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Abstract

Calcium dysregulation is a significant cause of fatal cardiac arrythmias, but it is an incompletely under-
stood phenomenon and difficult to predict. Cardiac calcium levels can be modelled as a system of partial
differential equations linking the electrical, calcium, and mechanical dynamics of the heart. Earlier work
on this subject established a model linking the chemical and electrical systems, which did not include
the contractile or mechanical influence. We have expanded the most recent extant model to include the
mechanical aspect of calcium dynamics in the heart.

Key words: Calcium-induced calcium release, Cardiomyocytes, Contractile cardiac dynamics, Chem-
ical cardiac dynamics, Electrical cardiac dynamics

1 Introduction

Heart disease is currently the leading cause of death in the United States, according to the Center for
Disease Control and Prevention. Calcium dysregulation is a signicant cause of fatal cardiac arrhythmia,
but it is an incompletely understood phenomenon [1]. The current treatment for cardiac arrhythmia, mild
or otherwise, is surgical implantation of a pacemaker to artificially stimulate the electrical patterns which
would beregulated by calcium levels in a healthy heart. To date, no medication has been developed that
been proven to be effective in in more than a handful cases [1].

Though devices like pacemakers have proven to help reduce the death rate due to arrythrmia they do
not prevent onset arrythmia. It is probable that a more indepth understanding of the the ionized calcium,
Ca2+, might yield new methods in the realm of drug therapy. In order to better study the heart examining
individual cells and three components associated with them: electrical excitation, calcium signaling, and
mechanical contraction. These three systems are coupled together as seen in Figure 1.1 with calcium signaling
being the central dynamic between the top system, electrical excitation, and the bottom system, mechanical
contraction.
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Figure 1.1: The calcium-mediated contractile rhythm of a given cardiomyocyte is a function of three coupled
dynamics: electrical excitation, calcium signaling, and mechanical contraction.

The couplings that are shown in Figure 1.1 each represent a biological process inside the cardiac cell.
The calcium inside the heart cell is contained inside of the sarcoplasmic reticulum (SR). The SR has calcium
sensitive sites called calcium release units (CRU) which, when the concentration of calcium is high enough,
release calcium into the cytosol of the cell. Calcium can enter the cytosol of the cell through an L-type calcium
channel (LCC) when the cell membrane becomes depolarized. The depolarization of the cell memebrane
occurs when calcium is pumped out of the cell and sodium is pumped into the cell through the sodium
calcium exchanger. While these systems processess are interacting, calcium is also binding and unbinding
to immobile contractile proteins inside of the cytosol. The contractile proteins are attached to musclular
strands known as sacromere and the cell expands and contracts based on the amount of calcium bound in
this fashion. A closer analysis of these interactions is present inside Section 2.

We represent the electrical excitation, calcium signaling, and mechanical contraction which control the
contractile rhythm of an individual cardiomyocyte by a system of eight time-dependent coupled PDEs. The
calcium signaling is described by five PDEs modelling concentrations of calcium ions and buffer species in
the cytosol and SR. The electrical excitation is represented by two PDEs, one representing voltage and
one representing the concentration of an additional electrolyte, potassium. The mechanical contraction is
described by a final PDE representing the concentration of actively linked contractile proteins in the cytosol.
The exact definitions of the partial differential equations can be found in Section 3.

There is a system of time dependent parabolic partial differential equations used to model our problem.
These PDEs are coupled between the three systems. The domain shape, a rectangular prism is modeled
after the brick shape of a heart cell. We use a method of lines (MOL) approach to spatially discretize this
model and finite volume method (FVM) for spatial discretization. The implementation of this is done in C
using MPI commands. A more exhuastive overview can be found in Section 4.

In Section 5, we present numerical simulations of our model to examine the behavior of different solutions.
We consider both one- and two-way coupling between the electrical and calcium signaling systems. For two-
way coupling, we present a parameter study to examine how our solutions are impacted.
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2 Background

The general structure of cardiomyocytes on the heart can be seen in Figure 2.1(a) just below.

(a) Cardiac cell structure (b) Calcium filled cardiomyocyte

Figure 2.1: (a) A conglomerate of cardiac cells. The muscle fibers of each heart cell contract in response
to the change in shape of contractile proteins, in turn mediated by calcium levels in the cytosol. These
muscle fibers can be seen as darker striations throughout the cell. (b) An individual heart cell illuminated
by fluoro-4, a fluorescent dye, undergoing a calcium wave.

The general shape of the cardiac cell is rectangular with several T-tubules along the side of the cell. The
light pink areas of Figure 2.1(a) represent the cellular membrane of the cardiomyocyte. The muscle fibers
run parallel to the contractile proteins of the cardiac cell. The dark splotches are the cell nuclei associated
with their respective cell. Inside the cardiomyocyte is the sacroplasmic reticulum (SR), a type of container,
contains both calcium ions and calsequestrian (CQ). The release of calcium from the SR into the cytosol
occurs via calcium release units (CRUs) on the SR. Once the concentration is high enough the CRUs will
begin to open also called sparking; sparking is the scattered, local simultaneous opening of a small number
of CRUs. The fluorescent dye is mixed in the cytosol and used to make the calcium more visible during lab
experiments; the dye diffuses through the cytosol interacting with and binding to calcium in the cytosol.
How these components combine to affect small strands of muscle fiber and cause cell pulsation is shown in
Figure 2.2.
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Figure 2.2: (a) The T-tubules enfold the L-type calcium channels (LCC) in the cell’s plasma membrane.
Periodic membrane depolarizations allow calcium to pass into the cytosol. (b) Calcium released from the
calcium release units (CRUs) on the SR and begin the cascading calcium release that starts calcium wave
propagation.

The sodium-calcium electrical exchange pushes a calcium ion out of the cell while bringing three sodium
ions into cell. Calcium leaving the cell is part of a feedback mechanic where the electrical properties of the
heart are influenced by calcium concentration in the cytosol. When the concentration begins to change it
leads to a phenomena where regular depolarizations of the cell plasma membrane happen; the depolarization
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induces spontaneous action potential, causing the L-type Calcium Channels to open. This feed-forward
mechanic is another one way coupling which allows for the electrical aspect of the cardiac cell to have an
influence on the calcium concentration of the cytosol. These two methods result in a two way coupling
between the electrical excitation system and calcium signaling in the cell.

As the CRUs release more calcium into the cytosol, the spike in concentration can trigger neighboring
CRUs to open as well possible leading to the cascading effect depicted in Figure 2.2(b). This wave can
propagate until the SR stores are depleted of calcium, which are then replenished via an intracellular pump.
When calcium begins to pour into the cytosol the concentration begins to rise triggering another even within
the cell: calcium release. As calcium diffuses through the cytosol, it reacts with other chemical species;
among them, in this model, are the fluorescent dye fluoro-4 and tropomyosin.

The contraction and expansion of the cell’s shape is a result of the contractile proteins; the contractile
proteins, also called tropomyosin, located in the bottom right-hand corner of Figure 2.2(a), are comprised of
troponin, actin, myosin heads, and attached to a sacromere. When calcium binds to the troponin complex the
myosin heads are free to converge to the actin bridge; when the myosin heads come in contact with the bridge
the striated muscle, the sacromere, that is parallel to the tropomyosin contracts. This myosin contraction is
the process through which the cell expands and contracts; when these contractions are performed in unison on
a macroscopic scale the pulses. This process of calcium causing heart contractions presents the first coupling
between calcium and the contractile nature of a heart cell; these chemical interactions would be called a feed
forward process. Once calcium is bound to the complex the bridge like structure deforms causing the rate
at which calcium would unbind to decrease. Conceptually the change in the troponin complex causes the
bridge to hang onto the calcium for longer.

∆ys

∆zs

∆xs

CRU
longitudinal direction

tr
an
sv
er
se

tr
a
n
sv
er
se

Figure 2.3: The CRUs are modeled in a lattice shape along the z and y axis. The SR, LCCs, and cell
membrane are assumed to be everywhere.

In order to represent the shape of the heart cell, as depicted in Figure 2.1(b) mathematically a rectangular
prismatic mesh where the CRUs are isotropically spaced throughout the domain as seen in Figure 2.3. The
rectangular nature of the mesh and isotropic spacing are unchanged despite the idea of cell contraction;
the cells realistically contract but for simplicity the mechanical contraction is implemented as a pseudo-
mechanical.
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3 Model

In this section, we present the equations of the model along with parameter tables and descriptions of how
the equations represent the physiological components. The PDEs of the model are (3.1), (3.2) with nsc = 3,
(3.3), (3.4) with nss = 1, (3.12), and (3.13). Section 3.1 describes the calcium signaling portion of the model
without the presence of electrical excitation or mechanical contraction [5,6], implemented in [3,4]. Section 3.2
introduces the electrical excitation that is connected to the calcium signaling in both the feedforward and
feedback directions represented by links 1© and 2© in Figure 1.1. Link 1© from electrical system to the
calcium dynamics was first established in [1]. Finally, Section 3.3 completes the fully linked model with the
addition of the mechanical contraction component that is also connected to the calcium signaling in both
the feedback and feedforward directions represented by links 3© and 4© in Figure 1.1. The effects of cell
contraction are implemented via a pseudo-mechanical model, as in [2], which describes force in terms of the
proportion of actively connected contractile proteins.

3.1 Calcium signaling

We start with a system of reaction diffusion PDEs

∂c

∂t
= ∇ · (Dc∇c) +

nsc∑
i=1

R
(c)
i + (JCRU + Jleak − Jpump) + κJLCC + Jmleak

− Jmpump
(3.1)

∂b
(c)
i

∂t
= ∇ · (D

b
(c)
i
∇b(c)i ) +R

(c)
i , i = 1, ..., nsc (3.2)

∂s

∂t
= ∇ · (Ds∇s) +

nss∑
j=1

R
(s)
j − γ(JCRU + Jleak − Jpump) (3.3)

∂b
(s)
j

∂t
= ∇ · (D

b
(s)
j
∇b(s)

j ) +R
(s)
j , j = 1, ..., nss (3.4)

where c(x, t) and s(x, t) represent the concentrations of calcium in the cytosol and SR, respectively. b
(c)
i (x, t)

and b
(s)
j (x, t) represent the concetration of each buffer species in the cytosol SR, respectively. Dc, Ds, Db

(c)
i

,

and D
b
(s)
j

are diffusion matrices for Ca2+ in the cytosol, Ca2+ in the SR, and each buffer species in the cytosol

and SR, respectively. While each buffer species programatically possesses a diffusion matrix (following the
template of (3.5) and (3.6)), not all species are mobile; hence the diffusion matrices for some species are zero
matrices in Table 3.1.

The reaction terms R
(c)
i and R

(s)
j describe the reactions between cytosolic Ca2+ and each cytosolic buffer

species, and the reactions between SR Ca2+ and each SR buffer species

R
(c)
i = − k+

b
(c)
i

c b
(c)
i + k−

b
(c)
i

(
b
(c)
i,total − b

(c)
i

)
, i = 1, ..., nsc (3.5)

R
(s)
j = − k+

b
(s)
j

s b
(s)
j + k−

b
(s)
j

(
b
(s)
j,total − b

(s)
j

)
, j = 1, ..., nss. (3.6)

The points of connection between (3.1) and (3.2), and between (3.3) and (3.4), are these reaction terms (3.5)
and (3.6). The amounts of “free” calcium ions, c(x, t) and s(x, t), and of “free” buffer species, are determined
by these reactions: whatever has not been bound by a reaction is the concentration remaining. In the cytosol,

two buffer species are considered: a fluorescent dye, b
(c)
1 (x, t), and a contractile protein troponin, b

(c)
2 (x, t).

We will revisit the subject of troponin in our extension of this model to include the pseudo-mechanical

dynamics of the cell. In the SR, a single buffer species is considered: calsequestrin, b
(s)
1 (x, t), a calcium-

binding protein which helps maintain the SR calcium reserves at a much higher concentration than the
cytosol (i.e., prevents too great a loss through diffusion).

The flux terms JCRU , Jleak and Jpump describe the calcium-induced release of Ca2+ into the cytosol from
the SR, the continuous leak of Ca2+ into the cytosol from the SR, and the pumping of Ca2+ back into the
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Table 3.1: Parameter values for calcium signaling: PDEs.

Parameters Definition Values/Units
c(x, t) cytosol calcium concentration µM
s(x, t) SR calcium concentration µM
nsc number of cytosol Ca2+ buffer species 2
nss number of SR Ca2+ buffer species 1

b
(c)
1 total total amount of b

(c)
1 (x, t), dye, in cytosol 50 µM

b
(c)
2 total total amount of b

(c)
2 (x, t), troponin, in cytosol 123 µM

b
(s)
1 total total amount of b

(s)
1 (x, t), calsequestrin, in SR 6000 µM

Dc cytosolic calcium diffusion coefficient matrix diag(0.15, 0.15, 0.3)
Ds SR calcium diffusion coefficient matrix diag(0.78, 0.78, 0.78) µm2/ms
D

b
(c)
1

cytosol buffer diffusion coefficient matrix (i = 1, dye) diag(0.01, 0.01, 0.02) µm2/ms

D
b
(c)
2

cytosol buffer diffusion coefficient matrix (i = 2, troponin) diag(0.00, 0.00, 0.00) µm2/ms

D
b
(s)
1

SR buffer diffusion coefficient matrix (i = 1, calsequestrin) diag(0.00, 0.00, 0.00) µm2/ms

R
(c)
i , R

(s)
j reactions of cytosol, SR Ca2+ with buffers µM/ms

k+
b
(c)
1

forward reaction coefficient for b
(c)
1 , dye 80e-3 µM/ms

k+
b
(c)
2

forward reaction coefficient for b
(c)
2 , troponin 100e-3 µM/ms

k+
b
(s)
1

forward reaction coefficient for b
(c)
1 , calsequestrin 39.0e-3 µM/ms

k−
b
(c)
1

reverse reaction coefficient for b
(c)
1 , dye 90e-3 ms−1

k−
b
(c)
2

reverse reaction coefficient for b
(c)
2 , troponin 100e-3 ms−1

k−
b
(s)
1

reverse reaction coefficient for b
(s)
1 , calsequestrin 78 ms−1

γ ratio of volume of cytosol to SR 14

SR from the cytosol. JLCC , Jmleak
, and Jmpump

describe the fluxes of calcium into and out of the cell via
the plasma membrane. The coupling between (3.1) and (3.3) is achieved by the three flux terms shared by
both. Jpump and Jleak are functions only of cytosol calcium c(x, t); JCRU has an additional dependence on
SR calcium s(x, t). JLCC , Jmleak

, and Jmpump describe the fluxes of calcium into and out of the cell via the
plasma membrane. Jpump replenishes the calcium stores in the SR; it increases SR calcium concentration
by decreasing cytosol calcium concentration. Jleak is a continuous leakage of those SR calcium stores into
the cytosol; it increases cytosol concentration by decreasing SR calcium concentration. In the absence of
sparking (i.e., when JCRU is inactive, or 0) Jpump and Jleak balance each other to keep the levels of c(x, t)
and s(x, t) relatively consistent

Jpump(c) = Vpump

(
cnpump

K
npump
pump + cnpump

)
(3.7)

Jleak = Jpump(c0). (3.8)

Jpump, a function of cytosolic calcium c(x, t), consists of the the maximum pump velocity Vpump multiplied
against the relationship between c(x, t) and the pump sensitivity Kpump; the superscript npump refers to the
Hill coefficient (quantifying the degree of cooperative binding) for the pump function. This has the practical
effect of multiplying the maximum possible pump velocity against a number between 0 and 1, exclusive.
Jleak, which continuously leaks calcium into the cytosol from the SR, is simply Jpump evaluated at the basal
cytosolic calcium concentration c0. As noted, Jpump balances Jleak in the absence of sparking. However, it
can and does balance JCRU as well under conditions of active calcium release.

JCRU is the Ca2+ flux into the cytosol from the SR via each individual point source at which a CRU has
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Table 3.2: Parameter values for calcium signaling: coupling by pump and leak.

Parameters Definition Values/Units
c0 initial cytosol calcium concentration 0.1 µM
Jpump calcium transfer from cytosol to SR µM/ms
Jleak calcium leak from SR µM/ms
Vpump maximum pump rate 2 to 6 µM/ms
Kpump pump sensitivity to Ca2+ 0.184 µM
npump Hill coefficient for pump function 4.0

Table 3.3: Parameter values for calcium signaling: coupling by sparking.

Parameters Definition Values/Units
s0 initial SR calcium concentration 1,000 to 10,000 µM
JCRU calcium flux from SR to cytosol via CRUs µM/ms
O gating function for JCRU 1
Jprob probability of CRU opening 0 to 1
x three-dimensional vector for CRU location µm
σ̂ maximum rate of release 100 to 200 µMµm3/ms
urand uniformly distributed random variable 0 to 1
nprob Hill coefficient for probability function 1.6
Pmax maximum probability for release 0.3
Kprobc sensitivity of CRU to cytosol calcium 5 to 15 µM
Kprobs sensitivity of CRU to SR calcium 200 to 550 µM
δ(x− x̂) Dirac delta distribution 0, 1

been assigned. It can be considered as the product of three segments

JCRU (c, s,x, t) =
∑
x̂∈Ωs

(
σ̂
( s− c
s0 − c0

))
O(c, s) δ(x− x̂) (3.9)

O(c, s) =

{
1 if urand ≤ Jprob
0 if urand > Jprob

}
(3.10)

Jprob(c, s) = Pmax

(
cnprob

K
nprob

probc
+ cnprob

)(
snprob

K
nprob

probs
+ snprob

)
. (3.11)

First, similarly to how in Jpump the maximum pump rate is scaled against the concentration of available
cytosol calcium, the maximum rate of Ca2+ release σ̂ is here scaled against the ratios of calcium concentra-
tions in the cytosol and in the SR.

Second, following the same pattern a maximum value multiplied against some scaling proportion between
0 and 1 the gating function O has the practical effect of “budgeting” the calcium SR stores such that when
the stores are low, the given CRU becomes much less likely to open; each CRU is assigned a uniformly
distributed random value, which is compared to the single value returned by the CRU opening probability
Jprob to determine whether or not the given CRU will open.

Third, the Dirac delta distribution models each CRU as a point source for calcium release.

3.2 Electrical excitation

The membrane potential of the cell depends on both the cytosol calcium ion concentration and also on
the cytosol potassium ion (K+) concentration. While a complete description of the relationship between
electrolytes and membrane potential is beyond the scope of this paper [2,7], note the ω term, an addition of
our model which introduces a dependency on c to complete the coupling between the electrical and chemical
systems.

The Ca2+ conductance is much faster than the K+ conductance, and so the calcium conductance can
be approximated as m∞ or instantaneously steady-state at all times; the potassium conductance requires a
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separate description (3.13)

∂V

∂t
= τ

1

C

(
Iapp − gL(V − VL)− gCam∞(V ) (V − VCa)− gK n (V − VK) + ω (Jmpump

− Jmleak
)
)

(3.12)

∂n

∂t
= τ λn(V ) [n∞(V )− n]. (3.13)

The connection between (3.1) and (3.12), the link from the electrical system to the chemical system,
comes through JLCC , the only calcium flux term to involve voltage. Note the parameter κ, which is an
external scaling factor for JLCC rather than an intrinsic physiological component; if the value of κ is set to
0, the connection is effectively switched off, and the calcium dynamics are then modelled as though voltage
were not involved

JLCC =
S gCam∞ (V − VCa)

2F
. (3.14)

S, the surface area of the cell, is included in light of the fact that JLCC describes the influx of calcium
through L-type calcium channels (LCCs), which are present in the enclosing plasma membrane of the cell:
the surface area of the cell is the surface area of the membrane.

We model the effect of cytosol calcium concentration on voltage by treating the calcium efflux term
(Jmpump

− Jmleak
) as equivalent to the sodium-calcium exchanger current: we are thus able to describe the

current generated by the sodium-calcium exchange as a function of simple calcium loss.
The individual components of the calcium efflux term are near-duplicates in form of the earlier Jpump

(3.7) and Jleak (3.8). As Jpump described the removal of calcium from the cytosol and its transfer into SR
stores, Jmpump

describes the removal of calcium from the cytosol and its transfer to outside the cell across
the membrane. Jleak described a gradual leak of calcium into the cytosol from the SR; JCRU described
an abrupt, high-concentration (high relative to the leak) release of calcium into the cytosol from the SR.
Similarly, Jmleak

describes a gradual leak of calcium into the cytosol from outside the cell via the plasma
membrane, while JLCC describes a sudden spike of calcium release into the cytosol via the LCCs

Jmpump
(c) = Vmpump

( cmnpump

K
mnpump
mpump + cmnpump

)
(3.15)

Jmleak
= Jmpump(c0). (3.16)

At this juncture, we extend the model to connect the chemical system to the electrical system via the
inclusion of the current generated by calcium leaving the cell via Jmpump and Jmleak

, which directly affects
the voltage. We collect and incorporate these as a single term, the calcium efflux (Jmpump − Jmleak

), and
introduce ω as a parameter for feedback strength, a scaling factor with the same essential function as κ in
(3.1): if it is set to 0, the only terms of (3.12) which depend on the cytosolic calcium concentration drop
out, and the connection from calcium signaling to electrical excitation is severed.

3.3 Pseudo-mechanical contraction

We complete the proposed linkages of the model by introducing feedback and feed-forward terms for the
contractile dynamics. We describe this as “pseudo-mechanical” because the domain itself is unchanged; in
our model, the physical dimensions of the cell and the locations of the CRUs do not alter. We instead model
the contraction via the proportion of contractile proteins which have bound to calcium and changed shape
as a result, which generates the force required for cell contraction.

The contractile proteins in question, though considered as a single species, are the combination of actin
and myosin when linked via cross-bridges. This linkage is made possible by Ca2+ binding to troponin,

the cytosol buffer species b
(c)
2 (x, t): it is this binding that allows the actin-myosin cross-bridges to form.

We therefore introduce a new cytosol species, b
(c)
3 (x, t), to describe these actin-myosin cross-bridges, and
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Table 3.4: Parameter values for electrical excitation: gating functions and membrane potential.

Parameters Definition Values/Units
τ scaling factor to fit action potential duration 0.1 µM µm3/ms
V (x, t) membrane potential (voltage) mV
VL equilibrium potential for leak conductance −50 mV
VCa equilibrium potential for Ca2+ conductance 100 mV
VK equilibrium potential for K+ conductance −70 mV
C membrane capacitance 20 µF/cm2

Iapp applied current 10 µA/cm2

gL maximum/instantaneous conductance for leak 2 mmho/cm2

gCa max./instantaneous conductance for Ca2+ 4 mmho/cm2

gK max./instantaneous conductance for K+ 8 mmho/cm2

m∞ fraction of open calcium channels at steady state 0 to 1
n(x, t) fraction of open potassium channels 0 to 1
n∞ fraction of open potassium channels at steady state 1
λn(V ) rate constant for opening of K+ channels s−1

JLCC influx of calcium into cell via L-type calcium channels µM/ms
S surface area of the cell 3604.48 µm
F Faraday constant 95484.56 C/mol
κ scaling factor of JLCC 0.01
ω feedback strength (scaling factor) for Ca2+ efflux µA ms/µM cm2

Jmpump pump of calcium out from cell via L-type calcium channels µM/ms
Jmleak leak of calcium out from cell via L-type calcium channels µM/ms
Vmpump maximum pump rate 1 µM/ms
mnpump membrane pump Hill coefficient 2
Kmpump membrane pump sensitivity 0.18

construct a third cytosol reaction term:

R
(c)
b3

= − k+

b
(c)
3

(b(c)2,total − b
(c)
2

b
(c)
2,total

)2

b
(c)
3 + k−

b
(c)
3

(b
(c)
3,total − b

(c)
3 ). (3.17)

Notice that this is not the same as the generic pattern for buffer species reaction terms from the initial
model. There is no immediately clear dependence on cytosolic calcium c(x, t). However, while c(x, t) is not

explicitly included, it is present in the proportion involving troponin, b
(c)
3 (x, t), which itself depends explicitly

on cytosol calcium levels; R
(c)
b3

, like the other two reaction equations, does in fact depend on cytosol calcium
concentration.

We modify the reaction equation for troponin as well. When troponin binds to Ca2+, the protein as
a whole, as noted, changes shape: not only does this allow actin-myosin cross-bridges to form, but it also
traps the calcium in its connection to the troponin so that the disassociation rate decreases dramatically.
To account for this, we add a shortening factor ε to describe how the separation of troponin and calcium

has been physically, not chemically, impaired. Note, again, that R
(c)
b2

remains a function of cytosol calcium
concentration c(x, t)

R
(c)
b2

= − k+

b
(c)
2

c b
(c)
2 + k−

b
(c)
2

(
b
(c)
2,total − b

(c)
2

)1

ε
(3.18)

ε = exp

(
Fmax ks

(b(c)3,total − b
(c)
3 − [XB]0

b
(c)
3,total − [XB]0

))
. (3.19)

This shortening factor refers back to the concentration of b
(c)
3 (x, t), the actin-myosin cross-bridges, and

to the force that their linkage generates. It is scaled by the maximum possible contractile force Fmax, the
actin stiffness ks, and the proportion of active to inactive actin-myosin cross-bridges. Like ω and κ, ε is our
point of control over the linkage between systems: if the exponent is 0, the overall value simply turns to 1,

and R
(c)
b2

reverts to its earlier form (3.5).

9



Table 3.5: Parameter values for mechanical contraction: new cytosol species reactions.

Parameters Definition Values/Units

b
(c)
3 (x, t) inactive actin-myosin cross-bridges [X] µM

[XB] active (linked) actin-myosin cross-bridges µM
[XB]0 initial concentration of active cross-bridges µM

k+
b
(c)
3

forward reaction coefficient for b
(c)
3 (x, t), actin-myosin cross-bridges 0.04 ms−1

k−
b
(c)
3

reverse reaction coefficient for b
(c)
3 (x, t), actin-myosin cross-bridges 0.01 ms−1

ε shortening factor 0 to 1
ks stiffness of actin filament 0.025 N/m
Fmax maximum force generated by actin-myosin crossbridges 120 µN

The addition of these two reaction terms connects the three components of our model. The calcium
signaling is linked to the pseudo-mechanical contraction through the cross-bridge term, and the pseudo-
mechanical contraction is in turn connected to the calcium signaling through the inclusion of the cytosol
calcium concentration in the modified reaction equation for troponin. Thus all links in Figure 1.1 are
established and thus the three components of the model are fully linked.
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Table 4.1: Parameters for the ODE, linear, nonlinear solvers.

parameters ODE Nonlinear Linear
methodname NDF Newton BiCGSTAB
maxorder 5
reltol 10−6 10−4 10−6

Nx,Ny,Nz 33,33,129
Nx,Ny,Nz(out) 33,33,129
dtmin,dtmax,dtini -20,0.500,0.500
dtout,nsout,ityput 1.0,1,0
diagoutput 0 0 0
maxit 4 50
initguess p
stopping ode15s
enforcenonneg no
epsclip 10−14

tolrelres 10−2

abstol 10−8 10−8

maxnsteps 999999

4 Numerical Method

In order to address our problem we need to solve a system of time dependent parabolic partial differential
equations. These PDEs are coupled by non-linear reaction and source terms. The domain in our model is a
rectangular prism, which correlates to the brick shape of a heart cell.

We use a method of lines (MOL) approach to spatially discretize this model. We use the finite volume
method (FVM) for spatial discretization. The result of this spatial discretization is a large system of ordinary
differential equations (ODEs). A method of lines discretization of diffusion-reaction equations with second-
order spatial derivatives results necessarily in a stiff ODE system, since the time step size restrictions due to
the CFL condition are considered too severe to allow for explicit time-stepping methods. This necessitates
the use of a sophisticated ODE solver such as the family of numerical differentiation formulas (NDFk).
Our stiff ODEs, which requires an implicit ODE method, are then taken and transformed in to non-linear
equations and are then solved with the TMP. These non-linear equations are then transformed into linear
equations, these are solved with the BiCGSTAB iteration method.

The spatial discretization of the application problem with ns = 8 species using the finite volume method
with N control volumes. The result is a system of non-linear ordinary differential equations (ODEs) with
the number of degrees of freedom (DOF), neq = nsN . We are using a matrix free method that helps with
memory allocation, thus allowing to have efficient memory management.

The implementation of this model is done in C using Message Passing Interface (MPI) to parallelize.
Parallelization is to block-distribute all large arrays to all MPI processes. MPI commands such as MPI_Isend
and MPI_Irecv, which are non-blocking MPI communications commands, sent messages between neighboring
processes. MPI_Allreduce is used in the computation of scale products.
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5 Results

We present a full model of the calcium dynamics of a heart cell, which is an extension of [1]. To visualize
the solutions, we conduct numerical simulations to examine the behavior. For each behavior, we present
four figures: line-scans/voltage plots, iso surface plots, CRU open plots, and SR plots. Line-scans are pro-
duced by tracking the concentration of the cystolic Ca2+ concentration along the center of the cell at each
millisecond. The concentrations of Ca2+ are plotted on a two-dimensional domain for each second, and then
overlayed upon each other producing the final image. Higher concentrations of Ca2+ are indicated by red,
while lower concentrations are indicated by blue. Voltage plots track the average voltage at the center of
the cell domain, and then is plotted versus time. Iso surface plots show the concentration of Ca2+ in the
cytosol. Blue represents the lowest value of of Ca2+ concentration we choose to track, which is 65 µM.
Higher concentrations are indicated by a yellow-ish color. CRU plots show the open calcium release units,
which are represented by blue dots in the three dimensional representation. SR plots show the concentra-
tion of Ca2+ in the SR as it relates to the right, center, and left of the cell. All simulations are run for 1000 ms.

In Section 5.1, we present results of one-way coupling between electrical excitation and calcium signaling,
which produce two general phenomenon: sparking and transient blow-up. One-way coupling is achieved by
only considering the forward connection between the electrical and calcium systems, as seen in Figure 1.1.
In Section 5.2, we present results of a two-way coupling between the calcium and electrical systems. In two
way coulping, we consider both the feedforward and feedback connectiion between the electrical and calcium
systems. As descrbed in Section 3, two-way coupling is mathematically achieved through the inclusion of
a calcium efflux term, scaled by the factor ω, referred to as a feedback strength coefficient. We present a
paramater study of ω in which we examine how varying the value impacts the behavior of our solutions.

5.1 Electrical Excitation to Calcium Signaling: One-Way Coupling

5.1.1 Blow-up

The first case we present is periodic blow-up. A case is classified as blow-up when there are quick Ca2+

releases into the cell at significantly high levels, without returning to base level. In periodic blow-up, we
experience similar behavior, but calcium is returns to basal level, before returning to the same behavior.
This periodic behavior can be examined in Figures 5.1–5.3. In Figure 5.1 as time progresses, we observe a
large number of calcium release units opening, culminating at t = 250 ms, when the entire domain is filled
with CRUs. This signifies that a large amount of calcium is being dumped into the cytosol of the cell. In
Figure 5.2, we observe that the concentration of Ca2+ reaches significantly high levels evident through the
large amount of yellow, but returns to a lower, but still elevated level at t = 250 ms. The accompanying
line-scan in Figure 5.3 (a), shows period influxes of high Ca2+ concentrations, which repeats until t = 400 ms,
when the Ca2+ dips so low, it barely registers. In Figure 5.3 (b), we observe the average voltage. There are
influxes of electrical pulses into the system at t = 250 ms and t = 900 ms. We see that although we have
pulses entering the system, the calcium releases seems to be unaffected.
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Figure 5.1: CRU open plots for blow-up with ω = 0.
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Figure 5.2: ISO open plots for blow-up with ω = 0.
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Figure 5.3: Voltage plot for a blow-up with ω = 0

5.1.2 Wave

The second behavior observed is light sparking in Figures 5.4–5.6. Light sparking is defined as a small
releases of Ca2+ observed throughout the domain. Although there is sparking, it does not trigger any
further physiollogical behavior such as wave generation or blow-up. As observed in Figure 5.4, we see only
a small amount of CRUs opening as time increases. This behavior is also observed in Figure 5.5, as we
only a small amount of points of Ca2+. We use a line-scan to visualize the behavior of the system as a two
dimensional representation in Figure 5.6.
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Figure 5.4: CRU open plots for wave with ω = 0.
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Figure 5.5: ISO open plots for wave with ω = 0.
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Figure 5.6: Voltage plot for a wave with ω = 0

5.1.3 Heavy Sparking

The last behavior we observe is heavy sparking in Figures 5.7–5.9. Compared to light sparking, heavy
sparking is denoted by a higher concentration of Ca2+ observed throughout the cell. In Figure 5.7, a higher
number of CRUs are opening as time increases. Figure 5.8 confirms the higher concentration of Ca2+ by
showing parts of the cell as being yellow, which is inidcative of a high concentration; lower concentrations
are denoted by blue. The accompanying line-scan in Figure 5.9 shows a high concentration of Ca2+, evident
through the larger amount of places which show light blue or red colors.

18



Figure 5.7: CRU open plots for spark with ω = 0.
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Figure 5.8: ISO open plots for spark with ω = 0.
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Figure 5.9: Lscan and voltage plot for spark with ω = 0

5.2 Electrical Excitation and Calcium Signaling: Two Way Coupling

We consider five cases of ω to test the feedback strength between calcium signaling and electrical excitation:
ω = 10, 30, 50 and , 100.

5.2.1 Blow-up

We consider five cases of ω and present line-scans, voltage plots, and SR plots to examine the impact each
value has on the solutions. While line-scans appear similar, there is a clear distinction. As in Section 4.1, we
experience a periodic blow-up. If ω = 0, the same behavior is observed as in Figure 5.3. As we increase ω, the
periodicity of the blow-ups continue for a longer amount of time. If we examine the accompanying voltage
plots, we observe that as ω increases, so does the amount of voltage entering the system. Beginning at ω = 50,
we observe a behavior known as early afterdepolarization or EAD. This occurs when an increase of voltage
frequency is observed before the previous polarization of influx of voltage is complete. An amalgamation of
these behaviors in multiple cardiomyocytes could result in cardiac arrhythmias. SR plots show the amount
of Ca2+ in the SR. We observe that as ω increases, the amount of Ca2+ is being removed (or pumped out)
increases.
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ω = 10

ω = 30

ω = 50

ω = 100

Figure 5.10: Line-scans, voltage plots, and SR plots for blow-up with ω = 10, 30, 50, and 100.
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Figure 5.11: CRU open plots for blow-up with ω = 30.
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Figure 5.12: ISO open plots for blow-up with ω = 30.

5.2.2 Wave

We continue with analysis of the second case for ω testing: light sparking. As observed in Section 4.1, we
observe a light sparking, yet the effect of ω can be seen. In Figure 4.16, as ω increases, the amount of
small releases of Ca2+ increases. Although we do not reach a heavy sparking case, a higher concentration is
observed. Examining the accompanying voltage plots shows similar behavior; there are periodic influxes of
voltage though the system. Unlike in the blow-up case, we experience no early afterdepolarization.
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ω = 10

ω = 30

ω = 50

ω = 100

Figure 5.13: Line-scans, voltage plots, and SR plots for a wave with ω = 10, 30, 50, and 100.
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Figure 5.14: CRU open plots for wave with ω = 30.
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Figure 5.15: ISO open plots for wave with ω = 30.
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5.2.3 Spark

ω = 10

ω = 30

ω = 50

ω = 100

Figure 5.16: Line Scans, Voltage Plots, and SR Plots for a spark for ω = 10, 30, 50 and , 100.
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Figure 5.17: CRU open plots for spark with ω = 30.
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Figure 5.18: ISO open plots for spark with ω = 30.
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6 Conclusions

Our extended model completes the links between the electrical, calcium, and mechanical systems; the simu-
lations presented here study coupling between the electrical and calcium systems.

We linked the calcium and mechanical systems via feedback and feed-forward terms for the contractile
dynamics model, using the proportion of actin-myosin cross-bridges which are actively linked and therefore
generating contractile force at any given time. We introduced a new cytosol species to describe these actin-
myosin cross-bridges and introduced a corresponding third cytosol reaction term. We also modified the
reaction equation for troponin to more accurately describe the decreased calcium-troponin disassociation
rate resulting from the protein’s change in shape.

We introduced a calcium dependency into the voltage PDE, controlled by a scaling factor of feedback
strength ω. The calcium efflux term (Jmpump −Jmleak

) represents the only coupling between cytosol calcium
levels and voltage in the full set of PDEs, which can be switched on or off by making the feedback strength
parameter ω a positive value or zeroing it out to sever the connection from the calcium dynamic to the
electrical dynamic. Our parameter study indicated that as ω increased, the effect on voltage increased
correspondingly, as is physiologically realistic. Our initial guesses for ω were too low to produce notably
altered results; feedback strengths below a value of 10 did not have dramatic effects on the voltage. However,
as we continued to scale ω up, we began to see a stronger and stronger influence of the current generated
by calcium efflux through the membrane upon the electrical potential of the membrane itself. The formerly
steady and unaffected periodicity of the voltage over time first sped up, then deteriorated altogether, as we
continued to increase the value.

Future directions of this research include implementation in C of the third cytosol buffer species in
our model, the actin-myosin cross-bridges: while we have established the grounds for the behavior of this
species mathematically, it has not yet been examined programatically. Other avenues of investigation include
further parameter studies of ω and κ, as our introduction of ω has enabled a more direct representation of
the relationship between cytosol calcium concentration and membrane potential.
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