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Abstract

The finite element method (FEM) is a well known numerical method in solving partial differential
equations (PDEs). All numerical methods inherently have error in comparison to the true solution of the
PDE. Base on the FEM theory, the appropriate norm of this error is bounded and it can be estimated by
the mesh size. One standard method to get an idea about the sensibility of the numerical solution is to do
convergence studies on the method. More precisely, compare the results obtained from two consecutive
mesh refinements. This comparison, then can be quantified using theory of FEM by obtaining the
convergence order. In this paper we carry out convergence studies for the time-dependent parabolic test
problem (the heat transfer equation) and investigate the effect of ODE solver on the behavior of the
convergence of the method using commercial FEM software COMSOL 5.1.

Keywords: Parabolic PDE, heat transfer equation, method of lines (MOL), convergence study, mesh
refinement.

1 Introduction

1.1 Time-Dependent PDEs

The time-dependent heat transfer equation is classical example of parabolic partial differential equation
(PDE). The general form of this kind of problems is stated in (1)–(3) as

ut −∇ · (D∇u) + a0u = f in Ω for t0 < t ≤ tfin, (1)

n · (D∇u) = r on ∂Ω for t0 < t ≤ tfin, (2)

u = uini in Ω̄ at t = t0, (3)

where f(x, y) and r(x, y) are some given functions on the spatial domain Ω ⊂ Rd in d dimensions and
its boundary ∂Ω, respectively in timespan [t0, tf ]. And uini being the initial value of u at t = t0. More
information on these kind of PDEs can be found in [1].

1.2 Method of Lines

One of the standard methods to solve the aforementioned time-dependent PDE is to discretize the spatial
domain Ω, to obtain system of ordinary differential equations (ODEs) for every grid point of discretized
domain (Ωh). Then use a standard ODE solver to solve the obtained system of equations. The merits of
this method are (i) having a choice of ODE method separate from spatial discretization, (ii) having higher
order of ODE method, and (iii) making use of blackbox ODE solvers with automatic time stepping. This
approach is referred to as method of lines (MOL) [2]. MOL is in contrast with full discretization, where both
time and spatial domain discretized simultaneously [3].

1.3 Finite Element (Conforming)

As mentioned earlier, in MOL the time-dependent PDE is transformed into system of ODEs, then this system
of equations can be solved separately from the spatial discretization using an appropriate ODE solver. In
this study, we make use of commercial software COMSOL 5.1 to discretize the spatial domain using method
of finite element and then solve the obtained system of ODEs with one of the available ODE solvers in
COMSOL. More details about different ODE solvers available in COMSOL can be found in [4].
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The idea of the FEM is to solve the PDE in a weak sense in contrast to typical form i.e., strong form.
Essentially, this method can be summarized in two steps; (i) derivation of weak (variational) form of the
problem which has a unique solution in some Sobolev space U , (ii) finding approximated solution uh in
some appropriate finite dimensional subspace (conforming) Uh. By stating the problem in weak form rather
than strong one, we can allow more solutions to satisfy the problem i.e., the solutions that satisfy the weak
form need less regularity compare to the ones that satisfy the strong form. Consequently, the methods and
theories developed for the weak form are more robust. The detailed theory of FEM is available in [5].

1.4 Error Analysis

Generally, in solving PDEs, the obtained numerical solution uh is experiencing an error in comparison to
the true solution u. This error in the MOL approach for time-dependent PDE’s consists of two separate
contributions from time discretization (ODE solver) and spatial discretization (FEM). We will refer them to
as time-error and spatial-error, respectively through the course of this study. Provided that, the time-error
does not dominate the spatial-error, the appropriate norm of this error can be bounded in terms of mesh
spacing h of the discretized spatial domain. Such estimates have the form of ‖u− uh‖ ≤ C hq where C is a
problem-dependent constant independent of h and the constant q indicates the order of convergence of the
numerical method as the mesh spacing h decreases [5]. We see from this form of the error estimate that
we need q > 0 for convergence as h → 0. More realistically, we wish to have for instance q = 1 for linear
convergence, q = 2 for quadratic convergence, or higher values for even faster convergence.

As discussed in great detail in [5], ‖·‖∞ is not natural norm for FEM. One appropriate norm for FEM
errors is the L2(Ω)-norm associated with the space L2(Ω) of square-integrable functions, that is, the space
of all functions v(x) whose square v2(x) can be integrated over all x ∈ Ω without the integral becoming
infinite. The norm is defined concretely as the square root of that integral, namely

‖v‖
L2(Ω)

:=

(∫ (
v(x)

)2
dx

)1/2

. (4)

Using the L2(Ω)-norm to measure the error of the FEM allows the computation of norms of errors also
in cases where the solution and its error do not have derivatives. Lagrange finite elements of degree p, such
as available in COMSOL with p = 1, . . . , 5, approximate the PDE solution at several points in each element
of the mesh such that the restriction of the FEM solution uh to each element is a polynomial of degree up
to p in each spatial variable and uh is continuous across all boundaries between neighboring mesh elements
throughout Ω. For the case of linear (degree p = 1) Lagrange elements, we have the well known a priori
bound (e.g., [5, Section II.7])

‖u− uh‖L2(Ω)
≤ C h2, (5)

provided u ∈ H2(Ω). This assumption on u is ensured if the right-hand side of the PDE (1) satisfies
f ∈ L2(Ω). We notice that the convergence order is one higher than the polynomial degree used by the
Lagrange elements. Analogously, a more general result for using Lagrange elements with degrees p ≥ 1 is
that we can expect an error bound of

‖u− uh‖L2(Ω)
≤ C hp+1, (6)

provided u ∈ Hk(Ω) with k ≥ p+ 1.
With the above introduction, in the Sec. 2 the time-dependent test problem is stated concretely and solved

using FEM with COMSOL 5.1. In Sec. 3 the convergences study is carried out with linear and quadratic
Lagrange elements p = 1 and 2 for different ODE solver configurations. Furthermore, in the appendix,
the detailed instruction on implementing the convergence study obtained in Sec. 2 is presented using the
graphical user interface (GUI) of COMSOL 5.1. The current study is a follow-up to [6, 7], where the FEM
convergence studies for two and three dimensional elliptic PDE with smooth and non-smooth source terms
were carried out in COMSOL 5.1.
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2 Parabolic Test Problem

In (1)–(3), the general form of time-dependent parabolic PDE is shown. We consider the classic time-
dependent test problem, also known as heat equation, on a polygonal domain, which can be partitioned into
the finite element mesh without error. By setting D = 1, a0 = 0, r = 0, and uini(x, y) = 0 in (1)–(3), and
starting at t0 = 0 we get

ut −∆u = f in Ω for 0 < t ≤ tfin, (7)

n · ∇u = 0 on ∂Ω for 0 < t ≤ tfin, (8)

u = 0 in Ω̄ at t = 0, (9)

on two-dimensional domain Ω = (0, 1)× (0, 1) ⊂ R2 with the source term f supplied as

f(x, y, t) = (2t/τ2)e−t
2/τ2

sin2(πx) sin2(πy)

− 2π2(1− e−t
2/τ2

)
[
cos(2πx) sin2(πy) + sin2(πx) cos(2πy)

] (10)

This problem has been choses as it has a known analytical solution

u(x, y, t) = (1− e−t
2/τ2

) sin2(πx) cos2(πx) (11)

We use coefficient τ = 2 and tfin = 10 s for this study. It can be shown that the above problem with the
mentioned coefficient tend to steady state, uss = sin2(πx) sin2(πy), as t→∞.

Figs. 1 through 4 show the numerical solution uh and its corresponding error (uh − u) for linear and
quadratic Lagrange elements with one level of mesh refinement m = 1. More specifically, Figs. 1 and 2
are obtained using 104 linear Lagrange elements with corresponding degree of freedom DOF = 65 while,
Figs. 3 and 4 are obtained using same number of quadratic elements with corresponding degree of freedom
DOF = 233. In both cases considered in this study for a degree of Lagrange elements, the obtained solution is
consistent with the behavior of the true solution i.e., it gradually grows as t increases to its steady sate which
is occurring around t ≈ 5 s (see Figs. 1 and 3). Nevertheless, the solution obtained using linear Lagrange
elements is not reflecting the smoothness of the true solution stated in (11). As shown in Fig. 1, the flat
patches between nodes are clearly recognizable. This shows that for linear Lagrange elements the mesh is not
sufficiently fine. On the other hand, Fig. 3 which shows the FEM solution using quadratic Lagrange elements
with same level of mesh refinement and same number of elements consequently, shows much smoother results.
Also, by comparing the numerical error obtained using linear and quadratic Lagrange elements and plotted
in Figs. 2 and 4, respectively we can see that the results obtained using quadratic Lagrange elements are
more accurate than the linear ones. The above observations confirm the capability of quadratic elements in
producing more accurate and smoother results in compare to linear elements.

3 Convergence Study

The problem stated as above is used for observing the convergence of the parabolic test problem. By
selecting a test problem which has a known PDE solution u, the error u − uh and its norm in (6) can be
directly computed for every desired time in the timespan [0, tfin]. The convergence order q is then estimated
from these computational results by the following steps: For time td, starting from some initial mesh, we
refine it regularly repeatedly, which subdivides every triangle of the two-dimensional mesh uniformly into
four congruent triangles. If h measures the maximum side length of all triangles, this procedure halves the
value of h in each refinement. Let m denote the number of refinement levels from the initial mesh and
Em := ‖u− uh‖L2(Ω)

the error norm on that level. Then assuming that Em = C hq, the error for the next

coarser mesh with mesh spacing 2h is Em−1 = C (2h)q = 2q C hq. Their ratio is then Rm = Em−1/Em = 2q

and Qm = log2(Rm) provides us with a computable estimate for q in (6) as h→ 0. Notice that the technique
described here uses the known PDE solution u; this is in contrast to the technique described in [8] that
worked for Lagrange elements with p = 1 without knowing the PDE solution u.

Tables 1 and 2 show the convergence study for linear (p = 1) and quadratic (p = 2) Lagrange elements,
respectively. In both tables, the number of elements Ne, the number of vertices Nv, the number degrees of
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freedom (DOF), the FEM error Em = ‖u− uh‖L2(Ω)
, the ratio of errors of consecutive refinements Rm =

Em−1/Em, and the estimate Qm = log2(Rm) for the convergence order for each refinement level m at
t = 1, 2, 3, 4, 5 and 10 s are tabulated. Also, the results in aforementioned tables are obtained using COMSOL
default values of relative and absolute tolerances in time-dependent solver. In COMSOL 5.1 these values are
RelTol = 0.01 and AbsTol = 0.001, respectively.

The column DOF lists the numbers of degrees of freedom, which is the number of unknowns for the
finite element method that need to be solved for, in the system of linear equations and thus determine the
computational complexity of the problem. For linear Lagrange elements (p = 1) with the unknowns at the
vertices of the mesh, the DOF are equal to Nv. For higher order Lagrange elements, additional degrees of
freedom are unknowns in each element, which increases the accuracy of the solution compared to lower order
Lagrange elements on meshes with the same number of elements. This is born out by the FEM errors in
the column Em, which get smaller not just with refinement level within each sub-table, but are also smaller
as p increases from one sub-table to the next for corresponding refinement levels and their meshes. In fact,
comparing not corresponding refinement levels and their meshes, but comparing (approximately) equal DOF
from one sub-table to the next ones, we see that higher order Lagrange elements result in smaller errors, for
identical complexity of the linear system solve.

As shown in Tables 1, the convergence order for linear Lagrange elements p = 1, is almost q ≈ 2 for first
two refinement levels m = 1, 2 then it decrease dramatically as level refinement m increases. This behavior
holds true for all times t = 1, 2, 3, 4, 5, and 10 s. This clearly contradicts the FEM theory which predicts
convergence order of q = 2 for linear Lagrange elements. For the quadratic Lagrange elements case (p = 2),
as shown in Table 2 things get worse. The expected convergence order cannot be observed even for the first
refinement levels.

The reason of this behavior is the fact that with default values of absolute and relative tolerances, the time-
error (the error due to ODE solver) dominates the spatial error. And as a result the true convergence order
of FEM due to spatial refinement cannot be observed. By decreasing aforementioned tolerances in COMSOL
we can overcome this problem. It turns out that, with linear Lagrange elements p = 1 setting relative and
absolute tolerances to RelTol=1e-5, and AbsTol=1e-8, respectively make the spatial-error, dominant for 4
levels of mesh refinement. The results with these new configurations are tabulated in Table 3.

For quadratic Lagrange elements p = 2 we even need lower values of tolerances to be able to observe the
convergence order of FEM for this problem. The new values are set to 1e-8 for relative tolerance and 1e-10

for absolute tolerance. The new results are tabulated in Table 4.
As expected for a convergent method, we can observe qualitatively that the errors Em for all times in

sub-tables of Tables 3 and 4 tend to zero as the number of refinements increases and thus the mesh size h
tends to zero. Quantitatively, the quantities Rm and Qm tend to constant values in each sub-table. This
means that the errors decrease systematically with each smaller mesh size, namely Qm tends to p + 1 in
each table, which confirms the order of convergence q = p+ 1 in (6) for both p = 1 and 2 presented in this
study. These results demonstrate the advantage of using higher-order finite elements, if the regularity of the
problem allows them.

4 Conclusions

In this study, the time-dependent PDE test problem i.e., the heat equation has been solved by a MOL
approach using FEM with the commercial FEM software COMSOL 5.1. The convergence study was carried
out for Lagrange elements of degree p = 1 and p = 2. It has been shown that for both cases considered
in this study, the COMSOL default relative and absolute tolerances are not sufficiently low to make the
spatial-error dominant. Consequently, the observed convergence ratios with default values of tolerances were
not consistent with theory. We were able to capture the correct convergence ratios by modifying relative and
absolute tolerances in COMSOL time-dependent solver. Moreover we confirmed that, for the time-dependent
test problem considered in this study, the convergence order of FEM using quadratic Lagrange elements is
greater than the linear ones.
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(a) t = 1 s (b) t = 2 s

(c) t = 3 s (d) t = 4 s

(e) t = 5 s (f) t = 10 s

Figure 1: The numerical solution uh for time-dependent test problem (7)–(9). The results are obtained using
linear Lagrange elements on a mesh with 104 mesh elements. The degree of freedom solved for is DOF = 65.
The results are reported at 6 different times as indicated.
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(a) t = 1 s (b) t = 2 s

(c) t = 3 s (d) t = 4 s

(e) t = 5 s (f) t = 10 s

Figure 2: The numerical error (uh − u) for time-dependent test problem (7)–(9). The results are obtained
using linear Lagrange elements on a mesh with 104 mesh elements. The degree of freedom solved for is
DOF = 65. The results are reported at 6 different times as indicated.
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(a) t = 1 s (b) t = 2 s

(c) t = 3 s (d) t = 4 s

(e) t = 5 s (f) t = 10 s

Figure 3: The numerical solution uh for time-dependent test problem (7)–(9). The results are obtained
using linear Lagrange elements on a mesh with 104 mesh elements. The degree of freedom solved for is
DOF = 233. The results are reported at 6 different times as indicated.
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(a) t = 1 s (b) t = 2 s

(c) t = 3 s (d) t = 4 s

(e) t = 5 s (f) t = 10 s

Figure 4: The numerical error (uh − u) for time-dependent test problem (7)–(9). The results are obtained
using linear Lagrange elements on a mesh with 104 mesh elements. The degree of freedom solved for is
DOF = 233. The results are reported at 6 different times as indicated.
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Table 1: Convergence study for the time-dependent test problem (7)–(9) using linear Lagrange elements
p = 1 for time t = 1, 2, 3, 4, 5 and 10 s as indicated in each sub-table. For each t, the refinement level m, the
number of elements Ne in the mesh, the number of vertices Nv, the number of degrees of freedom (DOF),
the FEM error Em = ‖u− uh‖L2(Ω)

, the ratio of errors of consecutive refinements Rm = Em−1/Em, and

the estimate Qm = log2(Rm) for the convergence order is tabulated. The results are obtained using default
values of absolute and relative ODE tolerances in COMSOL 5.1 (0.001, and 0.01, respectively).

m Ne Nv DOF Em Rm Qm
t = 1 s 0 26 20 20 2.322E-02 NA NA

1 104 65 65 5.716E-03 4.06 2.02
2 416 233 233 1.525E-03 3.75 1.91
3 1,664 881 881 5.940E-04 2.57 1.36
4 6,656 3,425 3,425 4.688E-04 1.27 0.34

t = 2 s 0 26 20 20 6.710E-02 NA NA
1 104 65 65 1.641E-02 4.09 2.03
2 416 233 233 4.027E-03 4.08 2.03
3 1,664 881 881 9.452E-04 4.26 2.09
4 6,656 3,425 3,425 3.438E-04 2.75 1.46

t = 3 s 0 26 20 20 9.651E-02
1 104 65 65 2.344E-02 4.12 2.04
2 416 233 233 5.938E-03 3.95 1.98
3 1,664 881 881 1.613E-03 3.68 1.88
4 6,656 3,425 3,425 7.932E-04 2.03 1.02

t = 4 s 0 26 20 20 1.086E-01 NA NA
1 104 65 65 2.557E-02 4.25 2.09
2 416 233 233 6.413E-03 3.99 2.00
3 1,664 881 881 1.919E-03 3.34 1.74
4 6,656 3,425 3,425 1.334E-03 1.44 0.52

t = 5 s 0 26 20 20 1.151E-01 NA NA
1 104 65 65 2.629E-02 4.38 2.13
2 416 233 233 7.418E-03 3.54 1.83
3 1,664 881 881 3.779E-03 1.96 0.97
4 6,656 3,425 3,425 3.415E-03 1.11 0.15

t = 10 s 0 26 20 20 1.559E-01 NA NA
1 104 65 65 2.628E-02 5.93 2.57
2 416 233 233 7.795E-03 3.37 1.75
3 1,664 881 881 4.618E-03 1.69 0.76
4 6,656 3,425 3,425 4.334E-03 1.07 0.09
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Table 2: Convergence study for the time-dependent test problem (7)–(9) using quadratic Lagrange elements
p = 2 for time t = 1, 2, 3, 4, 5 and 10 s as indicated in each sub-table. For each t, the refinement level m, the
number of elements Ne in the mesh, the number of vertices Nv, the number of degrees of freedom (DOF),
the FEM error Em = ‖u− uh‖L2(Ω)

, the ratio of errors of consecutive refinements Rm = Em−1/Em, and

the estimate Qm = log2(Rm) for the convergence order is tabulated. The results are obtained using default
values of absolute and relative ODE tolerances in COMSOL 5.1 (0.001, and 0.01, respectively).

m Ne Nv DOF Em Rm Qm
t = 1 s 0 26 20 65 1.434E-03 NA NA

1 104 65 233 5.186E-04 2.76 1.47
2 416 233 881 4.570E-04 1.13 0.18
3 1,664 881 3,425 4.557E-04 1.00 0.00
4 6,656 3,425 13,505 4.557E-04 1.00 0.00

t = 2 s 0 26 20 65 3.872E-03 NA NA
1 104 65 233 7.473E-04 5.18 2.37
2 416 233 881 3.719E-04 2.01 1.01
3 1,664 881 3,425 3.662E-04 1.02 0.02
4 6,656 3,425 13,505 3.663E-04 1.00 0.00

t = 3 s 0 26 20 65 5.522E-03 NA NA
1 104 65 233 1.210E-03 4.56 2.19
2 416 233 881 7.366E-04 1.64 0.72
3 1,664 881 3,425 7.268E-04 1.01 0.02
4 6,656 3,425 13,505 7.267E-04 1.00 0.00

t = 4 s 0 26 20 65 6.535E-03 NA NA
1 104 65 233 1.698E-03 3.85 1.94
2 416 233 881 1.351E-03 1.26 0.33
3 1,664 881 3,425 1.347E-03 1.00 0.00
4 6,656 3,425 13,505 1.347E-03 1.00 0.00

t = 5 s 0 26 20 65 8.099E-03 NA NA
1 104 65 233 3.594E-03 2.25 1.17
2 416 233 881 3.397E-03 1.06 0.08
3 1,664 881 3,425 3.388E-03 1.00 0.00
4 6,656 3,425 13,505 3.385E-03 1.00 0.00

t = 10 s 0 26 20 65 1.058E-02 NA NA
1 104 65 233 4.518E-03 2.34 1.23
2 416 233 881 4.325E-03 1.04 0.06
3 1,664 881 3,425 4.315E-03 1.00 0.00
4 6,656 3,425 13,505 4.311E-03 1.00 0.00
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Table 3: Convergence study for the time-dependent test problem (7)–(9) using linear Lagrange elements
p = 1 for time t = 1, 2, 3, 4, 5 and 10 s as indicated in each sub-table. For each t, the refinement level m, the
number of elements Ne in the mesh, the number of vertices Nv, the number of degrees of freedom (DOF),
the FEM error Em = ‖u− uh‖L2(Ω)

, the ratio of errors of consecutive refinements Rm = Em−1/Em, and the

estimate Qm = log2(Rm) for the convergence order is tabulated. The results are obtained with relative and
absolute ODE tolerances being 10−5 and 10−8, respectively.

m Ne Nv DOF Em Rm Qm
t = 1 s 0 26 20 20 2.318E-02 NA NA

1 104 65 65 5.676E-03 4.08 2.03
2 416 233 233 1.433E-03 3.96 1.99
3 1,664 881 881 3.596E-04 3.99 2.00
4 6,656 3,425 3,425 8.997E-05 4.00 2.00

t = 2 s 0 26 20 20 6.712E-02 NA NA
1 104 65 65 1.648E-02 4.07 2.03
2 416 233 233 4.170E-03 3.95 1.98
3 1,664 881 881 1.046E-03 3.98 1.99
4 6,656 3,425 3,425 2.619E-04 4.00 2.00

t = 3 s 0 26 20 20 9.644E-02 NA NA
1 104 65 65 2.346E-02 4.11 2.04
2 416 233 233 5.938E-03 3.95 1.98
3 1,664 881 881 1.490E-03 3.98 1.99
4 6,656 3,425 3,425 3.730E-04 4.00 2.00

t = 4 s 0 26 20 20 1.087E-01 NA NA
1 104 65 65 2.582E-02 4.21 2.07
2 416 233 233 6.530E-03 3.95 1.98
3 1,664 881 881 1.639E-03 3.98 1.99
4 6,656 3,425 3,425 4.103E-04 4.00 2.00

t = 5 s 0 26 20 20 1.150E-01 NA NA
1 104 65 65 2.630E-02 4.37 2.13
2 416 233 233 6.643E-03 3.96 1.98
3 1,664 881 881 1.667E-03 3.98 1.99
4 6,656 3,425 3,425 4.173E-04 4.00 2.00

t = 10 s 0 26 20 20 1.561E-01 NA NA
1 104 65 65 2.672E-02 5.84 2.55
2 416 233 233 6.661E-03 4.01 2.00
3 1,664 881 881 1.671E-03 3.99 2.00
4 6,656 3,425 3,425 4.182E-04 4.00 2.00
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Table 4: Convergence study for the time-dependent test problem (7)–(9) using quadratic Lagrange elements
p = 2 for time t = 1, 2, 3, 4, 5 and 10 s as indicated in each sub-table. For each t, the refinement level m, the
number of elements Ne in the mesh, the number of vertices Nv, the number of degrees of freedom (DOF),
the FEM error Em = ‖u− uh‖L2(Ω)

, the ratio of errors of consecutive refinements Rm = Em−1/Em, and the

estimate Qm = log2(Rm) for the convergence order is tabulated. The results are obtained with relative and
absolute ODE tolerances being 10−8 and 10−10, respectively.

m Ne Nv DOF Em Rm Qm
t = 1 s 0 26 20 65 1.362E-03 NA NA

1 104 65 233 2.433E-04 5.60 2.49
2 416 233 881 3.153E-05 7.71 2.95
3 1,664 881 3,425 3.980E-06 7.92 2.99
4 6,656 3,425 13,505 4.993E-07 7.97 2.99

t = 2 s 0 26 20 65 3.918E-03 NA NA
1 104 65 233 6.964E-04 5.63 2.49
2 416 233 881 9.016E-05 7.72 2.95
3 1,664 881 3,425 1.138E-05 7.93 2.99
4 6,656 3,425 13,505 1.427E-06 7.97 3.00

t = 3 s 0 26 20 65 5.578E-03 NA NA
1 104 65 233 9.862E-04 5.66 2.50
2 416 233 881 1.276E-04 7.73 2.95
3 1,664 881 3,425 1.610E-05 7.93 2.99
4 6,656 3,425 13,505 2.019E-06 7.97 3.00

t = 4 s 0 26 20 65 6.181E-03 NA NA
1 104 65 233 1.082E-03 5.71 2.51
2 416 233 881 1.401E-04 7.73 2.95
3 1,664 881 3,425 1.767E-05 7.93 2.99
4 6,656 3,425 13,505 2.216E-06 7.97 3.00

t = 5 s 0 26 20 65 6.381E-03 NA NA
1 104 65 233 1.101E-03 5.80 2.54
2 416 233 881 1.424E-04 7.73 2.95
3 1,664 881 3,425 1.796E-05 7.93 2.99
4 6,656 3,425 13,505 2.253E-06 7.97 3.00

t = 10 s 0 26 20 65 7.356E-03 NA NA
1 104 65 233 1.104E-03 6.67 2.74
2 416 233 881 1.427E-04 7.74 2.95
3 1,664 881 3,425 1.800E-05 7.93 2.99
4 6,656 3,425 13,505 2.257E-06 7.97 3.00
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A COMSOL: Using the Graphical User Interface (GUI)

A.1 Setup and Solution

1. Once the GUI loads, choose Model Wizard, then choose 2D on the Select a Space Dimension page.
The Model Wizard will take you automatically to the Select Physics page.

2. On the Select Physics page, expand the Mathematics branch (by clicking on the arrow to the left of
the label) and then the PDE Interfaces branch, and select the Coefficient Form PDE node. Click the
Add button. By default, the number of dependent variables is one and the variable name is u. Since
this is the desired setup for the problem, click the Study button (right arrow).

3. Under the Select Study page, select Time Dependent and click the Done button (checkered flag) on
the bottom of this page.

4. Before proceeding to establish the specifics of the test problem, check to ensure that all needed infor-
mation will easily be displayed. In the Model Builder window in the left pane of the GUI, click the
Show Menu (eye with a bar symbol) on the toolbar and make sure that Discretization is checked; this
is needed to enable user to change element order as will be discussed in step 10 below. This setting
is saved from one COMSOL session to the next, so once this is selected, COMSOL will retain this
selection for future restarts.

5. In COMSOL you can define parameters of the problem as a global definition. Defining the parameters
in this way has several advantages, like enabling us to do parametric study on them if needed or change
them readily. We want to define coefficient τ and tf = 10 s in (7)–(9) as a parameter in COMSOL.
To do so, in the Model Builder right click the Global Definitions branch and click Parameters. In the
Settings window, under the Parameters section, type tau under the Name column in the Parameters
table then in the Expression column type 2[s]. Here, [s] is dimension of the parameter tau. Now,
in the Value column, the cell in front of tau should read 2 s. Do the same thing for tf = 10 s.

6. In order to set up the desired domain, right click Geometry 1 and select Square in the Model Builder
window. By default, this will generate the desired square domain Ω = (0, 1)× (0, 1) with one corner of
the square at the origin. Select Build All under Geometry 1 to update the geometry.

7. In the Model Builder window in the left window pane, the right-hand side of the PDE can be set by
expanding the PDE branch and selecting the Coefficient Form PDE 1 node. The center pane of
the GUI specifies the general form of the equation currently selected as

ea
∂2u

∂t2
+ da

∂u

∂t
+∇ · (−c∇u− αu+ γ) + β · ∇u+ au = f.

Under Source Term, enter for f the expression

(2*t/tauˆ2)*exp(-tˆ2/tauˆ2)*sin(pi*x)ˆ2*sin(pi*y)ˆ2-2*piˆ2*(1-exp(-
tˆ2/tauˆ2))*(cos(2*pi*x)*sin(pi*y)ˆ2+sin(pi*x)ˆ2*cos(2*pi*y)). Leave the other coefficients
as their default values in order to establish the heat equation of (7)–(9).

8. By clicking the Zero Flux 1 node under the Coefficient Form PDE branch, You can see that the
desired Neumann boundary condition in (7)–(9) is automatically generated.

9. Also, by clicking Initial Values 1 node under the Coefficient Form PDE branch, you can see initial
value of u is set to 0 which is desired value for (7)–(9).

10. Again in the Model Builder window in the left pane, select the PDE branch and on the PDE page in
the center pane under Discretization (you might have to expand Discretization first), choose Linear
for the Element order. This establishes the degree of the Lagrange elements used. By selecting the
element order to be Linear, COMSOL will use linear Lagrange elements in the finite element solution.
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(a) (b)

Figure 5: (a) Extremely coarse mesh generated in COMSOL 5.1, (b) two-dimensional view of the FEM
solution for heat equation (7)–(9) with linear Lagrange elements (p = 1) and 0 level of mesh refinement
(m = 0) at t = 10 s.

11. In order to generate the FEM mesh that will be used to compute the FEM solution, first right click
the Mesh 1 branch under the Model Builder window and select Free Triangular to establish the
mesh. On the Free Triangular Settings page in the center pane, under the Domains item, select for
Geometric entity level the selection Domain. Under the Mesh 1 branch, select the Size node and on
the Size page under Element Size, choose Extremely coarse for the Predefined Elements Size. In
order to see the mesh being used, right click the Mesh 1 branch and choose Build All. Fig. 5 (a)
displays the extremely coarse mesh that will be used to compute the FEM solution. The number of
triangular elements used in this mesh can be determined by right clicking the Mesh 1 branch and
choosing Statistics. For this domain and extremely coarse mesh, the number of triangular elements
is 26.

12. In a time dependent problem like this one, we have to provide COMSOL with time range that we wish
the the software solve the problem for us. This time range has nothing to do with time steps that
software choose to solve the ODE obtained by method of lines as discussed earlier. To set the time range,
in the Model Builder, expand Study 1 branch, and click Step1: Time Dependent. In the Time
Dependent Settings window, in the Study Settings section, locate Times and type range(0,1,t_fin)

to compute the solution at t = 1, 2, . . . , 10 s. Alternatively, you could have clicked the Range button
in front of Times section and set the range there.

13. Now, compute the FEM solution by right clicking the Study 1 branch under the Model Builder window
and selecting Compute. Alternatively, one can click the blue equal symbol above the Study page on
the toolbar. Once the solution is computed, the degrees of freedom which have been solved for can
be seen below the Graphics window in the Messages tab, which is 20 for this coarse mesh using linear
Lagrange (element order 1) elements.

14. As discussed in Sec. 1.4, for time dependent problems the error consists of the spatial-error and time-
error. And for us to be able to see the convergence order of FEM we need to make sure that relative
and absolute tolerances of the ODE solver are sufficiently small that the time-error is not dominant.
To change the relative tolerance in COMSOL, under the Study 1 branch, click on Step1: Time
Dependent, in the Settings window for Step1: Time Dependent click to check mark the Relative
tolerance and then type the desired value for relative tolerance.

To change the absolute tolerance, expand Solver Configurations node under the Study 1 branch then
click Time-Dependent node in the Setting window for Time Dependent, expand Absolute Tolerance
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section, then type the new value of absolute tolerance.

A.2 Post-Processing

The default plot of the solution is generated at time t = 0. To see the solution at other time, say 10 s,
expand the Results branch in the Model Builder and select 2D Plot Group 1. In the Settings window for
2D Plot Group 1 under the Data section locate the Time (s) and choose 10. The 2-dimensional form of
the solution at t = 10 s is shown in Fig. 5 (b). A more conventional way might be to present the solution in
a three-dimensional view, as shown in Figs. 1 and 2. This section gives instructions on how to post-process
the FEM solution obtained in the previous section by changing the plot to a three-dimensional view and by
computing the FEM error.

1. Under the Results branch of the Model Builder window, expand the 2D Plot Group 1 branch, right
click on the Surface 1 node and choose the Height Expression. This shows a three-dimensional surface
and height plot of the FEM solution uh(x, y) at t = 10 s. The result for one level of mesh refinement
m = 1 is shown in Fig. 1 (f). The previous section specifically used linear (p = 1) Lagrange elements
to solve the problem, which means that the FEM solution uh(x, y) is a flat patch on each triangle of
the mesh. This is clearly visible in Fig. 1 (f).
Furthermore, in order to control the height of the z-axis, we fixed the scale factor of hight expression
to be 1 for all the times as indicated in Fig. 1. This can be done by clicking the Height Expression
1 node under the 2D Plot Group 1 branch. Then in the Height Expression Settings window expand
the Axis menu. Make sure that the scale factor is check marked. Change its corresponding value to
1.5.

2. In order to construct a plot of the FEM error uh − u, right click the Results branch and choose 2D
Plot Group. This creates a second plot group called 2D Plot Group 2. Right Click the 2D Plot
Group 2 and select Surface. This creates the node Surface 1 under the 2D Plot Group 2 branch.
Select this Surface 1 node and on the Surface page under expression, type the formula for the error
which is the difference between the PDE solution and the FEM solution:
(1-exp(-tˆ2/tauˆ2))*sin(pi*x)ˆ2*sin(pi*y)ˆ2-u.
Then right click this Surface 1 node and select the Height Expression. Fig. 2 shows a three-dimensional
surface and height plot of the error at 6 different times as indicated for one level of mesh refinement
m = 1.

3. The convergence studies of the FEM solution rely on the L2(Ω)-norm Em = ‖u− uh‖L2(Ω)
of the FEM

error with the norm defined in (4) with v = u− uh. COMSOL can compute this norm. There are two
ways to compute it in COMSOL. While first method compute the norm Em directly, second method
compute the integral

∫
(u− uh)2dx that appears in the norm definition which is then the square E2

m

of the desired norm Em.

Method 1 One way to compute the L2(Ω)-norm, is to add a component coupling operator to compute
a derived global quantity from the model. These operators can be convenient for results processing
and COMSOL’s solvers can also use them during the solution process. As already mentioned,
the advantage of this method is that, in this way we can directly compute the L2(Ω)-norm
rather than its square. To do so, right click Definitions under the Component 1 Branch go to
the Component Coupling and choose Integration, in the Source Selection section in the Settings
window for Integration choose All domain for Selection. Note that the default name for this
operator is intop1. From now on, this operator can be used for integrating the desired quantities
over the domain. In order to be able to use this operator in post processing you need to recompute
the solution.
After recomputing the FEM solution, right click Derived Values under the Results branch and
choose Global Evaluation. Select Global Evaluation 1 node, in the setting window, and under
Expression section type sqrt(intop1((sin(pi*x)ˆ2*sin(pi*y)ˆ2-u)ˆ2)). Click to check mark
the Description and label this quantity by typing E m to indicate that it is the the norm of the
error. Now, right click the Global Evaluation 1 node on the Model Builder window and select

16



Evaluate and New Table. This will compute the norm Em for all times i.e., t = 1, 2, . . . , 10 s. The
result of the computation shown in the Table 1 tab under the graphics area.

Method 2 Right click the Derived Values node under the Results branch on the Model Builder
and select Surface Integration. Choose the desired time that you want to calculate the error at
(t = 10 s in this case). Choose all domains under Selection on the Surface Integration Page.
Below the Expression section, type the square (u− uh)2 of the error as
((1-exp(-tˆ2/tauˆ2))*sin(pi*x)ˆ2*sin(pi*y)ˆ2-u)ˆ2.
Click to check mark the Description and label this quantity by typing E mˆ2 to indicate that it is
the square of the norm of the error. Now, right click the Surface Integration node on the Model
Builder window and select Evaluate and New Table. The result of the computation is shown in
the Table 2 tab under the graphics area.

4. It is useful to save the solution process as a COMSOL mph-file at this stage before mesh refinements
to have it available as starting point later when considering higher order Lagrange elements. Under
the File menu, choose Save As .... For reference, we will name the file heat_equation_2d. This
will automatically save as an mph file and append the extension mph to the chosen filename. This
file heat_equation_2d is posted along with this tech. report at the webpage hpcf.umbc.edu under
Publications.

A.3 Convergence Studies

In this section, we make use of the steps discussed in App. A.2 in order to carry out a convergence study.
We repeatedly refine the mesh that was used to compute the FEM solution, recompute the solution and its
error norm, and then copy all calculated error norms.

1. Refine the mesh by right clicking the Mesh 1 branch and under More Operations select Refine. In
the Refine Settings window under Refine Options, type 1 for Number of refinements and rebuild the
mesh by right clicking the Mesh 1 branch and selecting Build All. Again, check the statistics by right
clicking the Mesh 1 branch and selecting Statistics. With one refinement, the number of triangular
nodes has increased by a factor of 4 to a total of 104 elements.

2. Recompute the FEM solution under this refinement by right clicking the Study 1 branch and selecting
Compute. Here you can solve the problem only for t = 0, 1, 2, 3, 4, 5 and 10 s rather than the whole
range of 1, 2, . . . , 10 s; just change the range(0,1,t_fin) to range(0,1,5),t_fin. Once the solution
is computed, either right click the Surface Integration 1 or Global Evaluation 1 node and select
Evaluate and choose Table 1 (or Table 2) to add the result to the previously created tables (make
sure that you evaluate error for all desired times). Continue this process through several refinements.
Depending on the method that you have used for calculating the error, the Table tab under the graphics
window accumulates all results for E2

m or Em over the course of these refinements.

3. After following the above procedure through 4 consecutive refinements, we can copy the data for the
Em of the FEM errors from the table under the Results tab into some other software, such as MATLAB,
for further processing. The remaining columns in Tables 1 through 4 can be readily computed by using
the formulas Rm = Em−1/Em and Qm = log2(Rm).

Following the previous steps in this section provides a convergence study for the Lagrange elements of order
p = 1 with default relative and absolute tolerances, RelTol=0.01 and AbsTol=0.001. In order to perform
convergence studies for higher order Lagrange elements and/or different tolerances, start from the mph-file
from the end of App. A.2 that was saved before any mesh refinements. From the File menu, choose Open
to load the file. Once the file is loaded, follow the procedure described in step 10 and 14 in App. A.1 to
change the element order p and tolerances, respectively.
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