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ABSTRACT
Calcium is a critical component in many cellular func-
tions. It serves many important functions such as sig-
nal transduction, contraction of muscles, enzyme func-
tion, and maintaining potential difference across ex-
citable membranes. We examine the self-organization
of calcium waves in a heart cell and how they propagate
through the cell. Specifically, the crucial parameter of
flux density that controls the amount of calcium released
at each calcium release unit is assumed a known constant
in the original model. In reality, this value is not known
exactly, thus we design parameter studies where the flux
density is made a stochastic parameter for each simu-
lation. This technique from uncertainty quantification
allows for determining the range of the flux density, in
which calcium waves are likely to self-organize, but with-
out physiologically unrealistic saturation of the cell and
without electrical stimulation.
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1. INTRODUCTION
Calcium is a critical component in many cellular func-
tions. It serves many important functions such as sig-
nal transduction, contraction of muscles, enzyme func-
tion, and maintaining potential difference across ex-
citable membranes. Calcium in mammals is stored in
their bones and the calcium ions are released from the
bone under controlled conditions and are then trans-
ported through the blood stream. In this study we
examine calcium waves in a heart cell and how they
propagate. Calcium sparks are intracellular Ca2+ re-
lease events which are important in converting electri-
cal stimuli into mechanical responses. However, under
certain pathological conditions such as Ca2+ overload
release can occur spontaneously. The evolution of spon-
taneously released calcium into self-organized waves un-
derlies certain proposed mechanisms of cardiac arrhyth-
mias [3].
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The existing model for calcium flow in a heart cell Ω is
given by a system of coupled, time-dependent advection-
reaction-diffusion equations

∂u(i)

∂t
−∇ ·

(
D(i)∇u(i)

)
= r(i) + s(i) (1)

for concentrations u(i)(x, t) in µM of the ns = 3 chemical
species, i = 1, . . . , ns, as functions of space x ∈ Ω ⊂ R3

and time 0 ≤ t ≤ tfin = 1,000 ms. Here, i = 1 represents
calcium, i = 2 an endogenous calcium buffer, and i = 3
a fluorescent indicator dye. The cell itself has elongated
shape and is reasonably represented as

Ω = (−6.4, 6.4)× (−6.4, 6.4)× (−32.0, 32.0)

in units of µm. For the complete model description in-
cluding model parameters, the numerical method, and
its parallel implementation, see [5,10]. This model is cou-
pled with no-flux boundary conditions in the cell wall,
and the concentrations at the initial time are set at basal
levels, which is 0.1 µM for the calcium concentration.

The second term in (1) models diffusion with diffusivity
D(i) ∈ R3×3. The coupling among the species is modeled
by the non-linear reaction terms r(i) that depend on all
species [5], given by

r(i)(u(1), . . . , u(ns)) =

ns∑
j=2

R(j)(u(1), u(j))

for i = 1 and

r(i)(u(1), . . . , u(ns)) = R(i)(u(1), u(i))

for i = 2, . . . , ns with reaction rates

R(i) = −k+
i u

(1)u(i) + k−i

(
ui − u(i)

)
for i = 2, . . . , ns.

For species i > 1 other than calcium in (1), the term
s(i) ≡ 0. For the calcium species i = 1, the term

s(1) = −Jpump + Jleak + JSR

contains pump and leak effects with the calcium store
inside the cell as well as the key term of the model that
describes the release of calcium from the sarcoplasmic
reticulum (SR) into the cytosol of the cell at all calcium
release units (CRUs) located at [5, 6, 8, 10]. Specifically,
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the Jpump term is given by the equation

Jpump(u(1)) =
Vpump(u(1))npump

(Kpump)npump + (u(1))npump
.

and Jleak = Jpump(0.1) ≡ const. for the calcium concen-
tration at basal level 0.1 µM.

The key term of the model

JSR(u(1),x, t) =
∑
x̂∈Ωs

g Sx̂(u(1), t) δ(x− x̂) (2)

describes the release of calcium from the sarcoplasmic
reticulum (SR) into the cytosol of the cell at all calcium
release units (CRUs) located at x̂ ∈ Ωs ⊂ Ω [6,8]. There
are thousands of CRUs in one heart cell, and they are ar-
ranged along a three-dimensional lattice throughout the
cell, whose points are collected in the set Ωs. The effect
of a CRU at x̂ ∈ Ωs switching on and off is incorpo-
rated by the indicator function Sx̂, where Sx̂ = 1 when
the CRU is turned on and Sx̂ = 0 when it is turned
off. A CRU switches on (it ‘fires’), when a uniform
random number is less than a threshold function that
gets larger with calcium concentration. In this way, the
opening of a CRU becomes more likely in an environ-
ment of high calcium concentration. A CRU stays open
for 5 ms and then is refractory for 100 ms, before be-
ing able to open again [6, 8]. This avoids details of the
mechanism of CRU termination such as by junctional
SR depletion [12]. The amount of calcium released per
unit of time at each open CRU x̂ is modeled as a point
source on the spatial scale of the cell and is represented
mathematically as a Dirac delta distribution δ(x− x̂) for
a CRU located at x̂. The definition of the Dirac delta
distribution provides that (i) δ(x − x̂) = 0 when x 6= x̂
and (ii)

∫
Ω
ψ(x) δ(x − x̂) dx = ψ(x̂) for any continuous

function ψ(x). Thus, the amount of calcium released
into the cytosol of the cell at x̂ is given by the flux den-
sity g, since

∫
Ω
g δ(x − x̂) dx = g by the definition of

delta distribution.

In the original model and simulations [5,6,8,10], the flux
density g ≡ const. in (2) was kept constant uniformly
for all CRUs. We refer to this as the Uniform CRU
Flux Density (UCFD) implementation. It is apparent
that parameters in physiological models obtained from
experiments cannot be precisely reliable in their exact
values. In uncertainty quantification (UQ), one tries to
gain more certainty about the overall model behavior
by running a large number of simulations, with one (or
more) key parameters allowed to vary statistically. With
the underlying assumption that there is a correct value
or range, a normal distribution N(µg, σg) with mean µg

and standard deviation σg is a reasonable choice.

This work focuses on uncertainty quantification applied
to the flux density g, since this is a particularly impor-
tant parameter to the question of wave initiation in this
model. The thesis [2] and this work generalize (2) to a
Stochastic Uniform CRU Flux Density (SUCFD) imple-
mentation, in which the flux density in (2) is sampled

stochastically g ∈ N(µg, σg), but still uniformly for all
CRUs. The purpose of this work is to demonstrate the
steps needed to perform uncertainty quantification on
a model. That is, we demonstrate first how one might
choose µg and σg in N(µg, σg) and then how many statis-
tical samples of this distribution might be needed to gain
confidence in the results. We finish by the example of
wave initiation to demonstrate the types of conclusions
possible in uncertainty quantification.

2. RESULTS

2.1 Visualization of Simulations of CICR
We solve the model of calcium induced calcium re-
lease given by the system of coupled, time-dependent
advection-reaction-diffusion equations (1), where the cal-
cium release is modeled by (2) with a constant uniform
CRU flux density (UCFD) g = 110 µM µm3 / ms at
all CRUs. Figures 1 and 2 show two ways to visualize
the initiation of calcium waves through the cell by plot-
ting at the times from t = 100 ms to t = 500 ms. In
this simulation, we have several waves self initiate and
propagate throughout the cell.

The first plotting method is called a CRU plot, shown in
Figure 1. The fat dots in this plot mark which CRUs are
open at a particular time in the simulation. Figure 1 (a)
shows that by t = 100 ms, a group of CRUs are open
near the middle of the cell. The fundamental mechanism
of the model (2) favors opening of CRUs close to already-
open CRUs, since their released calcium diffuses through
the cell, increases the concentration at nearby CRUs,
and makes their opening more likely. Thus, at a slightly
later time t = 200 ms in Figure 1 (b), the open CRUs
have traveled in both directions from the middle, and
the CRUs in the middle have opened for the second time.
Interrupted by the rest period of 100 ms of each CRU,
the increasing calcium concentration forms a diffusion
wave through the cell, and the CRUs follow this effect
by opening and closing.

The second plotting method is called isosurface plot,
shown in Figure 2. This plot shows the same times as the
CRU plots, but on the calcium concentration. The iso-
surface plot gives us a three-dimensional representation
of how the calcium diffuses through the cell. Inside the
surface, the concentration is higher than ucrit = 65 µM,
while outside the plotted area the concentration is lower
than ucrit. Where the surface with u1 = ucrit touches
the boundary of the domain, the concentration may be
higher than ucrit, and this is indicated by the color
palette increasing from blue over yellow to red on the
cell boundary. This plot indicates that the concentra-
tion around open CRUs increases due to the release from
the calcium store, but decreases again due to diffusion
and reactions with the other species to the basal level
away from active CRUs. Over time, this forms a diffu-
sion wave of increasing calcium concentration that self-
organize without electrical stimulation. Since the heart
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t = 100 ms

t = 200 ms

t = 300 ms

t = 400 ms

t = 500 ms
Figure 1. CRU plots for g = 110.

t = 100 ms

t = 200 ms

t = 300 ms

t = 400 ms

t = 500 ms
Figure 2. Calcium isosurface plots for g = 110.
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beat is supposed to be controlled by electrical stimula-
tion, self-organization of waves without it can potentially
lead to irregular heart beat.

2.2 Stochastic Uniform CRU Flux Density
Simulations for a smaller value of flux density g =
50 µM µm3 / ms do not result in self-organization of
calcium waves [2, 5]. We conclude from the simulations
for g = 110 and g = 50 that there must be a critical value
of the flux density between these values at which waves
self-organize. The purpose of the following work is to use
a parameter study to identify the critical value. We also
note that it is possible for g to be simply so high that
the cell will get saturated in the model beyond physio-
logical reasonableness, so we are prepared for a second
critical value that would limit the range of g values with
reasonable physiological behavior.

To reduce the overall number of simulations needed, the
parameter study uses a normal distribution of values of
g to concentrate the effort in a rational way around the
most likely value. Based on the values of g used above,
we choose the mean value µg = 75 and standard devia-
tion σg = 25 in the normal distribution N(µg, σg) used
in the parameter study for g, defining the Stochastic
Uniform CRU Flux Density (SUCFD) of (2).

We analyze the results of running the SUCFD to get a
more complete picture of how g influences the behavior of
the model. To examine the effect of stochastic g values
we will look at the correlation between them and the
total number of moles of calcium over the entire domain
Ω, given by I(1) =

∫
Ω
u(1)(x, t) dx [1, 4, 9]. This calcium

integral over the entire cell is in particular an indicator of
cases where the value of g is higher than is physiological
reasonable and is taken at t = 1000 ms in the figures.

First, we examine the results after taking M = 10 sam-
ples shown in Figure 3 (a). We see that there is no
noticeable trend in the data, so we increase the number
of samples to M = 100. Figure 3 (b) shows the data
for M = 100 samples and we see that as g increases the
total amount of calcium in the cell also increases. We
also see that there is a critical point at approximately
g = 100 where calcium begins to increase dramatically;
this is the value, beyond which the calcium concentration
is reasonable, since the concentration in between waves
is not restored to basal levels any more. To gain a better
understanding of this trend, we take M = 1000 samples.
Figure 3 (c) shows the data for M = 1000 samples. We
see that the trend observed with M = 100 samples is
sustained and that as the value of g increases the total
amount of calcium increases.

Next, we use the data from the full simulations with
M = 1000 samples, but we scale the value calcium in-
tegral on the vertical axis by the volume of the cell
V = 10000 µm3, since I(1)/V in units of µM can be
compared to the basal level 0.1 µM to indicate if waves
begin to self-organize and propagate. Figure 4 (a) shows
the full data from Figure 3, but with the vertical axis

(a) M = 10 samples

(b) M = 100 samples

(c) M = 1000 samples

Figure 3. Plots of total moles I(1) vs. g for different sample sizes.

scaled by V and the horizontal axis restricted so as
to avoid the values of g which overload the cell. Af-
ter scaling the vertical axis, we search for the critical
point at which calcium integral becomes greater than
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basal level 0.1µM. One critical value at about g ≈ 104
is visible, beyond which the calcium concentration sim-
ply grows unreasonably. Closer inspection of the data
themselves also indicates another critical value at about
g ≈ 71.1 µM µm3 / ms. Figure 4 (b) shows that this
critical point is one where activation starts occurring,
that is, below g ≈ 71.1, no CRUs are regularly captured
open, while above this value individual CRUs open, clus-
ters of CRUs open, and waves form, which is indicated by
I(1)/V greater than the basal level 0.1 µM. In addition,
we investigate the region in which the calcium integral
begins to blow up. Looking at Figure 4 (c), we see cal-
cium indeed begins to blow up at g ≈ 104 µM µm3 / ms,
where I(1)/V reaches much larger values than the basal
level 0.1 µM.

3. CONCLUSIONS
This brief note shows the steps involved in applying the
concept of uncertainty quantification to a key parameter
of a physiological model. The results of our Stochastic
Uniform CRU Flux Density (SUCFD) studies show that
patterns can be identified in the data if a sufficient num-
ber of samples are used. Specifically, we are able to quan-
tify the range of g values, in which it is likely that cal-
cium waves form in a physiologically realistic way, that
is, while returning to basal levels in between waves. By
contrast, if g is outside this range, either no waves form
or the cell concentration increases without bound, which
is physiologically unrealistic.

A further generalization to the case of Stochastic In-
dependent CRU Flux Density (SICFD), where the flux
density g can be different at every CRU, show that the
model reacts correctly to spatially non-uniform values of
g, as studied in [2] and has been shown to be important
in previous work [7, 11]. This is demonstrated by a test
case, in which CRUs in one half of the cell are fixed,
while they are varied in the other half; for this setup,
waves predominantly occur in the half with the higher
values of g. This confirms that spatially non-uniform
values of g have the correct effect. The test case in that
thesis sets the stage for fully stochastic simulations using
the SICFD code.

APPENDIX

A. NUMERICAL METHOD
In order to simulate the calcium spark model, memory-
efficient numerical methods are implemented. The uni-
form rectangular CRU lattice is used to create a reg-
ular numerical mesh. The model uses constant diffu-
sion coefficients. We use the finite volume method for
spatial discretization. The parameters to control the
timestep selection in the time-stepping NDFk method
are τoderel = 10−6 and τodeabs = 10−8, and the tolerance for
the Newton solver is τnewt = 10−4. The Krylov subspace
method used to solve the system of linear equations is
BiCGSTAB with tolerance τ lin = 10−2.

(a) Scaled vertical axis

(b) Initial region of calcium activity

(c) Calcium blow up region

Figure 4. Plots of scaled total moles I(1)/V vs. g with M = 1000.

The C code used to perform the parallel computations
uses MPI for parallel communications. The computa-
tions for this study are preformed on a cluster using
C/MPI under the Linux operating system on multiple
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nodes. Each node features two quad-core Intel Nehalem
X5550 processors (2.66 GHz, 8 MB cache) with 24 GB
of memory. To distribute the vector of unknowns among
p processes, we split the mesh in the z-direction and dis-
tribute the unknowns into p subdomains for p parallel
processes. For more specifics refer on how this problem
was parallelized refer to [10]. The parallelization of the
method is vital to decrease the simulation time for each
of the parameters to 3 to 5 minutes, so that large num-
bers of samples can be analyzed in reasonable time.
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