce that overcomes the
limitations of data mining toolkits [25]. It uses an
implementation based on Weka and Hadoop to verify the
architecture. This work is similar to our work as both provide
GUI support and Hadoop integration. Our work is targeted to
another popular machine learning and data mining tool, namely
R, and our framework can adapt with different DDP engines.

There are also some machine learning workflow tools such
as Knime and Ipython notebook6. For instance, Knime provides
a lot of machine learning packages. Yet its Big Data extension7
currently is limited to Hadoop/HDFS access. We have not seen
how DDP patterns/sub-workflows are supported in these
workflow tools.

6 Ipython notebook: http://ipython.org/notebook.html
7 http://www.knime.org/knime-big-data-extension

VII. CONCLUSIONS
In the Big Data era, techniques for processing and

analyzing data must work in contexts where the data set
consists of millions of samples and the amount of data is
measured in petabytes. By combining machine learning,
distributed computing and workflow techniques, we design a
Scalable Bayesian Network Learning (SBNL) workflow. The
workflow includes intelligent Big Data pre-processing, and
effective BN learning from Big Data by leveraging ensemble
learning and distributed computing model. We also illustrate
how the Kepler scientific workflow system can easily provide
scalability to Bayesian network learning. It should be noted
that this approach can be applied to many other machine
learning techniques as well to make them scalable and Big
Data ready.

For future work, we plan to improve the performance of the
data partition part by integrating the current data partition
approach with HDFS to achieve parallel data partition and
loading. We also plan to apply our work on bigger data sets
with more distributed resources to further verify its scalability.

ACKNOWLEDGMENT
This work is supported by the Natural Science Foundation

of Jiangsu Province, China under grant No.BK20140857 and
National Science Foundation, U.S. under grant DBI-1062565
and 1331615.

REFERENCES
[1] R. Lu, H. Zhu, X. Liu, J. K. Liu, J. Shao. “Toward efficient and privacy-

preserving computing in big data era”. Network, IEEE, Vol. 28, Issue 4,
pp. 46-50, 2014.

[2] Y. Zhang, Y. Zhang, E. Swears, N. Larios, Z. Wang, Q. Ji, “Modeling
Temporal Interactions with Interval Temporal Bayesian Networks for
Complex Activity Recognition”, IEEE Transactions on Pattern Analysis
and Machine Intelligence, Vol. 35, Issue 10, pp. 2468-2483, 2013

[3] M. Neil, C. Xiaoli, N. Fenton, “Optimizing the Calculation of
Conditional Probability Tables in Hybrid Bayesian Networks Using
Binary Factorization”, IEEE Transactions on Knowledge and Data
Engineering, Vol. 24, Issue 7, pp.1306-1312, 2012

[4] M. Gui, A. Pahwa, S. Das, “Bayesian Network Model With Monte Carlo
Simulations for Analysis of Animal-Related Outages in Overhead
Distribution Systems”, IEEE Transactions on Power Systems, Vol. 26,
Issue 3, pp. 1618- 1624, 2011

[5] N. E. Fenton, M. Neil, “A critique of software defect prediction models”,
IEEE Transactions on Software Engineering, Vol. 25, Issue 5, pp. 675-
689, 1999.

[6] S. Sun, C. Zhang, G. Yu, “A bayesian network approach to traffic flow
forecasting”, IEEE Transactions on Intelligent Transportation Systems,
Vol 7, Issue 1, pp. 124-132, 2006.

[7] K. Dejaeger, T. Verbraken, B. Baesens, “Toward Comprehensible
Software Fault Prediction Models Using Bayesian Network Classifiers”,
IEEE Transactions on Software Engineering, Vol. 39, Issue 2, pp. 237-
248, 2013.

[8] M. Neil and N. Fenton, “Using Bayesian Networks to Model the
Operational Risk to Information Technology Infrastructure in Financial
Institutions”, Journal of Financial Transformation, Vol. 22, pp. 131-138,
2008.

[9] Y. Tang, K. Cooper, C. Cangussu, “Bayesian Belief Network Structure
Learning Algorithms”, Technical Report. University of Texas at Dallas.
UTDCS-25-09. 2009.

[10] I. Tsamardinos, L. E. Brown, C. F. Aliferis, “The max-min hill-climbing
Bayesian network structure learning algorithm”, Machine Learning, Vol.
65, Issue 1, pp. 31-78, 2006.

[11] J. Cheng, R. Greiner, J. Kelly, D. A, Bell, W. Liu, “Learning Bayesian
networks from data: An information-theory based approach”, Artificial
Intelligence, Vol.137, pp. 43-90, 2002.

[12] X. Xie, Z. Geng, “A Recursive Method for Structural Learning of
Directed Acyclic Graphs”, Journal of Machine Learning Research, Vol.9,
pp. 459-483, 2008.

[13] R. Chen, K. Sivakumar , H. Kargupta, Learning bayesian network
structure from distributed data, In Proceedings of the 3rd SIAM
International Data Mining Conference, pp. 284-288, 2003.

[14] Y. Na , J. Yang, “Distributed Bayesian network structure learning”, In
Proceedings of 2010 IEEE International Symposium on Industrial
Electronics (ISIE), pp. 1607 - 1611, 2010.

[15] Y. Tamada, S. Imoto, S. Miyano, “Parallel Algorithm for Learning
Optimal Bayesian Network Structure”, Journal of Machine Learning
Research, Vol.12, pp. 2437-2459, 2011.

[16] D. M. Chickering, D. Geiger, D. Heckerman, “Learning Bayesian
networks is NP-hard”. Vol. 196, Technical Report MSR-TR-94-17,
Microsoft Research, 1994.

[17] D. Opitz, and R. Maclin, “Popular ensemble methods: An empirical
study”, Journal of Artificial Intelligence Research, Vol. 11, pp. 169-198,
1999.

[18] B. Zenko, “A comparison of stacking with meta decision trees to
bagging, boosting, and stacking with other methods”, In Proceedings
IEEE International Conference on Data Mining (ICDM 2001), pp. 669-
670, 2001.

[19] K. Monteith, J. L. Carroll, K. Seppi, T. Martinez., “Turning Bayesian
Model Averaging into Bayesian Model Combination”, In Proceedings of
the International Joint Conference on Neural Networks (IJCNN'11), pp.
2657-2663, 2011.

[20] J. A. Hoeting, D. Madigan, A. E. Raftery, C. T. Volinsky, “Bayesian
Model Averaging: A Tutorial”. Statistical Science, Vol. 14 , Issue 4 , pp.
382-401, 1999.

[21] M. Scutari, Bayesian Network Repository,
http://www.bnlearn.com/bnrepository, 2011

[22] I. Beinlich, Suermondt, H.R. Chavez, G. Cooper, “The ALARM
monitoring system: a case study with two probabilistic inference
techniques for belief networks”, In Proceedings of Artificial Intelligence
in Medical Care, pp. 247-256, 1989.

[23] S. Das, Y. Sismanis, K. S. Beyer, R. Gemulla, P. J. Haas, and J.
McPherson, “Ricardo: Integrating R and Hadoop,” In Proceedings of
ACM SIGMOD International Conference on Management Data
(SIGMOD10), pp. 987-998, 2010.

[24] A. Ghoting and E. Pednault, “Hadoop-ML: An Infrastructure for the
Rapid Implementation of Parallel Reusable Analytics,” In Proceedings
of Large-Scale Machine Learning: Parallelism and Massive Data Sets
Workshop (NIPS ’09), 2009.

[25] D. Wegener, M. Mock, D. Adranale, S. Wrobel, “Toolkit-Based High-
Performance Data Mining of Large Data on MapReduce Clusters,” In
Proceedings of International Conference on Data Mining Workshops
(ICDMW ’09), pp. 296-301, 2009.

[26] C. Chu, S. K. Kim, Y. Lin, Y. Yu, G. R. Bradski, A. Y. Ng, K.
Olukotun, “Map-Reduce for machine learning on multicore,” in
Advances in neural information processing systems 19, pp. 281-288,
2007.

[27] D. Battre, S. Ewen, F. Hueske, O. Kao, V. Markl, D. Warneke,
“Nephele/PACTs: A programming model and execution framework for
web-scale analytical processing”, In Proceedings of the 1st ACM
symposium on Cloud computing (SoCC’10), ACM, pp. 119-130, 2010.

[28] B. Ludaescher, I. Altintas, C. Berkley, D. Higgins, E. Jaeger-Frank, M.
Jones, E. A. Lee, J. Tao, Y. Zhao, “Scientific workflow management and
 the Kepler system”, Concurrency and Computation: Practice &
Experience, Special Issue on Scientific Workflows, Vol. 18, Issue 10, pp.
1039-1065, 2006.

[29] A. Goderis, C. Brooks, I. Altintas, E. Lee, C. Goble, “Heterogeneous
composition of models of computation”, Future Generation Computer
 Systems, Vol. 25, Issue 5, pp. 552-560, 2009.

[30] J. Wang, D. Crawl, I. Altintas, W. Li. “Big Data Applications using
Workflows for Data Parallel Computing”, Computing in Science &
Engineering, Vol. 16, Issue 4, pp. 11-22, July-Aug. 2014, IEEE.

[31] M. R. Berthold, N. Cebron, F. Dill, T. R. Gabriel, T. Kötter, T. Meinl, P.
Ohl, C. Sieb, K. Thiel, B. Wiswedel, “KNIME: The Konstanz
information miner”. Studies in Classification, Data Analysis, and
Knowledge Organization, pp. 319-326, 2008.

[32] H. Zou, F. Zheng, M. Wolf, G. Eisenhauer, K. Schwan, H. Abbasi, Q.
Liu, N. Podhorszki, S. Klasky, “Quality-Aware Data Management for
Large Scale Scientific Applications”, In Proceedings of High
Performance Computing, Networking, Storage and Analysis (SCC),
2012 SC Companion, pp. 816-820, 2012.

[33] H. Zou, M. Slawinska, K. Schwan, M. Wolf, G. Eisenhauer, F. Zheng, J.
Dayal, J. Logan, S. Klasky, T. Bode, M. Kinsey, M. Clark. “FlexQuery:
An Online In-situ Query System for Interactive Remote Visual Data
Exploration at Large Scale”. In Proceedings of 2013 IEEE International
Conference on Cluster Computing (Cluster 2013). pp. 1-8, 2013.

[34] M. Budiu, D. Fetterly, M. Isard, F. McSherry, Y. Yu. "Large-scale
machine learning using DryadLINQ." , in R. Bekkerman, M. Bilenko, J.
Langford (Eds.), Scaling up Machine Learning: Parallel and Distributed
Approaches, Cambridge University Press, pp 49-68, 2011.

[35] W. Raghupathi, V. Raghupathi. “Big data analytics in healthcare:
promise and potential”. Health Information Science and Systems, Vol. 2,
Issue 1, 3, 2014.

