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Abstract

The performance of parallel computer code depends on an intricate interplay of the processors, the archi-
tecture of the compute nodes, their interconnect network, the numerical algorithm, and the scheduling policy
used. This note considers a case study of a solver of a system of transient hyperbolic conservation laws which
utilizes both point-to-point and collective communications between parallel processes at each time step. The
solver is already known to scale well to many parallel processes on distributed-memory clusters with a high
performance interconnect network. The results presented here show excellent overall performance of the new
cluster hpc with InfiniBand interconnect and confirm that is beneficial to use the maximum number of cores
possible on every node, allowing a total of 128 parallel processes on the 32 compute nodes.

1 Introduction

During the manufacture of integrated circuits, a process called atomic layer deposition (ALD) is used to deposit
a uniform seed layer of solid material on the surface of a silicon wafer. ALD consists of several steps, repeated
thousands of times, involving reactions between two gaseous species, which adsorb, desorb, and react at the wafer
surface. The behavior of the reactive species can be modeled by a kinetic transport and reaction model (KTRM)
whose mathematical representation is a system of transient linear Boltzmann equations combined with a surface
reaction model [3, 4, 5]. Each Boltzmann equation is discretized in velocity space by an expansion in terms of
specially chosen velocity basis function resulting in a system of transient linear hyperbolic conservation laws [6].
These transient partial differential equations are solved by the discontinuous Galerkin method [7]. At each time
step, there are both point-to-point and collective communications between all parallel processes, making the code
an excellent way to test the parallel performance of the network. Section 2 explains the application problem and
its mathematical model in more detail, while Section 3 documents the numerical method used.

Past results using the KTRM and its implementation [2, 6], show that the code scales extremely well on parallel
computing clusters with a high performance interconnect network. These results were obtained on a distributed-
memory cluster purchased in 2003 from IBM with two (single-core) processors per node and a Myrinet interconnect.
This note considers the performance of the new distributed-memory cluster hpc, purchased in 2008 also from IBM,
with each node having two dual-core AMD Opteron 2.6 GHz processors with 1024 kB cache per core and 13 GB of
memory per node, connected by a state-of-the-art InfiniBand interconnect network. The processors on each node
allow for up to four processes to be run simultaneously per node. Section 4 evaluates the performance results in
detail.

Table 1 summarizes the key results of the study by giving the total time to execute the code in units of
hours:minutes:seconds (HH:MM:SS). We use coarse and fine meshes for both the spatial domain and velocity
discretization, resulting a total of four test cases. The number of degrees of freedom (DOF) specifies the number
of unknowns that need to be computed in every time step and can be used as an indication of the complexity of
each case. The parallel code is run on different numbers of nodes, ranging from 1 to 32, running either 1, 2, or 4
processes per node. The upper-left entry of each sub-table corresponds to the serial run of the code, using only
one process on one node. Similarly, the lower-right entry of each sub-table corresponds to running 4 processes on
all 32 nodes, or 128 processes in total. Note that this entry does not exist for the first and third cases due to the
particular way in which the domain is split, and thus the maximum number of nodes that can be used is given by
the two table entries adjacent to the lower-right for these cases. As we see by looking at the case of the fine spatial
mesh with mesh spacing h = 0.015625 together with the fine velocity resolution K = 16× 16, we can use parallel
computing to reduce the time taken to run the code from around 2:43 hours (163 minutes) to under 2 minutes.

The results in Table 1 are organized such that two key questions may be answered: (i) if the code scales linearly
to all 32 nodes, which is a test of the quality of the InfiniBand interconnect network, and (ii) whether multiple
processors and cores per node should be used.

(i) Reading along each row of Table 1 we see mixed results. In several cases, the run time is not halved as
the number of processes doubles, as one would expect. Particularly, for the first two cases of the coarser
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Table 1: Wall clock time in HH:MM:SS for the solution of four cases of velocity and spatial meshes using 1, 2, 4,
8, 16, and 32 compute nodes with 1, 2, and 4 processes per node.

(a) Coarse spatial mesh with h = 0.03125, coarse velocity resolution K = 8× 8, DOF = 163,840
1 node 2 nodes 4 nodes 8 nodes 16 nodes 32 nodes

1 process per node 00:01:27 00:01:23 00:00:32 00:00:17 00:00:09 00:00:06
2 processes per node 00:00:47 00:00:29 00:00:15 00:00:12 00:00:06 00:00:07
4 processes per node 00:00:26 00:00:15 00:00:09 00:00:07 00:00:06 N/A
(b) Fine spatial mesh with h = 0.015625, coarse velocity resolution K = 8× 8, DOF = 655,360

1 node 2 nodes 4 nodes 8 nodes 16 nodes 32 nodes
1 process per node 00:10:53 00:10:39 00:05:40 00:02:53 00:01:29 00:00:42
2 processes per node 00:05:47 00:03:01 00:02:39 00:01:28 00:00:41 00:00:19
4 processes per node 00:03:01 00:01:36 00:01:27 00:00:39 00:00:20 00:00:18
(c) Coarse spatial mesh with h = 0.03125, fine velocity resolution K = 16× 16, DOF = 655,360

1 node 2 nodes 4 nodes 8 nodes 16 nodes 32 nodes
1 process per node 00:20:33 00:10:26 00:05:17 00:02:43 00:01:29 00:01:01
2 processes per node 00:10:26 00:05:19 00:02:42 00:01:30 00:00:52 00:00:30
4 processes per node 00:05:20 00:02:45 00:01:33 00:00:54 00:00:32 N/A
(d) Fine spatial mesh with h = 0.015625, fine velocity resolution K = 16× 16, DOF = 2,621,440

1 node 2 nodes 4 nodes 8 nodes 16 nodes 32 nodes
1 process per node 02:43:39 01:23:02 00:42:08 00:21:27 00:10:51 00:05:36
2 processes per node 01:23:18 00:42:09 00:21:28 00:10:55 00:05:36 00:03:08
4 processes per node 00:42:31 00:21:30 00:11:00 00:05:37 00:03:06 00:01:50

velocity resolution K = 8×8, while there is a clear trend toward speedup overall, we observe that going from
1 process on 1 node to 1 process on 2 nodes produces almost no speedup, despite the expectation that the
latter would be twice as fast. In the next two sub-tables for the finer velocity resolution K = 16×16, there is
an observable speedup in proportion to the number of nodes used, and the algorithm and its implementation
make effective use of the cluster.

(ii) To analyze the results of running 1, 2, or 4 parallel processes per node, we compare the results column-wise
on each sub-table. It is here that we see the clear halving (approximately) of times when doubling the
number of processes used per node. This is an excellent result, and reinforces the previous knowledge that
the code should be run with as many processes per node as available. This confirms also the usage policy
currently implemented on hpc that uses all cores on a node simultaneously by default.

Comparing the results of Table 1 to the previously obtained results given in Table 7, we see a vast difference in
wall clock times for corresponding cases. For instance, on a serial run of the finest mesh, we improve from a time
of 9.5 hours to approximately 2.75 hours, which is about 3.5 times faster.

2 The Hyperbolic Test Problem

Many steps during the manufacture of integrated circuits involve the deposition of a seed layer of solid material
onto the surface of a silicon wafer through a process called atomic layer deposition (ALD). The goal of ALD is to
deposit a uniform layer onto the surface through reactions between a precursor gas, denoted by A, and a reactant
gas, denoted by B. The intended reaction pathway calls for A to adsorb to the solid surface and in a next step for
B to react with the adsorbed A to form one uniform monolayer of solid on the wafer surface. This is expressed by
the surface reaction model

A + v 
 Av, (2.1a)
B + Av → solid + by-product + v, (2.1b)

where v denotes a vacant site on the surface and Av denotes A attached to a site on the surface [3, 4, 5]. However,
if the gas used for B is hydrogen radicals, denoted by H, it is believed that the deposition of the desired solid
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may be inhibited in two ways: (i) Some H may adsorb to the surface as Hv and thus block A from adsorbing at
that surface site. (ii) Some gaseous H may react with adsorbed Hv to form a gaseous H2 and thus would not be
available for the desired surface reaction. The proposed reaction model between A and H is given by

A + v 
 Av, (2.2a)
H + Av → solid + by-product + v, (2.2b)
H + v 
 Hv, (2.2c)
H + Hv → H2 + v, (2.2d)

where the last two reactions express the two inhibition pathways. The forward reaction rate for the ith equation
is given by γfi for each of the four reactions, and the backward reaction rate is given by γbi for each of the two
reversible reactions.

The mathematical model for the flow of the gaseous species through the spatial domain Ω ⊂ R2 that encom-
passes the neighborhood of the wafer surface is given by a system of linear Boltzmann equations

∂f (i)(x,v, t)
∂t

+ v · ∇xf
(i)(x,v, t) =

1
Kn

Qi(f (i)(x,v, t)), i = 1, . . . , ns, (2.3)

for x = (x1, x2)T ∈ Ω, v ∈ R2, and 0 < t ≤ tfinal, where ns is the number of species in the model, Kn is the
Knudsen number, and the linear collision operators Qi(f (i)) are given by

Qi(f (i)) =
∫
R2
σi(v,v′)

[
M (i)(v′)f (i)(x,v, t)−M (i)(v′)f (i)(x,v, t)

]
dv′, (2.4)

where M (i) is the Maxwellian of species i. Together with the above reaction model, this flow model comprises the
kinetic transport and reaction model KTRM [2].

3 The Numerical Method

The solution f (i)(x,v, t) of the KTRM in (2.3) needs to be computed for all species i = 1, . . . , ns at all spatial points
x = (x1, x2)T ∈ Ω, for all velocities v ∈ R2, and for all times 0 ≤ t ≤ tfinal. The key of the numerical method is to
discretize in velocity space first by approximating f (i)(x,v, t) by the expansion f (i)

K (x,v, t) =
∑K−1
`=0 f

(i)
` (x, t)ϕ`(v),

where the basis functions ϕ`(v) in velocity space are products of a Maxwellian and Hermite polynomials in each
dimension [6]. Each Boltzmann equation in (2.3) is then discretized by inserting f (i)

K (x,v, t) for f (i)(x,v, t) and
testing against the K basis functions ϕk(v), k = 0, . . . ,K − 1. This results in a system of K transient linear
hyperbolic conservation laws

∂F (i)

∂t
+A(1) ∂F

(i)

∂x1
+A(2) ∂F

(i)

∂x2
=

1
Kn

B(i)F (i) (3.1)

in space x = (x1, x2)T and time t for the vector of K coefficient functions F (i)(x, t) := (f (i)
0 (x, t), . . . , f (i)

K−1(x, t))T .
The K ×K matrices A(1), A(2), and B(i) are constant due to the linearity of (2.3). Moreover, the specific basis
functions constructed in [6] guarantee that the matrices A(1), A(2) are diagonal. This means that the coupling
between species comes through the wafer surface boundary condition that implements the crucial surface reactions
(2.2).

For simplicity, we only deal with the 2-D/2-D kinetic model in this report, so that our spatial domain Ω ⊂ R2

and velocity space R2 are both two-dimensional. We additionally assume we are dealing with the ideal case,
wherein the gaseous H neither adsorbs to the surface nor forms H2; in this case, γf3 = γb3 = γf4 = 0. While this
means the third and fourth reactions never occur, they are still computed in our code, and thus the computational
complexity still reflects the full four reaction model.

To test the performance of the code, we use four cases: Case 1 with velocity resolution K = 8 × 8 = 64 and
spatial mesh spacing h = 0.03125; Case 2 with K = 8× 8 = 64 and h = 0.015625; Case 3 with K = 16× 16 = 256
and h = 0.03125; and Case 4 with K = 16 × 16 = 256 and h = 0.015625. We measure the complexity of these
problems by the number of degrees of freedom (DOF), which is given by the number of solution components that
have to be computed at every time step. The systems of K hyperbolic conservation laws are exactly the type
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Table 2: Sizing study listing the velocity resolution K, the spatial mesh spacing h, the number of spatial mesh
elements Ne, the number of degrees of freedom (DOF), the final time tfinal, the constant time step ∆t, the number
of time steps Nt, and the observed wall clock time in HH:MM:SS for a serial run in each test case.

K h Ne DOF tfinal ∆t Nt Wall time
Case 1 8× 8 0.03125 320 163,840 0.20 1.00500 · 10−3 199 00:01:27
Case 2 8× 8 0.015625 1280 655,360 0.20 5.02700 · 10−4 398 00:10:53
Case 3 16× 16 0.03125 320 655,360 0.20 6.28370 · 10−4 319 00:20:33
Case 4 16× 16 0.015625 1280 2,621,440 0.20 3.14187 · 10−4 637 02:43:39

of problem that the discontinuous Galerkin finite element method [7] was designed for. We use two-dimensional
quadrilateral elements with four local degrees of freedom (the solution value at every vertex) and a uniform mesh
spacing h. Thus, the DOF at every time step can be calculated by the formula 4nsNeK, where ns is the number
of species, Ne is the number of spatial finite elements, and K is the size of the velocity mesh. The degrees of
freedom of each case are collected in Table 2. The time steps are automatically computed at run-time to be the
largest possible value that still guarantees stability of the method. As a result, the number of time steps to reach
the final time is different in each case; this can be seen as a consequence of the size of the problem, since larger
values for K and Ne require smaller time steps to guarantee stability.

To parallelize the problem, the domain Ω is split into sub-domains using a graph partitioning utility. Each
parallel process is assigned one of the sub-domains. The processes perform the computations for the update of
the solution on all sub-domains in parallel at each time step. At each time step, there are both point-to-point
communications between pairs of processes that hold adjacent sub-domains and collective communications among
all processes.

4 Performance Studies on hpc

Because finer velocity and spatial meshes cause an increased number of degrees of freedom, which must be solved
at a large number of time steps, parallel computing can be used to dramatically decrease the time taken to solve
the problem by distributing the work load using multiple processes. If Tp(N) is defined as the wall clock time for
a problem of fixed size N by using p processes, then the quantity Sp = T1(N)/Tp(N) is the speedup of the code
from 1 to p processes, with an optimal value Sp = p. The efficiency Ep = Sp/p measures how close a run is to
optimal speedup, in which case Ep = 1 [1].

Table 3 summarizes the results of running only one process on each node, that is, we use only one core of the
two dual-core processors on each node with the remaining three cores idling. Since we have 32 nodes total, this
distribution cannot be used for p > 32; thus, we run 2 processes per node for p = 64 and 4 processes per node for
p = 128. Each row lists the results for one problem size, and each column corresponds to the number of parallel
processes p used in that run. We notice no improvement in the wall clock time from p = 1 to p = 2 for the first
two cases. This is unexpected and could possibly be attributed to some overhead with using MPI dominating over
the computational cost of the coarse velocity mesh in these cases. For larger values of p as well as for the latter
two cases, good speedup is exhibited all the way to p = 32, as using twice as many processes speeds up the code
by approximately a factor two each time. This is evidenced by the corresponding speedup plot in Figure 1 (a) and
associated efficiency plot in Figure 1 (b), where the efficiency for these cases remains above Ep = 0.6 throughout.

We then analyze the impact of using more than one core per node; the results of using two cores per node are
shown in Table 4 and Figure 2, while the results of using four cores per node are given in Table 5 and Figure 3.
Note that two and four cores are only used when possible: In both tables, one process per node is used for p = 1;
in Table 4, four processes per node must be used for p = 128; and in Table 5, two processes per node are used
for p = 2. The most important difference to notice is that there is not the huge efficiency drop-off from p = 1 to
p = 2 for the first two cases, as there was with using one core per node. For the other two cases, we see difference
between timing values for using one, two, or four cores is negligible. This indicates that for this algorithm and its
implementation we can use as many cores on as many processors as we have available without any disadvantage.
Indeed, looking at Table 5, we see that using the maximum number of cores available—p = 64 for h = 0.03125
and p = 128 for h = 0.015625—gives us the smallest execution time in each case.
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Table 3: Performance by number of processes used with 1 process per node, except for p = 64 which uses 2 processes
per node and p = 128 which uses 4 processes per node.

(a) Wall clock time in HH:MM:SS
p = 1 p = 2 p = 4 p = 8 p = 16 p = 32 p = 64 p = 128

K = 64, h = 0.03125 00:01:27 00:01:23 00:00:32 00:00:17 00:00:09 00:00:06 00:00:07 N/A
K = 64, h = 0.015625 00:10:53 00:10:39 00:05:40 00:02:53 00:01:29 00:00:42 00:00:19 00:00:18
K = 256, h = 0.03125 00:20:33 00:10:26 00:05:17 00:02:43 00:01:29 00:01:01 00:00:30 N/A
K = 256, h = 0.015625 02:43:39 01:23:02 00:42:08 00:21:27 00:10:51 00:05:36 00:03:08 00:01:50
(b) Observed speedup Sp

p = 1 p = 2 p = 4 p = 8 p = 16 p = 32 p = 64 p = 128
K = 64, h = 0.03125 1.0000 1.0510 2.7419 5.1693 9.4668 13.4884 13.3231 N/A
K = 64, h = 0.015625 1.0000 1.0225 1.9193 3.7648 7.3190 15.5922 34.4046 37.3143
K = 256, h = 0.03125 1.0000 1.9681 3.8923 7.5570 13.7904 20.3600 40.5726 N/A
K = 256, h = 0.015625 1.0000 1.9709 3.8836 7.6311 15.0716 29.2145 52.2454 89.3367
(c) Observed efficiency Ep

p = 1 p = 2 p = 4 p = 8 p = 16 p = 32 p = 64 p = 128
K = 64, h = 0.03125 1.0000 0.5255 0.6855 0.6462 0.5917 0.4215 0.2082 N/A
K = 64, h = 0.015625 1.0000 0.5113 0.4798 0.4706 0.4574 0.4873 0.5376 0.2915
K = 256,h = 0.03125 1.0000 0.9840 0.9731 0.9446 0.8619 0.6362 0.6339 N/A
K = 256,h = 0.015625 1.0000 0.9855 0.9709 0.9539 0.9420 0.9130 0.8163 0.6979

(a) Observed speedup Sp (b) Observed efficiency Ep

Figure 1: Performance by number of processes used with 1 process per node, except for p = 64 which uses
2 processes per node and p = 128 which uses 4 processes per node.

5



Table 4: Performance by number of processes used with 2 processes per node, except for p = 1 which uses 1 process
per node and p = 128 which uses 4 processes per node.

(a) Wall clock time in HH:MM:SS
p = 1 p = 2 p = 4 p = 8 p = 16 p = 32 p = 64 p = 128

K = 64, h = 0.03125 00:01:27 00:00:47 00:00:29 00:00:15 00:00:12 00:00:06 00:00:07 N/A
K = 64, h = 0.015625 00:10:53 00:05:47 00:03:01 00:02:39 00:01:28 00:00:41 00:00:19 00:00:18
K = 256,h = 0.03125 00:20:33 00:10:26 00:05:19 00:02:42 00:01:30 00:00:52 00:00:30 N/A
K = 256,h = 0.015625 02:43:39 01:23:18 00:42:09 00:21:28 00:10:55 00:05:36 00:03:08 00:01:50
(b) Observed speedup Sp

p = 1 p = 2 p = 4 p = 8 p = 16 p = 32 p = 64 p = 128
K = 64, h = 0.03125 1.0000 1.8610 3.0494 5.8389 7.2987 13.4052 13.3231 N/A
K = 64, h = 0.015625 1.0000 1.8840 3.6151 4.0946 7.4535 15.8765 34.4046 37.3143
K = 256,h = 0.03125 1.0000 1.9681 3.8662 7.6008 13.6681 23.5305 40.5726 N/A
K = 256,h = 0.015625 1.0000 1.9646 3.8832 7.6212 14.9817 29.2537 52.2454 89.3367
(c) Observed efficiency Ep

p = 1 p = 2 p = 4 p = 8 p = 16 p = 32 p = 64 p = 128
K = 64, h = 0.03125 1.0000 0.9305 0.7624 0.7299 0.4562 0.4189 0.2082 N/A
K = 64, h = 0.015625 1.0000 0.9420 0.9038 0.5118 0.4658 0.4961 0.5376 0.2915
K = 256,h = 0.03125 1.0000 0.9841 0.9665 0.9501 0.8543 0.7353 0.6339 N/A
K = 256,h = 0.015625 1.0000 0.9823 0.9708 0.9526 0.9364 0.9142 0.8163 0.6979

(a) Observed speedup Sp (b) Observed efficiency Ep

Figure 2: Performance by number of processes used with 2 processes per node, except for p = 1 which uses
1 process per node and p = 128 which uses 4 processes per node.
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Table 5: Performance by number of processes used with 4 processes per node, except for p = 1 which uses 1 process
per node and p = 2 which uses 2 processes per node.

(a) Wall clock time in HH:MM:SS
p = 1 p = 2 p = 4 p = 8 p = 16 p = 32 p = 64 p = 128

K = 64, h = 0.03125 00:01:27 00:00:47 00:00:26 00:00:15 00:00:09 00:00:07 00:00:06 N/A
K = 64, h = 0.015625 00:10:53 00:05:47 00:03:01 00:01:36 00:01:27 00:00:39 00:00:20 00:00:18
K = 256,h = 0.03125 00:20:33 00:10:26 00:05:20 00:02:45 00:01:33 00:00:54 00:00:32 N/A
K = 256,h = 0.015625 02:43:39 01:23:18 00:42:31 00:21:30 00:11:00 00:05:37 00:03:06 00:01:50
(b) Observed speedup Sp

p = 1 p = 2 p = 4 p = 8 p = 16 p = 32 p = 64 p = 128
K = 64, h = 0.03125 1.0000 1.8610 3.3474 5.6420 9.2357 12.5000 14.4279 N/A
K = 64, h = 0.015625 1.0000 1.8840 3.6083 6.7760 7.5448 16.9346 32.6011 37.3143
K = 256,h = 0.03125 1.0000 1.9681 3.8571 7.4605 13.2881 23.0424 38.2563 N/A
K = 256,h = 0.015625 1.0000 1.9646 3.8498 7.6136 14.8847 29.1573 52.9269 89.3367
(c) Observed efficiency Ep

p = 1 p = 2 p = 4 p = 8 p = 16 p = 32 p = 64 p = 128
K = 64, h = 0.03125 1.0000 0.9305 0.8369 0.7053 0.5772 0.3906 0.2254 N/A
K = 64, h = 0.015625 1.0000 0.9420 0.9021 0.8470 0.4715 0.5292 0.5094 0.2915
K = 256,h = 0.03125 1.0000 0.9841 0.9643 0.9326 0.8305 0.7201 0.5978 N/A
K = 256,h = 0.015625 1.0000 0.9823 0.9625 0.9517 0.9303 0.9112 0.8270 0.6979

(a) Observed speedup Sp (b) Observed efficiency Ep

Figure 3: Performance by number of processes used with 4 processes per node, except for p = 1 which uses
1 process per node and p = 2 which uses 2 processes per node.
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A Performance Studies on kali

This appendix contains performance results for the same study as described above performed on kali, a distributed-
memory cluster purchased in 2003. The studies in [6] were run on this cluster and demonstrated excellent parallel
performance of the algorithm and its implementation. The cluster kali has currently 27 nodes connected through
a Myrinet network available. Each node contains two (single-core) Intel Xeon 2.0 GHz chips with 512 kB cache
and 1 GB memory per node.

Table 6 lists the results of a serial sizing study analogous to Table 2. The results for the time stepping are
identical to the ones obtained on hpc, which confirms that the code gives correct results on both clusters. The
serial times show that the new cluster hpc is about a factor 3.5 faster than kali.

Table 7 is a summary of raw timing results, analogous to Table 1 in Section 1. The observed speedup both
row-wise and column-wise is as expected, demonstrating the quality of the high performance Myrinet interconnect
network.

Table 8 and Figure 4 show performance results when running only one process per node, up to the maximum
possible p = 16. In all cases, we see excellent speedup, though the cases with more degrees of freedom exhibit
slightly better speedup. Table 9 and Figure 5 summarize performance results when using two processes on each
node, up to p = 32. Again, there is excellent speedup throughout, with the more complex cases slightly more
efficient. As is the case with hpc, the difference in performance when using two processors per node is negligible,
due to the low memory demands of the code being tested.
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Table 6: Sizing study on kali listing the velocity resolution K, the spatial mesh spacing h, the number of spatial
mesh elements Ne, the number of degrees of freedom (DOF), the final time tfinal, the constant time step ∆t, the
number of time steps Nt, and the observed wall clock time in HH:MM:SS for a serial run in each test case.

K h Ne DOF tfinal ∆t Nt Wall time
Case 1 8× 8 0.03125 320 163,840 0.20 1.00500 · 10−3 199 00:05:42
Case 2 8× 8 0.015625 1280 655,360 0.20 5.02700 · 10−4 398 00:41:47
Case 3 16× 16 0.03125 320 655,360 0.20 6.28370 · 10−4 319 01:10:04
Case 4 16× 16 0.015625 1280 2,621,440 0.20 3.14187 · 10−4 637 09:31:52

Table 7: Performance on kali. Wall clock time in HH:MM:SS for the solution of four cases of velocity and spatial
meshes using 1, 2, 4, 8, and 16 compute nodes with 1, 2, and 4 processes per node.

(a) Coarse spatial mesh with h = 0.03125, coarse velocity resolution K = 8× 8
1 node 2 nodes 4 nodes 8 nodes 16 nodes

1 process per node 00:05:42 00:03:03 00:01:36 00:00:51 00:00:27
2 processes per node 00:03:05 00:01:38 00:00:53 00:00:29 00:00:18
(b) Fine spatial mesh with h = 0.015625, coarse velocity resolution K = 8× 8

1 node 2 nodes 4 nodes 8 nodes 16 nodes
1 process per node 00:41:47 00:22:14 00:11:24 00:05:48 00:02:59
2 processes per node 00:22:06 00:11:23 00:05:47 00:03:00 00:01:36
(c) Coarse spatial mesh with h = 0.03125, fine velocity resolution K = 16× 16

1 node 2 nodes 4 nodes 8 nodes 16 nodes
1 process per node 01:10:04 00:36:02 00:18:19 00:09:23 00:04:52
2 processes per node 00:36:06 00:18:21 00:09:22 00:04:54 00:02:50
(d) Fine spatial mesh with h = 0.015625, fine velocity resolution K = 16× 16

1 node 2 nodes 4 nodes 8 nodes 16 nodes
1 process per node 09:31:52 04:57:15 02:35:38 01:21:30 00:41:29
2 processes per node 04:57:47 02:36:02 01:21:34 00:41:14 00:21:24
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Table 8: Performance on kali by number of processes used with 1 process per node, except for p = 32 which uses
2 processes per node.

(a) Wall clock time in HH:MM:SS
p = 1 p = 2 p = 4 p = 8 p = 16 p = 32

K = 64, h = 0.03125 00:05:42 00:03:03 00:01:36 00:00:51 00:00:27 00:00:18
K = 64, h = 0.015625 00:41:47 00:22:14 00:11:24 00:05:48 00:02:59 00:01:36
K = 256, h = 0.03125 01:10:04 00:36:02 00:18:19 00:09:23 00:04:52 00:02:50
K = 256, h = 0.015625 09:31:52 04:57:15 02:35:38 01:12:30 00:41:29 00:21:24
(b) Observed speedup Sp

p = 1 p = 2 p = 4 p = 8 p = 16 p = 32
K = 64, h = 0.03125 1.0000 1.8724 3.5618 6.7562 12.5137 19.4318
K = 64, h = 0.015625 1.0000 1.8788 3.6669 7.2115 13.9985 26.2019
K = 256, h = 0.03125 1.0000 1.9447 3.8260 7.4657 14.3731 24.6786
K = 256, h = 0.015625 1.0000 1.9239 3.6746 7.0173 13.7835 26.7325
(c) Observed efficiency Ep

p = 1 p = 2 p = 4 p = 8 p = 16 p = 32
K = 64, h = 0.03125 1.0000 0.9362 0.8904 0.8445 0.7821 0.6072
K = 64, h = 0.015625 1.0000 0.9394 0.9167 0.9014 0.8749 0.8188
K = 256, h = 0.03125 1.0000 0.9723 0.9565 0.9332 0.8983 0.7712
K = 256, h = 0.015625 1.0000 0.9620 0.9186 0.8772 0.8615 0.8354

(a) Observed speedup Sp (b) Observed efficiency Ep

Figure 4: Performance on kali by number of processes used with 1 process per node, except for p = 32 which uses
2 processes per node.
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Table 9: Performance on kali by number of processes used with 2 processes per node, except for p = 1 which uses
1 process per node.

(a) Wall clock time in HH:MM:SS
p = 1 p = 2 p = 4 p = 8 p = 16 p = 32

K = 64, h = 0.03125 00:05:42 00:03:05 00:01:38 00:00:53 00:00:29 00:00:18
K = 64, h = 0.015625 00:41:47 00:22:06 00:11:23 00:05:47 00:03:00 00:01:36
K = 256, h = 0.03125 01:10:04 00:36:06 00:18:21 00:09:22 00:04:54 00:02:50
K = 256, h = 0.015625 09:31:52 04:57:47 02:36:02 01:21:34 00:41:14 00:21:24
(b) Observed speedup Sp

p = 1 p = 2 p = 4 p = 8 p = 16 p = 32
K = 64, h = 0.03125 1.0000 1.8503 3.5055 6.4540 11.9164 19.4318
K = 64, h = 0.015625 1.0000 1.8904 3.6647 7.2148 13.8923 26.2019
K = 256, h = 0.03125 1.0000 1.9411 3.8196 7.4755 14.3037 24.6786
K = 256, h = 0.015625 1.0000 1.9204 3.6651 7.0108 13.8685 26.7325
(c) Observed efficiency Ep

p = 1 p = 2 p = 4 p = 8 p = 16 p = 32
K = 64, h = 0.03125 1.0000 0.9252 0.8764 0.8068 0.7448 0.6072
K = 64, h = 0.015625 1.0000 0.9452 0.9162 0.9019 0.8683 0.8188
K = 256, h = 0.03125 1.0000 0.9706 0.9549 0.9344 0.8940 0.7712
K = 256, h = 0.015625 1.0000 0.9602 0.9163 0.8764 0.8668 0.8354

(a) Observed speedup Sp (b) Observed efficiency Ep

Figure 5: Performance on kali by number of processes used with 2 processes per node, except for p = 1 which uses
1 process per node.
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