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Abstract— To execute workflows on a compute cluster re-
source, workflow engines can work with cluster resource 
manager software to distribute jobs into compute nodes on the 
cluster. We discuss how to interact with traditional Oracle 
Grid Engine and recent Hadoop cluster resource managers 
using a dataflow-based scheduling approach to balance com-
pute resource load for data-parallel workflow execution. Our 
experiments show that: 1) The presented approach can bal-
ance computational resource load well by interacting with the 
resource managers and provides good execution performance 
on both physical and virtual clusters; 2) Oracle Grid Engine 
outperforms Hadoop for CPU-intensive applications on small-
scale clusters. 

Keywords- data-parallel workflow scheduling, virtual cluster, 
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I.  INTRODUCTION 

Scientific workflow management systems have demon-
strated their ability to help domain scientists solve scientific 
problems by synthesizing different data and computing re-
sources. Data parallelism in scientific workflows describes 
parallel execution of workflow on multiple parts of input 
data if these input parts can be processed independently [1]. 
To speed up workflow execution, many data-parallel 
workflows are run on compute cluster resources where clus-
ter resource managers are usually employed to distribute 
jobs on the clusters. Currently, two kinds of resource man-
ager software are commonly used: (i) traditional resource 
manager software, such as Oracle Grid Engine (OGE)1 and 
Load Sharing Facility (LSF)2, to manage job distribution on 
the cluster, and (ii) the relatively new Hadoop software3 to 
manage data distribution along with job distribution on a 
cluster. 

Through a natural scheduling approach and its applica-
tion to scientific use cases, this paper discusses how to work 
with resource managers to schedule data-parallel scientific 
workflows and compare their performance differences. 

II. A DATA-PARALLEL SCIENTIFIC WORKFLOW 

SCHEDULING APPROACH 

Scheduling data-parallel workflows on limited nodes be-
fore knowing the execution times of the tasks in the 
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workflows is a challenge. A simple example of this chal-
lenge is illustrated in Figure 1. The workflow in Figure 1 
has three tasks (Tasks A, B and C) and three input parts (In-
puts 1, 2 and 3). The tasks have to be executed sequentially; 
yet the inputs can be processed independently. Suppose two 
homogenous nodes are available to run the workflow. The 
task execution time for each input on one node is listed in 
the execution time table in Figure 1. From the table, we can 
see the execution times of the same task for different inputs 
are very different. For many real workflow applications, the 
number of inputs and tasks could be too large to get all ex-
ecution time information before scheduling the workflow. 

 
Figure 1.  A data-parallel workflow scheduling approach. 

Most task scheduling problems in distributed environ-
ments have no optimal solutions in polynomial time [2], 
especially when workflow task execution times are un-
known beforehand. In our approach, we only use a natural 
way to schedule tasks, namely putting executable tasks with 
their inputs in a first-in, first-out (FIFO) queue and schedul-
ing them to nodes that are available. In this approach 
(shown in Figure 1), task executions for each input are 
represented as jobs. Once an input is available, a corres-
ponding job will be created and submitted to a job scheduler 
asynchronously. All the tasks in the workflow will share one 
job scheduler which manages submitted jobs in a FIFO 
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queue. The shared job scheduler distributes jobs to available 
compute nodes. Here, we use notation A1 to present the job 
for task A processing input 1, and use the similar way for 
other jobs. The characteristics of our approach are explained 
as follows using the example in Figure 1. 

Data-driven Workflow Execution: In data-driven 
workflow, i.e., dataflow, execution semantics, tasks are ex-
ecuted based on input data availability. For each task, inputs 
will be processed in order and be automatically buffered in a 
queue if the task is currently busy. In Figure 1, job A3 is 
submitted after job A2, and B2 is the first job in task B since 
A2 finishes earlier than other jobs in task A and then input 2 
is the first input for task B. 

Pipeline Parallelism: Pipeline parallelism describes 
how a set of data is processed simultaneously among a 
group of sequential tasks, each task processing one or more 
data elements of the set [1]. With pipeline parallelism, if an 
input finishes its processing in one task, it does not need to 
wait for the completion of the other inputs in the same task 
before being processed by the downstream tasks in the 
workflow. For instance, input 2 can be processed in task B 
before all inputs finish their processing in task A in Figure 1. 

Asynchronous Job Submission: Since execution time 
may vary for different jobs, asynchronous job submission 
and status checking enables the workflow execution engine 
to get the information that a job is done without waiting for 
the completion of other jobs. In a pipeline, this finished job 
will immediately trigger downstream tasks. In this way, job 
B2 in the example can get started before all jobs in task A 
finishes. 

Shared Job Scheduler: A job scheduler manages mul-
tiple computing nodes and distributes jobs to available 
nodes. In our approach, jobs in different tasks are managed 
by the same job scheduler to achieve overall load balancing 
on distributed nodes. 

Job Partition: If a job in a task can be further split into 
multiple small independent sub jobs, especially for down-
stream tasks, it would help to balance the load of compute 
nodes through the shared job scheduler. In the example, if 
job C1 can be evenly split to 7 sub jobs, the 6th sub job will 
be distributed into node 2, and then the whole workflow can 
be finished at time unit 28 instead of 29. 

III. WORKFLOWS INTERACTING WITH CLUSTER 

RESOURCE MANAGERS 

We demonstrate our approach to interact with OGE and 
Hadoop via a Kepler workflow use case in Computational 
Chemistry. Kepler workflow system4 satisfies the characte-
ristics of the approach. 

The use case is an enzyme design process that goes 
through three computational steps, namely RosettaMatch, 
RemoveBChain and RosettaDesign, before validation by 
experiments [3]. The execution of these programs takes 
around 300 MB memory on one machine, and these pro-
grams are CPU intensive since over 99.9% of their execu-
tion time is taken by CPU. The entire process can be per-
formed independently for different inputs, i.e., scaffolds. 
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The total computation time for each input varies greatly, 
ranging from half a minute to five hours.  

A. Kepler Workflow Interacting with Oracle Grid Engine 

Like other traditional cluster resource managers, OGE is 
used to submit, schedule, distribute, and manage the execu-
tion of large numbers of jobs on the nodes of a cluster. A 
shared file system is normally employed for data and pro-
gram access from the nodes. 

Figure 2 shows a workflow that interacts with OGE on 
one compute cluster. The connection links between the 
components, called actors in Kepler, describe their depen-
dencies, which determine that each input has to go through 
the three processing tasks sequentially. Once one actor ge-
nerates its output, the output will trigger the execution of the 
downstream actors, e.g., the RemoveBChain actor will start 
processing once it gets data from the RosettaMatch actor. 

Inside a composite actor, such as RosettaMatch, the sub-
workflow dynamically creates job scripts according to 
workflow inputs and submits them asynchronously to the 
OGE job scheduler on the cluster using Kepler actors.  

 
Figure 2.  Kepler workflow for enzyme design process using OGE. 

B. Kepler Workflow Interacting with Hadoop  

The Hadoop software is composed of a MapReduce run-
time system and a distributed file system, called HDFS. In-
put data is automatically partitioned into chunks and stored 
on compute nodes. User programs are distributed and ex-
ecuted in parallel on the partitioned data blocks. HDFS sup-
ports MapReduce execution model [4] with the capability of 
automatic data redundancy and diffusion among each node 
in the Hadoop cluster. A Hadoop node dispatches tasks and 
manages the executions of the other Hadoop nodes. 

The workflow in Figure 3 is built using the MapReduce 
actor in Kepler. Since Map and Reduce are two separate 
functions in the MapReduce programming model, Map and 
Reduce are treated as two independent sub-workflows in 
Kepler MapReduce actor [5]. However, since the use case 
only requires “embarrassingly parallel execution” for differ-
ent inputs, only a Map sub-workflow is needed here. 

In this workflow, job files to be executed in compute 
nodes are put into HDFS once they are created and asyn-
chronously submitted to Hadoop scheduler via an AsynMa-
pReduce actor. In the Map sub-workflow of each AsynMa-
pReduce actor, job information is gotten from HDFS and the  
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Figure 3.  Kepler workflow for enzyme design process using Hadoop. 

job is executed by an ExternalExecution actor. This 
workflow does not take much advantage of data distribution 
in HDFS since legacy domain-specific programs, like Roset-
ta programs in our use case, cannot directly process data in 
HDFS. Thus in this workflow, Rosetta programs and data-
base are still accessed from the standard shared file system 
in the cluster, not HDFS. We will discuss possible solutions 
to the problem in Section 4. 

IV. EXPERIMENTS AND DISCUSSIONS 

The above developed workflows are tested in three kinds 
of physical and virtual compute cluster environments. A 
typical compute cluster consists of compute nodes, a control 
node, a storage file system and network connection. The 
control node will manage the job execution on the compute 
nodes through OGE or Hadoop. Users will access the envi-
ronment through the control node, and run their applications 
on the compute nodes using the data from the external sto-
rage server which normally hosts a shared file system for the 
nodes. 

In our experiments, we create two kinds of virtual clus-
ters based on different virtualization hosts: Private Cloud 
Cluster and Public Cloud Cluster. A private cloud cluster is 
created based on users’ existing physical cluster. We only 
virtualize compute nodes and share the control node, the 
external storage server and the resource manager with the 
host cluster. A public cloud cluster is created from a public 
cloud provider, such as Amazon Elastic Compute Cloud 
(EC2)5, where all the cluster components are built based on 
the public cloud environment.  

Our experiments on the physical cluster and the private 
cloud cluster are carried out in a dedicated Beowulf type 
cluster, which consists of commodity x86_64 hardware and 
1 Gb Ethernet switch for networking. Storage is provided 
through RAID array servers, which are NFS servers 
mounted on the compute nodes. Its default scheduler is OGE. 
The nodes used in this experiment have 8 GB memory, 2 
dual core AMD 2.0 GHz CPUs and CentOS 5.5 Linux in-
stalled on the local hard drives. The private cloud cluster 
environment is built using Xen as the hypervisor. Each vir-
tual compute node only has bare CentOS 5.5 with 6 GB 
memory. In both environments, Kepler, the Rosetta database 
and the Rosetta programs for the enzyme design process use 
case are accessed from the mounted NFS server. 
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The public cloud clusters on EC2 are built by StarClus-
ter6 toolkit, which automatically instantiates instances based 
on provided Amazon machine image (AMI), attaches Ama-
zon Elastic Block Storage (EBS) volumes, installs OGE job 
scheduler, and installs NFS to build a shared file system on 
the EBS volumes. We use the large instance type for all the 
nodes in the cluster. Each node has 7.5 GB memory and 2 
virtual CPU cores. In this environment, Kepler, the Rosetta 
database and the Rosetta programs are accessed from an 
EBS volume that are mounted and shared by the NFS ser-
vice on the control node. 

For the execution of the OGE workflow, we start the ex-
ecution daemon of OGE on the physical and virtual compute 
nodes so that we can submit jobs via the control node where 
these jobs will be distributed to the compute nodes. Similar-
ly, Hadoop is configured and started to manage and distri-
bute jobs for the Hadoop workflow in Section 3. Simple 
FIFO queue based scheduling is used in both the OGE and 
Hadoop. Each physical or virtual compute node only runs 
one job at a time. Since the resources are dedicated and each 
workflow is executed separately in our experiments, there is 
no queue wait time for each job other than waiting for the 
preceding jobs in the workflow to complete.  

Figure 4 lists the experiment results for the workflow 
runs using two input sets. The first input set includes 5 scaf-
folds which has 5, 5 and 50 jobs for the RosettaMatch, Re-
moveBChain and RosettaDesign task respectively. The 
second one includes 10 scaffolds and has 10, 10 and 286 
jobs respectively. The execution of the RosettaDesign task 
is split into smaller jobs for better resource load balancing. 

These results indicate that: 1) On all execution environ-
ments, the execution on four nodes for both the OGE and 
Hadoop workflows have good execution acceleration rates 
compared to the execution on one node; 2) The execution on 
the private cloud cluster only brings very little overhead 
(around 1%) over the physical cluster; 3) The Hadoop 
workflow execution takes longer time than the OGE 
workflow execution. Moreover, our execution monitoring 
shows the compute nodes are evenly balanced until remain-
ing job number is less than the compute node number. 

Experimental results in Figure 4 also indicate that the 
execution performance on the public cloud cluster is always 
better than that on other environments, mainly due to the 
newer and faster CPU models on the public cloud cluster. 
Yet it is hard to measure the exact CPU difference since the 
CPU models might be different for the virtual instances. 

We think the overhead for the Hadoop workflow execu-
tion is due to several reasons. First, jobs are not directly 
executed in Hadoop nodes but wrapped by Kepler MapRe-
duce sub-workflows (as shown at the bottom of Figure 3), 
which brings additional overhead compared to the direct job 
execution on compute nodes in the OGE workflow. In addi-
tion, scheduling overhead of Hadoop is larger since it needs 
extra effort for HDFS management. 

Although the Hadoop workflows take longer execution 
time than the OGE ones in the experiments, we argue using 
Hadoop still has potential advantages in some aspects. 
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Figure 4.  Execution time comparison for the enzyme design process. 

The first aspect is data-intensive computation. HDFS 
supports automatic data partition among Hadoop nodes, 
and user programs can be distributed and executed in pa-
rallel on the partitioned data blocks. If stored in the HDFS, 
the data and programs can be easily shared among and 
accessed from compute nodes, providing data locality, and 
reducing data connection traffic on shared file system. 
With HDFS, Hadoop can potentially outperform tradition-
al job schedulers for data-intensive application execution 
on large-scale compute clusters. One challenge here is that 
legacy domain-specific programs, like Rosetta programs in 
our use case, cannot directly process data in HDFS. Possi-
ble solutions for it are: 1) Staging data out from HDFS to 
standard file system on the local node before program ex-
ecution; 2) Extending legacy programs to be able to follow 
MapReduce programming model and access data in HDFS; 
3) Using toolkits like FUSE to allow HDFS mounted as a 
standard file system7. 

The second aspect is workflow description for execu-
tion logic on compute nodes. It is intuitive to describe the 
execution logic to be run on Hadoop nodes through sub-
workflows, as shown at the bottom of Figure 3. In addition, 
since the execution logic is explicitly specified in a sub-
workflow rather than an external script, provenance infor-
mation can be easily captured by the workflow engine. 

V. CONCLUSIONS 

To validate workflow engines interacting with cluster 
resource managers for efficient workflow execution on 
cluster resources, two compute cluster resource managers, 
namely OGE and Hadoop, are used and compared via 
scientific workflow applications. Our experiments show 
dataflow-based workflow scheduling approach can have 
good resource load balancing and performance speedup 
for data-parallel workflow applications on physical and 
virtual compute clusters. The experiments also show run-
ning CPU intensive jobs with moderate I/O access hardly 
have performance deterioration on a virtual environment. 

There are increasing efforts for workflow research [6, 7] 
and systems such as Oozie8, Azkaban9 and Cascading10 to 
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work with the MapReduce programming model or Hadoop 
environment. Yet none of the above work compares their 
performance with traditional resource manager like OGE. 
Our experiments show that traditional resource manager 
can have better performance for those data-parallel 
workflow applications that can be executed using both 
Hadoop and traditional resource managers on small-scale 
clusters. The performance comparison result is the same 
when testing on a physical compute cluster and two virtual 
ones. We also analyze the reasons for the performance 
difference and potential advantages using Hadoop. 

For future work, we plan to improve the HDFS utiliza-
tion and compare the execution performance for data-
intensive workflow applications on large-scale clusters. 
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