
The Information Gathering Strategies
of Software Maintainers

Carolyn B. Seaman
UMBC, Baltimore, USA

and
Fraunhofer Center – Maryland

Abstract
In examining software maintenance processes for

improvement opportunities, an obvious choice is
information flow. Obtaining accurate, up-to-date, and
useful information about a system being maintained is a
major task. It is also a difficult task because the sources
of this information are often limited, inaccessible, or
unknown. Clearly this impacts maintenance productivity
- simply because of the time it takes to find and use the
appropriate information sources - as well as the quality of
system changes, which depends on the quality of the
system information available. This paper describes the
results of a survey study that aims to discover the
information gathering strategies that software
maintainers employ. The survey was completed by 45
software professionals in two different organizations with
varying degrees of experience in maintenance. Their
responses, on the surface, simply show that maintainers
overwhelmingly rely on source code, which is not
surprising. However, a deeper analysis of the responses
show that other sources of information, in particular
human sources, some types of CASE support, and lessons
learned recorded from previous projects are at least as
valuable than source code under some conditions. The
results of this ongoing survey study are meant to
determine a set of hypotheses about information
gathering strategies, which will then be empirically
evaluated in future studies.

1. Keywords

Software maintenance, survey study, information
flow, information sources

2. Introduction

Software maintenance offers a significant payback
opportunity for process improvement. It is commonly
believed that maintenance consumes a large proportion of
total system cost (often up to 85% as reported by Lientz
and Swanson [4] in 1978; no more recent studies have
attempted to update this finding). For this reason alone,

lowering maintenance cost is a profitable goal. Further,
improving the quality of maintenance practices could
lengthen the useful life of a software system, thus
providing a greater return on investment with respect to
the system’s original development costs.

In examining software maintenance processes for
improvement opportunities, an obvious choice is
information flow. Curtis et al. [3] have shown that
information flow is a key factor in the success of software
development and maintenance efforts. In maintenance in
particular, obtaining accurate, up-to-date, and useful
information about the system being maintained is a major
task. It is also a difficult task because these sources of
information are often limited, inaccessible, or unknown.
Clearly this impacts maintenance productivity - simply
because of the time it takes to find and use the appropriate
information sources - as well as the quality of system
changes, which depends on the quality of the system
information available. The situation is further complicated
by the growing trend towards component-based (or
COTS-based, or package-based) systems because
maintainers need information about the components as
well as the system being maintained.

Currently, software maintainers rely on various
sources for information about the system they are trying
to modify, adapt, or update. These sources range from
artifacts of the development process (requirements
documents, design documents, documentation within
code, test plans and reports, etc.) to user documentation
(user manuals and configuration information) to the
system itself (both the running system and the source
code) to direct access to the system’s original developers
and current users. Many of these sources, especially
development artifacts, are produced at least in part to
facilitate maintenance. A lot of effort is required to both
produce and maintain the documentation, but little effort
has been made to determine how useful it is for
maintenance.

The objective, then, of the work described here is to
discover the ways that maintainers gain information about
the systems they are maintaining. The eventual goal of
this line of research, however, is to use these discoveries
to design, implement, and test process improvements that

facilitate the best information gathering strategies for a
particular context. The larger research project includes
plans for future empirical evaluation of hypotheses
grounded in the data collected by the study described in
this paper.

3. Related Work

Probably the most famous and most often referenced
empirical study of software maintenance practice is
Lientz and Swanson’s [4] survey of 69 software
maintenance organizations in 1978. This in-depth study
produced the often-cited figure of 50-85% as the
proportion of system costs devoted to maintenance.
However, this study is quite dated at this point and we
have no way of knowing if these results still hold in
today’s maintenance environments. A more recent study
of maintenance practice is Singer’s [5] study of 10
maintenance organizations. This study, unlike the earlier
one, was a qualitative study and focused more on process
than outcomes. Maintainers were asked (in interviews)
about how they went about doing maintenance and what
resources they used and needed. The eventual objective
of this study was to inform the development of
maintenance tools.

Another example of using qualitative methods in
studying maintenance was Briand et al.’s study of a
NASA maintenance organization [2]. In this study,
interviews were used, along with an organizational
modeling technique called Actor-Dependency modeling
[9], to gain insight into the organizational issues and
problems in the maintenance environment. The results
uncovered problems such as organizational bottlenecks
and a lack of participation from certain stakeholders in
key process steps.

Another study, by Sousa and Moreira [6], was
intended to contribute to maintenance process
improvement in financial institutions in Portugal. This in-
depth study, which involved interviews, observation, and
questionnaires, collected and analyzed data on
maintenance effort, defects, and processes, as well as the
information sources used by maintainers. The latter
subject is not treated in any depth in the Sousa paper, but
does provide a basis for comparison for the results
presented below.

A slightly more recent study by Tjortjis and Layzell
[7] specifically attempted to describe the learning
strategies of maintainers. This study presented purely
qualitative results, and focused more on strategies than
information sources. Although a variety of organizations
were studied, there was no attempt to tie variations in
findings to variations in the organizations (e.g. application
area, experience, etc.).

There is a major body of literature in program
comprehension that addresses how programmers study
source code in order to understand a software system.

Much of this work ([1] and [8] are two good examples)
focuses on the comprehension processes of maintainers in
particular. Specifically, it addresses only one source of
information, the source code, and it looks at how
maintainers process information once they have obtained
it. In contrast, the study described here focuses on
information gathering activities, i.e. how maintainers get
information, from whatever source.

4. Study Design

Before describing the design of the survey study in
detail, it would be helpful to explain its research context.
The larger line of research, of which the survey study is
one stage, has the goal of improving how maintainers
gather the information they need to carry out maintenance
tasks. This line of research constitutes three stages, with
each stage depending on the findings of the earlier stages.
The last stage is the proposal of improvements to
maintenance practice and the empirical demonstration of
their effectiveness through case studies. Before that can
be done, however, we must learn more about how
maintainers currently gain information about systems. In
particular, we need to learn what information sources are
efficient, effective, and available in different situations.
This is the focus of the second stage of the proposed
work, which includes semi-controlled hypothesis-testing
experiments that compare different strategies. But there is
another prerequisite even to this type of study. It is not
currently clear what variables and factors need to be
considered in the study of information sources in
maintenance. What is the best measure of the
“effectiveness” of an information source? What
constitutes an “information source”? What other factors
(programmer background, application domain, system
size, etc.) might affect how a maintainer uses an
information source? If we do not gain a better
understanding of these questions than currently exists,
then the second stage of this research may be seriously
misguided. Thus, the first stage of this work is an
exploratory stage that addresses these and similar
questions. The survey study described in the remainder of
this paper is part of this exploratory stage.

The starting point for this study, as it is exploratory,
is not a set of hypotheses, but a set of research questions:
• What do maintainers consider “information sources”?
• How is an information source judged to be “good”?
• What factors affect whether or not a given

information source is “good”?
There is some literature that provides suggestions for

answers to these questions, and this literature informed
the design of the survey. For example, the source code is
one obvious information source that is the subject of
much of the program comprehension research [8, 1], as
mentioned earlier. Other information sources suggested

by [5] are other people and execution traces. How to
measure “goodness” of an information source has less
support in the literature, but some factors that seem
reasonable are the amount of time required to consult the
source (its convenience) and whether or not the source
provided the information the maintainer sought (its
usefulness). Some intervening factors that are suggested
by the literature are program structure (e.g. unstructured
vs. structured vs. object-oriented) and programmer
background [1]. Other factors that seem obvious are the
maintenance task being performed, the perceived quality
of different sources, and the availability of different
sources.

This paper reports on survey results from the first two
organizations that responded to the maintenance survey,
Computer Sciences Corporation (CSC) and the United
States Internal Revenue Service (IRS). The CSC
maintainers that responded to this survey were all
associated with CSC’s Space and Earth Technology
Systems (SETS) program. Most of these respondents
were CSC employees, but a few were from subcontractors
to CSC. All of the respondents from the IRS were IRS
employees, working on maintaining a variety of systems
for enforcing US tax law and managing tax data.
Although participation in the study was not mandatory, 38
responses were received from CSC, resulting in a
response rate of 75% at that organization. At the IRS,
however, the response rate was quite low. Although the
survey was made available to over 50 maintainers, only 7
IRS responses were received. All respondents, both from
CSC and the IRS were located in the suburban Maryland
area.

The survey underwent a significant review and
tailoring process before being distributed to maintainers.
The first drafts of the survey were based on the literature
described above, and were then reviewed by several
experts in survey design. Then managers and process
engineers at both CSC and the IRS scrutinized the
modified survey, made some terminology changes, and
tailored it to support each organization’s process
improvement goals. Finally, one or two maintainers in
each organization pretested the latest version and further
debugged it for terminology and clarity. We also timed
the maintainers during the pretest, determining that it took
about 30 minutes to complete the survey. The final
version of the survey was then sent via email (in the form
of an MS Word document) to approximately 50
maintainers in each organization by their managers.

There were four separately managed projects at CSC
and two at the IRS participating in the study. At CSC,
maintainers were given a week to complete the survey,
print it out, and return it to a designated person in each
project group. These designated persons then packaged
together the paper copies and mailed them to the author
for analysis. After the surveys were received, interviews
were conducted with four of the respondents (about 10%)

in order to provide further clarification and elaboration on
the survey questions, and also to ask a few specific
questions that had arisen from the initial analysis of the
survey data. These interviews were each about an hour in
length and were audiotaped. At the IRS, the surveys were
distributed at two different times to two different groups,
and maintainers were given two weeks to complete the
surveys. The completed surveys were sent via email
directly to this author’s research assistant for analysis. No
follow-up interviews have been conducted to date at the
IRS.

The survey itself begins with a few brief questions
about the respondent’s experience in software
development in general and in maintenance in particular.
Then there is a section asking some characterization
questions about a representative maintenance project
(platform, language, age of the system, etc.). The next
part of the survey presents a list of information sources
that could potentially be used by software maintainers
(e.g. source code, original developers, CASE tools, etc.).
The respondent is asked to rate each of the sources in
terms of usefulness, convenience, availability, and
frequency of use on a scale of 1 to 5. The respondent is
also asked to add any information sources not on the list.
Finally, a series of questions asks the respondent which
information sources are most frequently used, least
frequently used, and why, as well as which currently
unavailable sources they would most like to have (their
“wish list”). A version of the survey can be seen at
http://research.umbc.edu/~cseaman/maintenance.htm, as
well as more general information on this project.

The analysis of the survey responses and interview
notes included both quantitative and qualitative
techniques. The ratings of the information sources on the
survey were grouped in various ways according to
different attributes (system age and type, for example)
and averaged. This simple quantitative analysis helped
answer questions about which sources were rated higher
on which criteria (usefulness, convenience, etc.) under
what conditions. The qualitative analysis utilized the
software tool NVivo (developed by QSR International
Pty Ltd, Australia), which is used to code textual data and
find trends and insights.

5. Results

The results of the survey study are presented below
for each organization. Then interesting differences and
similarities between the two organizations are
highlighted. In the following section, the findings are
discussed in more detail.

5.1. CSC Results

The CSC respondents to the survey were highly
experienced; all had at least 2 years experience in
software development and maintenance but the vast
majority had more than 10 years. About a third of the
respondents had been involved in the original
development of the system they were maintaining. The
systems under maintenance varied in age but most were
more than 5 years old. About half of the systems
described were Unix/C/C++ systems, about a quarter were
mainframe (usually Fortran) systems, and the rest were
some mixture of platforms and languages.

Not surprisingly, source code was overwhelmingly
the highest rated information source in terms of
usefulness, convenience, and frequency of use.
Respondents used terms like “does not lie”, “the only
truth”, and “100% accurate” to explain why they rely so
heavily on source code. On a related note, respondents
varied a good bit on their view of comments in the source
code. Some felt that they were very helpful while others
felt they were largely inaccurate or irrelevant.

Related to source code, execution traces were also
used frequently by some respondents, although the
responses on this source were mixed. About a quarter of
the respondents said that this source was not available to
them. They were used most frequently on older systems
(more than 5 years old), and they were most convenient to
use on mainframe-based systems. Those who used
execution traces frequently said that they were the most
accurate and efficient way to understand a problem,
particularly in combination with looking at the source
code. They are especially useful for isolating complex
bugs. However, those who did not use execution traces
said that there were no tools to support them, thus they
were too hard to configure and too time-consuming.

Many of the information sources that the respondents
were asked to comment on were human (e.g. original
developers of the system, writers of the original system
requirements, current users and operators, other
maintainers and experts, etc.). When rated on usefulness,
all the human information sources rated higher than most
other sources (except, of course, source code).
Respondents said that these human information sources
were “handy” and “accurate”, and were “unique” sources
of otherwise undocumented information. Information that
could only be found in human sources included specific
project and system experience, design rationale, and
previously solved problems.

Good examples of highly useful, but largely
unavailable, human information sources were the
developers of the original release and the writers of the
original system requirements. About half the respondents
said that the requirements writers were not available to
them (availability was a little better for the original
developers). Respondents commented that these people

were often busy on other projects, or could only be
bothered when the situation was urgent. In a few cases,
there were problems even finding out who the original
developers or requirements writers were. People who had
been maintaining a system for a long time, or who were
involved in the original development of the system,
tended to have better access to original developers. Not
surprisingly, there were more problems with the
availability of original developers and requirements
writers on older systems, as compared to younger systems
(more or less than 5 years old, respectively). Several
cases were cited where allowance was made (funding,
management permission, etc.) for people involved in the
original release of the system being maintained to join the
maintenance effort. Maintainers found this very useful
but said that it happens rarely.

Those who did have access to the requirements
writers and original developers rated them above average
on usefulness. They were also the most often listed
sources on respondents’ “wish lists”. Respondents said
that the writers of the original requirements would be a
useful resource because they have such an in-depth
knowledge of the requirements, and thus the original
intent of all aspects of the system. Original developers,
on the other hand, were the best source for interpreting
the code, especially in the absence of reliable comments,
and for discovering design rationale.

Many respondents also cited current users and
operators of the system under maintenance as crucial
information sources, even if they were not consulted very
frequently. System users and operators were useful when
a maintainer was trying to isolate a defect, designing a fix
or enhancement, or trying to understand how the system is
used (which is sometimes different than it was
envisioned). Respondents were generally favorable about
the convenience and availability of users and operators.
On many projects, the maintenance team was in very
close proximity to the current users and operators, and
this was cited as a major benefit. However, a few
respondents noted that users and operators lacked the
necessary knowledge of the system design.

CASE tools in general were not rated particularly
high in terms of availability, usefulness, convenience, or
frequency of use, although the results were more
favorable among those maintaining younger systems and
those who have been maintaining a system for less than 4
years. Integrated development environments, however,
were described much more favorably. About a third of
respondents said that such an environment was not
available to them, but the others rated the environments as
above average on all counts. These results are difficult to
interpret, as the meaning of “integrated development
environment” was different in different projects. Some
projects had available to them a development
environment consisting of a set of simulators that
mimicked the operational environment of the software

being maintained, while others had a set of Java
development tools (compilers, debuggers, editors) that
they considered their “IDE”. Others were referring to a
set of tools used to draw, analyze, and generate code from
data flow diagrams. Configuration management systems
were generally rated low on usefulness, convenience, and
frequency of use, although they were generally available.

Lessons learned reports were viewed rather
differently by different groups of respondents, depending
on whether or not they had such reports available to them.
Several of the respondents who did not have lessons
learned available to them (4 out of 12) wished that they
did because they felt such reports would help them avoid
previously-committed errors. It was also noted that
lessons learned, if they were done well, could be used to
capture the project and system experience that currently is
only available directly from people (in particular original
developers and requirements writers). However, half the
respondents who did have lessons learned reports
available to them indicated that they were among the least
frequently used information sources because they
contained no useful information, were not up-to-date,
were not written well, and were not easily accessible. It
should be noted, however, that one respondent listed
lessons learned as one of their most frequently used
information sources because they describe
“unpredictable” situations. Another observation by one
respondent was that properly recording and archiving
lessons learned was a budgetary issue; i.e. there were not
enough resources to do it well. In general, lessons learned
were a bit more available and more frequently used on
mainframe systems and less available on younger
systems.

5.2. IRS Results

The IRS respondents to the survey were highly
experienced; all had at least 10 years experience in
software development and/or maintenance, with only two
respondents having less than 5 years experience
specifically in maintenance. Very few of the respondents
had been involved in the original development of the
system they were maintaining. The systems under
maintenance varied in age but most were less than 5 years
old. With one exception, all of the systems described
were mainframe-based systems, largely written in
COBOL.

As with CSC, source code was rated highest on
usefulness, convenience, and frequency of use, and it
appeared more than any other information source on the
list of the three most frequently used sources. Accuracy
and availability were cited as reasons. The only
respondent who did not have source code available placed
it on their “wish list”.

In general, the data shows that the IRS respondents
do not feel a need to consult more than they do with other

people related to the maintenance effort. Recall that
respondents were asked about people involved in the
original development of the system they were maintaining
(developers and requirements writers), people currently
involved with the system (users, operators, customers),
and colleagues (other maintainers and experts). Although
the respondents said that a number of these human
sources of information were not available to them, none
of them listed these types of sources on their “wish list”.
It should be noted, however, that in general less
experienced maintainers found human sources of
information more useful and convenient (and used them
more frequently) than more experienced maintainers.

Developers and requirements writers of the original
system release were said to be available in most cases,
somewhat useful, and in many cases convenient, but they
were not consulted very frequently. One reason cited for
this was that the expertise of these people was out of date
due to constant changes in the systems. It was also
mentioned that often the code was not documented with
the names of the original developers, making it extremely
inconvenient to find them. Respondents not involved in
the original release of the system under maintenance were
less likely to have access to the original developers and
requirements writers, not surprisingly. Along the same
lines, people who were involved in the original release
found the original requirements writers a more useful
source of information.

More useful, convenient, and frequently used human
sources of information were the people currently involved
with the system being maintained. This includes users,
customers, and operators. Although, on average, original
developers and requirements writers were rated a little bit
higher on usefulness, the respondents clearly preferred to
consult with people with a more current understanding of
the system. All respondents indicated that users,
customers, and operators were available to them. Current
system users were described as the “best source to verify
system functionality and the need for enhancements.”
Current operators were described as knowledgeable about
all aspects of the system, especially the database structure.
Customers were found to be more convenient and were
more frequently used by less experienced maintainers.

The survey respondents were also asked about their
use of colleagues as information sources, in particular
“other maintainers” and “other local experts”. Many of
the respondents indicated that they did not have access to
such people, but those who did rated them high on
usefulness, convenience, and frequency of use. In fact,
other maintainers and local experts were the highest rated
human information source, on average, with respect to
usefulness. However, none of the respondents who did
not have other maintainers and experts available put them
on their “wish list”. One could conclude, then, that
maintainers who have other maintainers and experts
readily available appreciate them as information sources,

but those who don’t do not see a need for them. Some
respondents noted that they consulted other maintainers
frequently to brainstorm solutions, and that other
maintainers usually provide accurate information.
Experienced maintainers were more likely to rely on their
fellow maintainers.

Respondents were asked to comment on three
different classes of tools: configuration management
(CM), CASE tools, and integrated development
environments (IDEs). Most respondents said that they
had CM support and found it fairly convenient to use.
CM, on average, was rated moderately useful and some
respondents identified it as their most frequently used
information source. However, one respondent, whose
maintenance work was quite different from the rest
(configuring a PC-based tool), found CM unhelpful
because it was “always an afterthought and usually
murky”. Only one of the two respondents without CM
support said that they wanted it. Those who used CM
frequently said they did so because its use was required,
or because it contained the most accurate system
documentation.

More than half the respondents, all of them more
experienced maintainers, said that they did not have
CASE tools available for their maintenance work. Half of
these respondents, furthermore, put CASE tools on their
wish lists. Design tools and analyzers in particular were
mentioned on some respondents’ wish lists. Those who
did have CASE tools available, though, said that they did
not use them very frequently and did not find them
particularly useful or convenient.

System documentation was universally available and
among the most frequently used sources of information
for maintainers, along with system files. In one case,
system documentation took the place of source code when
the source code was not available. Those respondents
who were not involved in the original release of the
systems they were maintaining found system
documentation especially convenient. However, one
respondent indicated that he/she did not rely on system
documentation because the examples used were not
realistic.

Lessons learned reports or documents are clearly
something that many of the respondents would find useful
if they were available. Among respondents who said that
they did have some sort of lessons learned available to
them, they rated them the second most useful information
source (after source code). However, lessons learned
were also reported to be one of the most unavailable, least
convenient, and least frequently used information sources.
Almost all the respondents who did not have access to
lessons learned said that they wished they did, mainly to
avoid “repeating mistakes”, “duplicating effort and
multiplying errors”. The only respondent to say that
he/she used lessons learned frequently also was the only

respondent that found the lessons learned convenient to
use.

5.3. Similarities and Differences

Clearly, there is a heavy dependence on source code
as an information source in both organizations surveyed.
However, there are numerous differences in terms of
which other sources are viewed as most useful and
convenient, and which are used most frequently. One big
difference is in how maintainers in the two organizations
viewed other people as sources of information. CSC
maintainers rated all human sources of information more
useful than all other information sources, other than
source code. All types of people (those involved in the
original development and current use of the system, as
well as colleagues) were consulted frequently when they
were available (although there were some major
availability problems). At the IRS, on the other hand,
people were not so highly regarded as sources of
information. The IRS maintainers seemed to have fewer
human sources of information available to them, but did
not express a need for more access to people.

In particular, people involved in the original
development of the system under maintenance were
largely unavailable, but highly sought after, at CSC. At
the IRS, original developers and requirements writers
were mostly available, but were not consulted frequently,
at least in part because their knowledge and expertise
were seen as out of date. One might conclude from this
that the systems being maintained at the IRS were older
than those at CSC were, but this is not the case. Most of
the systems described by IRS maintainers were less than 5
years old, while the CSC systems were of all ages (but
more than half were more than 5 years old). Rate of
system change may be the more relevant factor here, but
that was not an issue addressed by the survey,
unfortunately.

CSC and IRS maintainers did agree on their use of
current system operators, users, and customers as valuable
sources of information. In both organizations, these
people were generally available to maintainers, and were
cited as useful for such things as understanding system
functionality, interpreting change requests (including the
rationale for the requests), and designing enhancements.
One interesting difference, though, was the frequency
with which operators, users, and customers are consulted
in the two organizations. CSC maintainers said that these
people were very useful when consulted, but there was
not a need to consult with them all that often. On the
other hand, IRS maintainers consulted with them quite
frequently. System operators, users, and customers for
the IRS systems were generally part of the same
organization as the maintainers, while the CSC system
operators, users, and customers were generally in a

different organization (although sometimes they were co-
located with the maintainers).

The other category of human information sources
addressed in the survey was the maintainers’ colleagues
(“other maintainers” and “other local experts”). At the
IRS, maintainers who had such colleagues readily
available appreciated them as information sources, but
those who didn’t did not see a need for them, as
evidenced by the fact that colleagues did not appear on
any “wish lists”. The CSC maintainers rated their
colleagues just as useful as did the IRS maintainers, but at
CSC these colleagues were not consulted nearly as
frequently. The availability of colleagues was better at
CSC, but CSC maintainers who did not have colleagues
available felt they would be useful more often than IRS
maintainers without available colleagues.

The difference between the two organizations in
attitudes towards CASE tools is also interesting. Neither
organization had a high availability of CASE tools, but at
the IRS there was an expressed desire for such tools,
especially design tools and code analyzers, that was not
expressed among CSC maintainers. However, in both
organizations, maintainers with CASE tools available to
them did not rate them very high on usefulness or
convenience, and did not use them often. The IRS
maintainers are more positive about their CM
infrastructure than CSC maintainers, according to the
survey results. This may be related to the fact that system
documentation is heavily relied upon at the IRS, and the
CM system seems to be the best source for that
documentation. At CSC, use of system documentation
was somewhat mixed, and it did not seem to be linked to
the CM system.

It’s interesting to compare the findings on lessons
learned in the two organizations. Lessons learned were
not available to about a third of the respondents in both
organizations, and both sets of maintainers rated them
very low on convenience and frequency of use. However,
the CSC maintainers rated lessons learned as far less
useful than did the IRS maintainers. In fact the IRS
maintainers who had lessons learned available found them
highly useful, and those that didn’t have them available
generally wished that they did. At CSC, however, most
maintainers without access to lessons learned did not say
that they wanted them. So the major barrier to the use of
lessons learned at the IRS seemed to be availability and
convenience, while at CSC there was also a feeling that
the lessons, even if one could find them, would not be
very helpful.

6. Discussion

Given the severe inequity in the numbers of survey
responses from the two organizations (38 from CSC, 7
from the IRS), one useful way to synthesize them is to use
the IRS data to indicate which of the findings from the

CSC data might be generalizable and which are probably
not. That is the perspective we will take in this section.
However, it is worth saying that, even considering the
responses from both organizations, the findings of this
study are limited by the scope and the types of data
collected. The findings presented here are based strictly
on the survey responses and interviews in two
organizations. An attempt has been made to collect
information that will help contextualize the findings (e.g.
system age and type, maintainer experience, etc.), so the
scope of applicability of the findings will be evident.

One CSC respondent very neatly summarized the
major findings of this study: “[What I need is] somebody
to talk to and something to help me understand the code”.
Better access to human sources of information and better
(and truly useful) tools for navigating and interpreting
code seem to be the major needs of software maintainers
at CSC. Looking at this in light of the IRS data, however,
adds some complexity to this finding.

The use of source code as the primary source of
information in both organizations is not surprising (this
was also a finding of Singer’s study of software
maintainers [5] as well as Sousa and Moreira’s study of
Portuguese financial software maintainers [6]), but there
are indications that the examination of source code could
benefit from better tool support. No great enthusiasm for
CASE tools is evident in the survey responses from either
the IRS or CSC, but many CSC maintainers evidently do
rely on execution traces to get a better understanding of
the code and some mentioned that better tool support
would be helpful in this area. In fact, many of the CSC
respondents who chose not to use execution traces said
that the reason is that they are too difficult to configure,
too time-consuming, and that there is no tool support for
using them. Further, there was a positive attitude towards
integrated development environments among the CSC
respondents, which indicates that there is not a general
hostility towards automated tools of all kinds. Although
the nature of IDEs varied greatly among the CSC
respondents, most were either highly domain-dependent,
or were focused on providing very basic services (editing,
debugging, compiling, etc.). The IRS findings support the
conclusion that the real need for tools lies in supporting
the more basic functions – configuring and managing
execution traces (debuggers, source code analyzers),
supporting administrative tasks like finding source code
and other relevant documents (CM or document
managers), and basic programming tasks (compilers,
editors) - as opposed to more sophisticated and higher-
functioned CASE tools. Clearly, maintainers in both
organizations are not satisfied with the tools they
currently have available to them. Tjortjis and Layzell [7]
also found a reluctance to rely on existing CASE tools in
their study of software maintainers.

The CSC survey responses indicate a need for better
access to human sources of information, particularly the

writers of the original system requirements and the
original developers of the system, but the IRS findings do
not support this. It may be that this is highly dependent
on how much the system under maintenance changes over
time. With a highly volatile system, the knowledge and
expertise of those involved in its original development
becomes out of date very quickly. However, on more
stable systems, these people can be invaluable. In both
organizations, current users, operators, and customers of
the maintained systems are highly useful sources of
information. Also in both organizations, maintainers
viewed their colleagues as useful information sources, but
varied a great deal in how frequently they relied on them.
This is consistent with, but not as strongly indicated as,
Tjortjis’ [7] finding that maintainers sought, but were
unable to find, a good substitute for the experience of
original developers and others familiar with the system
being maintained. Neither documentation nor tools
sufficed.

The potential exists for at least a partial substitute for
human experience in the capturing and management of
knowledge, in particular lessons learned. The survey
responses are mixed in the case of lessons learned
documents, but they indicate that there is unrealized
potential in this area. Even at CSC, some maintainers
have found them useful, and some who do not have
access to them feel that they would be helpful. However,
from the responses of most who have tried to use them,
it’s clear that the way that lessons learned are currently
documented and disseminated at CSC could be improved.
The IRS results reinforce the idea that lessons learned can
be done well and can be highly useful. In both
organizations, there are problems with convenience and
availability, however.

7. Conclusions

“Somebody to talk to and something to help me
understand the code.”

This seems to be what maintainers most need and, in
some cases, what they find most lacking in their
maintenance environments. The CSC survey respondents
repeatedly expressed a desire to have better access to
people who had been involved in the development of the
systems they were maintaining, particularly the original
developers and requirements writers. Of course, such
access is often impossible for a variety of reasons. Thus,
while efforts can be made to increase access to
development personnel, other avenues must be explored
for capturing the experience of these people for the use of
maintainers. Research into experience repositories,
lessons learned, and even knowledge management, could
be brought to bear on this problem of capturing original
design rationale and system intent in a way that is useful
to future maintainers and thus reduces their reliance on
development personnel. This study implies that current

technology in this area does not suffice. It also indicates,
however, that this need (for knowledge and expertise
from those involved in the original development of the
system) is not universal. At the IRS, this type of
knowledge was not seen as valuable. What was valuable
was interaction with current users of the systems being
maintained and, as these people were generally available,
there does not seem to be a need to capture their expertise
in a persistent way. The lesson here is that the types of
experience and expertise that need to be made available to
maintainers may vary considerably between
organizations. Thus the challenge in providing
infrastructure and support for experience sharing lies not
only in the form of the automated tools, but also in
choosing the content to match the needs of maintainers.
In some cases, experiences from the original development
of the system are most valuable, while in others, more
current experience (e.g. from other maintainers or users)
is more useful. Attitudes towards documentation seem to
vary considerably, so this needs to be studied more
locally.

A related issue is this study’s implications for the
design of lessons learned systems. At both organizations,
but at the IRS in particular, there is some indication that
lessons learned can be highly useful if done well.
However, there are serious barriers in terms of
convenience and availability that effectively hinders their
use. The potential payoff, though, justifies pursuing this
issue in future work.

Software tools for maintenance, at least in the
environments studied here, are found lacking by
maintainers. There seems to be a need for support for the
most basic of tasks, not for highly sophisticated analyses.
Simple debugging tools, to help navigate the code and
trace the execution of different scenarios, would go a long
way towards facilitating the maintainer’s job. Also,
support for basic administrative tasks, such as that
provided by CM tools and some IDEs, seems to be
appreciated in both environments studied.

The dominant strategy employed by software
maintainers, simply put, is to find a knowledgeable person
(where “knowledgeable” means different things in
different environments) and to explore the source code,
not necessarily in that order. These two major sources of
information are intertwined and, when possible,
maintainers prefer to rely on both rather than either in
isolation.

Acknowledgments

This study would not have been possible, of course,
without the help of the 38 CSC maintainers and 7 IRS
maintainers, who provided information via the
maintenance survey, and their managers. In addition,
many thanks go to several CSC process engineers and
IRS managers who facilitated the logistics of this survey,

and obtained authorization to distribute it. Thanks also go
to Weimin Hou, Dr. Seaman’s research assistant who was
invaluable in organizing and doing initial analysis of the
data. Thanks also go to the reviewers of this paper who
provided very valuable comments. Finally, this study was
funded by the National Science Foundation, grant CCR-
9984047.

References

[1] Boehm-Davis, Deborah A., Robert W. Holt and Alan
C. Schultz. “The role of program structure in software
maintenance.” International Journal of Man-Machine
Studies, 36:21-63, 1992.

[2] Briand, Lionel, Yong-Mi Kim, Walcelio Melo,
Carolyn Seaman, and Victor Basili. “Q-MOPP:
Qualitative evaluation of Maintenance Organizations,
Processes, and Products.” Software Maintenance:
Research and Practice, 10:249-278, 1998.

[3] Curtis, Bill, Herb Krasner, and Neil Iscoe. “A field
study of the software design process for large
systems.” Communications of the ACM, 31(11):1268-
1287, November 1988.

[4] Lientz, B.P., E.B. Swanson, and G.E. Tompkins.
“Characteristics of Application Software
Maintenance.” Communications of the ACM,
21(6):466-471, June 1978.

[5] Singer, Janice. “Practices of Software Maintenance.”
Proceedings of the International Conference on
Software Maintenance, Bethesda, MD, November
1998, pp. 139-145.

[6] Sousa, Maria João Castro, and Helena Mendes
Moreira. “A Survey on the Software Maintenance
Process.” Proceedings of the International Conference
on Software Maintenance, Bethesda, MD, November
1998, pp. 265-274.

[7] Tjortjis, C; Layzell, P. “Expert Maintainers’
Strategies and Needs when Understanding Software:
A Case Study Approach.” Proceedings of the IEEE
8th Asia-Pacific Software Engineering Conference
(APSEC 2001), IEEE Computer Society Press, 2001,
pp. 281-287

[8] von Mayrhauser, A. and A.M. Vans. “Identification of
Dynamic Comprehension Processes During Large
Scale Maintenance.” IEEE Transactions on Software
Engineering, 22(6): 424-437, June 1996.

[9] Yu, Eric S. K. and John Mylopoulos, “Understanding
‘Why'’ in Software Process Modelling, Analysis, and
Design.” Proceedings of 16th International
Conference on Software Engineering, May 16-21,
1994, Sorrento, Italy, pp. 159-168.

